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At present, most methodologies proposed to control over double fed induction generators (DFIGs) are based on single machine
model, where the interactions fromnetwork have been neglected. Considering this, this paper proposes a decentralized coordinated
control ofDFIG based on the neural interactionmeasurement observer. An artificial neural network is employed to approximate the
nonlinear model of DFIG, and the approximation error due to neural approximation has been considered. A robust stabilization
technique is also proposed to override the effect of approximation error. A 𝐻2 controller and a 𝐻∞ controller are employed to
achieve specified engineering purposes, respectively. Then, the controller design is formulated as a mixed 𝐻2/𝐻∞ optimization
with constrains of regional pole placement and proportional plus integral (PI) structure, which can be solved easily by using linear
matrix inequality (LMI) technology. The results of simulations are presented and discussed, which show the capabilities of DFIG
with the proposed control strategy to fault-tolerant control of the maximum power point tracking (MPPT) under slight sensor
faults, low voltage ride-through (LVRT), and its contribution to power system transient stability support.

1. Introduction

During the last decade, wind power has shown world’s
fastest growing rate compared to any other electric power
generations, which causes the share of wind power to reach
a considerable level [1]. DFIG is becoming the dominant type
used in wind farms (WFs) for its maximizing wind energy
conversion and flexible control to network support [2]. For
ensuring that DFIG is integrated into the power network
reliably and efficiently, it is necessary to provide DFIGs with
suitable control strategies.

Power system is a geographically extensive large-scale
system, and its controller design is commonly based on
decentralized approach which only depends on local signals
[3–5]. However, this simple approach reduces the controller

capability and even leads to stability problems [6]. Consider-
ing this, a few of decentralized coordinated control strategies
of power system have been proposed [7–11]. A hierarchical
decentralized coordinated control strategy is proposed to
control the excitation system of synchronous generator (SG),
where the interaction terms are considered as bounded
disturbances which are suppressed by a𝐻∞ controller [8]. A
direct feedback linearization based decentralized coordinated
control of excitation and steam valve is proposed, where
the upper bound of interaction terms is estimated [9]. A
multiagent system based strategy is also used to control
a multimachine power system [10, 11]. According method-
ologies used, decentralized coordinated control strategies
of power system can be divided into two types, with and
without communication system support. For the first type,
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the interaction terms are commonly considered as bounded
disturbances which are completely suppressed, where the
involved coordinated information has been neglected, while
the second method needs communication system support,
which may bring new stability problems caused by commu-
nication time delay and communication system fault.

It is generally recognized thatmode decomposition based
decentralized coordinated control strategy is more suitable
for control over power systems, where the interaction term
is modelled as a coordinated signal [12, 13]. This allows the
system-wide state feedback control strategy to be replaced
by using local state feedback control, which is a desired per-
formance for power system controller design. This paper
proposes a neural observer based decentralized coordinated
control of DFIG, where a neural controller is used to compute
the weightings. The mode decomposition technology is used
to modelling power system and a mixed𝐻2/𝐻∞ suboptimal
control with regional pole placement and PI structure is
employed to control a DFIG-based wind turbine. More
concretely, the main contribution consists of the following
aspects:

(i) The mode decomposition is used to modelling power
system, and the interaction measurement model of
DFIG is introduced (where interaction measurement
term has been considered as a coordinated signal).
An ANN-based weighting controller is proposed to
approximate the nonlinear model of DFIG, which
achieves a closed-loopnonlinear adaptive approxima-
tion.

(ii) The neural observer is proposed to approximate the
nonlinear model of DFIG, where the approximation
error due to the proposed neural approximation has
been considered. A robust stabilization technique
is proposed to override the effect of approximation
error.

(iii) For improving the fault-tolerant capability, a 𝐻∞
controller is employed to cope with the slight faults
represented by bounded stochastic disturbances, and
a 𝐻2 controller with PI structure is also employed
to achieve specified engineering purposes. Then, the
controller design is formulated as a mixed 𝐻2/𝐻∞
suboptimal problem with regional pole placement
which is used to further improve damping perfor-
mance.

(iv) The proposed control strategy combines the merits of
conventional PI control, robust stabilization control,
and mixed 𝐻2/𝐻∞ optimization. Simulation results
show that the proposed controller not only improves
the MPPT control with fault-tolerant capability bus
also enhances system damping and LVRT capability,
which greatly improves power system transient stabil-
ity.

The rest part of this paper is arranged as follows.The neu-
ral interaction measurement observer of DFIG is proposed
in Section 2. In Section 3, the mixed 𝐻2/𝐻∞ control with
regional pole placement based on the obtained interaction
measurement model is proposed. In Section 4, simulation

results are presented and discussed, which demonstrate the
capabilities of the proposed control strategy to enhance
MPPT performance under external disturbances and its con-
tribution on power system transient stability support. Finally,
the conclusions are drawn in the Section 5.

2. Neural Adaptive Interaction Measurement
Observer of DFIG

Theproposed control strategy shown in Figure 1 is comprised
of two parts, the neural interaction measurement observer
of DFIG and the mixed 𝐻2/𝐻∞ controller. The neural
interaction measurement observer is established at chosen
operating conditions by considering the interactions from
network, and a neural weighting controller is proposed to
compute the weightings according the approximation error.
Based on the obtained observer, the 𝐻∞ controller and 𝐻2
controller are designed separately for specified engineering
purposes. Then, the controller design is formulated as a
mixed𝐻2/𝐻∞ suboptimal problem with the constrains of PI
controller structure and regional pole placement, and it can
be solved easily by using LMI technology.

2.1. DFIG Model with Stochastic Disturbances. For obtaining
a good balance between the accuracy and simplification, the𝑖th DFIG nonlinear model is chosen as a third-order model
[15], where the stator dynamic has been neglected.

Dynamic equations:

𝑑𝜔𝑟𝑖𝑑𝑡 = 12𝐻tot𝑖
(𝑇𝑚𝑖 − 𝑇𝑒𝑖)

𝑑𝐸󸀠𝑞𝑖𝑑𝑡 = −𝑠𝜔𝑠𝑖𝐸󸀠𝑑𝑖 + 𝜔𝑠𝑖 𝐿𝑚𝑖𝐿𝑟𝑟𝑖 V𝑑𝑟𝑖− 1𝑇󸀠0𝑖 [𝐸󸀠𝑞𝑖 − (𝑋𝑠𝑖 − 𝑋󸀠𝑠𝑖) 𝑖𝑑𝑠𝑖]𝑑𝐸󸀠𝑑𝑖𝑑𝑡 = 𝑠𝜔𝑠𝑖𝐸󸀠𝑞𝑖 − 𝜔𝑠𝑖 𝐿𝑚𝑖𝐿𝑟𝑟𝑖 V𝑞𝑟𝑖− 1𝑇󸀠0𝑖 [𝐸󸀠𝑑𝑖 + (𝑋𝑠𝑖 − 𝑋󸀠𝑠𝑖) 𝑖𝑞𝑠𝑖] .

(1)

Output equations:

𝑃𝑠𝑖 = −𝐸󸀠𝑑𝑖𝑖𝑑𝑠𝑖 − 𝐸󸀠𝑞𝑖𝑖𝑞𝑠𝑖𝑄𝑠𝑖 = 𝐸󸀠𝑑𝑖𝑖𝑞𝑠𝑖 − 𝐸󸀠𝑞𝑖𝑖𝑑𝑠𝑖, (2)

where

𝐸󸀠𝑑𝑖 = −𝑅𝑠𝑖𝑖𝑑𝑠𝑖 + 𝑋󸀠𝑠𝑖𝑖𝑞𝑠𝑖 + 𝑢𝑑𝑠𝑖𝐸󸀠𝑞𝑖 = −𝑅𝑠𝑖𝑖𝑞𝑠𝑖 − 𝑋󸀠𝑠𝑖𝑖𝑑𝑠𝑖 + 𝑢𝑞𝑠𝑖
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Figure 1: Neural PI control scheme.

𝑖𝑑𝑠𝑖 = − 󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑖 󵄨󵄨󵄨󵄨󵄨 𝐵𝑖𝑖 + 𝑁∑
𝑗=1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨 𝑌𝑖𝑗 cos (𝛿𝑖𝑗 − 𝛼𝑖𝑗)
𝑖𝑞𝑠𝑖 = 󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑖 󵄨󵄨󵄨󵄨󵄨 𝐺𝑖𝑖 + 𝑁∑

𝑗=1
𝑗 ̸=𝑖

󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨 𝑌𝑖𝑗 sin (𝛿𝑖𝑗 − 𝛼𝑖𝑗) .
(3)

𝑋󸀠𝑠𝑖 = 𝜔𝑠(𝐿 𝑠𝑠𝑖 − 𝐿2𝑚𝑖/𝐿𝑟𝑟𝑖), 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗, 𝛼𝑖𝑗 = 90 − 𝜑𝑖𝑗, 𝐸󸀠𝑖 is the
internal voltage of the 𝑖th generator, 𝛿𝑖 is the angle between
the𝐸󸀠𝑖 and the𝑥-axis of the synchronous coordinates,𝜑𝑖𝑗 is the
angle of impedance 𝑍𝑖𝑗 (𝑍𝑖𝑗 = (𝑌𝑖𝑗)−1), and𝑁 is the number
of generators of a multimachine power system.

According the above equations, the 𝑖th DFIG nonlinear
model with unmeasurable stochastic disturbances 𝑤𝑖 and V𝑖
can be written as the following compact form:

�̇�𝑖 = 𝑓𝑖 (𝑥𝑖) + 𝑔𝑖 (𝑥𝑖) 𝑢𝑖 + 𝑑𝑥𝑖 (󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨 , cos (𝛿𝑖𝑗 − 𝛼𝑖𝑗))+ 𝑤𝑖𝑦𝑖 = ℎ𝑖 (𝑥𝑖) + 𝑑𝑦𝑖 (󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨 , sin (𝛿𝑖𝑗 − 𝛼𝑖𝑗)) + V𝑖,
(4)

where 𝑥𝑖 = [𝜔𝑟𝑖 𝐸󸀠𝑞𝑖 𝐸󸀠𝑑𝑖]𝑇 is the state variable, 𝑦𝑖 =[𝑃𝑠𝑖 𝑄𝑠𝑖]𝑇 is the output variable, 𝑢𝑖 = [𝑢𝑞𝑟𝑖 𝑢𝑑𝑟𝑖]𝑇 is the
input signal (control vector), and 𝑑𝑥𝑖(|𝐸󸀠𝑗|, cos(𝛿𝑖𝑗 − 𝛼𝑖𝑗)) and𝑑𝑦𝑖(|𝐸󸀠𝑗|, sin(𝛿𝑖𝑗−𝛼𝑖𝑗)) are the interaction terms fromnetwork.

2.2. Approximation Error Considered Interaction Measure-
ment Observer. The published literatures [16, 17] extend the

classical SG based interaction measurement modelling to
DFIG field. The interaction measurement model of DFIG
with a certain weightingmethod can be written as the follow-
ing form, where the model bank is established at chosen
operating points (Table 3) [16]:

�̇�𝑖 = 𝑛∑
𝑘=1

𝜇𝑘 (𝐴𝑘𝑖𝑖𝑥𝑖 + 𝐵𝑘𝑖 𝑢𝑖 + 𝑇𝑘𝑤𝑖 + 𝐼𝑘𝑚𝑥𝑖)
𝑦𝑖 = 𝑛∑
𝑘=1

𝜇𝑘 (𝐶𝑘𝑖𝑖𝑥𝑖 + 𝐼𝑘𝑚𝑦𝑖) , (5)

where 𝐼𝑘𝑚𝑥𝑖 = 𝐴𝑘2𝑖𝑖∑𝑛𝑗=1,𝑗 ̸=𝑖𝑀𝑖𝑗𝑥𝑗 = 𝐴𝑘2𝑖𝑖(Δ𝐼𝑠𝑖 − 𝑀𝑖𝑖𝑥𝑖) and𝐼𝑘𝑚𝑦𝑖 = 𝐶𝑘2𝑖𝑖∑𝑛𝑗=1,𝑗 ̸=𝑖𝑀𝑖𝑗𝑥𝑗 = 𝐶𝑘2𝑖𝑖(Δ𝐼𝑠𝑖 − 𝑀𝑖𝑖𝑥𝑖), 𝑀𝑖𝑗 denotes
the interaction matrix from the 𝑖th node to the 𝑗th node,𝜇𝑘 (𝑘 = 1, . . . , 𝑛) is the weighting for the 𝑘th model in the
model bank, and 𝑛 is the number of model.

The terms 𝐼𝑘𝑚𝑥𝑖 and 𝐼𝑘𝑚𝑦𝑖 are interaction measurement
vectors, which represents interactions from network and can
be regarded as coordinated signals. It is seen that 𝐼𝑘𝑚𝑥𝑖 and 𝐼𝑘𝑚𝑦𝑖
only depend on local signals, which allows system-wide state
feedback control to be replaced by using local state feedback
method.

By combining (4)-(5), the approximation error con-
sidered interaction measurement model of DFIG can be
rewritten as

�̇�𝑖 = 𝑛∑
𝑘=1

𝜇𝑘 (𝐴𝑘𝑖𝑖𝑥𝑖 + 𝐵𝑘𝑖 𝑢𝑖 + 𝑇𝑘𝑤𝑖 + 𝐼𝑘𝑚𝑥𝑖)
+ (𝑓𝑖 (𝑥𝑖) − 𝑛∑

𝑘=1

𝜇𝑘𝐴𝑘𝑖𝑖𝑥𝑖)
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+ (𝑔𝑖 (𝑥𝑖) − 𝑛∑
𝑘=1

𝜇𝑘𝐵𝑘𝑖)𝑢𝑖
+ (𝑑𝑥𝑖 (󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨 , 𝛿𝑖𝑗) − (𝐼𝑘𝑚𝑥𝑖 + 𝑇𝑘𝑤𝑖)) + 𝑤𝑖

= 𝑛∑
𝑘=1

𝜇𝑘 (𝐴𝑘𝑖𝑖𝑥𝑖 + 𝐵𝑘𝑖 𝑢𝑖 + 𝑇𝑘𝑤𝑖 + 𝐼𝑘𝑚𝑥𝑖) + Δ𝑓𝑖 + Δ𝑔𝑖
+ Δ𝑑𝑥𝑖 + 𝑤𝑖

𝑦𝑖 = 𝑛∑
𝑘=1

𝜇𝑘 (𝐶𝑘𝑖𝑖𝑥𝑖 + 𝐼𝑘𝑚𝑦𝑖) + (ℎ𝑖 (𝑥𝑖) − 𝑛∑
𝑘=1

ℎ𝑘𝐶𝑘𝑖𝑖𝑥𝑖)
+ (𝑑𝑦𝑖 (󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨 , 𝛿𝑖𝑗) − 𝐼𝑘𝑚𝑦𝑖) + V𝑖

= 𝑛∑
𝑘=1

𝜇𝑘 (𝐶𝑘𝑖𝑖𝑥𝑖 + 𝐼𝑘𝑚𝑦𝑖) + Δℎ𝑖 + Δ𝑑𝑦𝑖 + V𝑖,
(6)

where

Δ𝑓𝑖 = 𝑓𝑖 (𝑥𝑖) − 𝑛∑
𝑘=1

𝜇𝑘𝐴𝑘𝑖𝑖𝑥𝑖 (7)

Δ𝑔𝑖 = 𝑔𝑖 (𝑥𝑖) − 𝑛∑
𝑘=1

𝜇𝑘𝐵𝑘𝑖 (8)

Δℎ𝑖 = ℎ𝑖 (𝑥𝑖) − 𝑛∑
𝑘=1

𝜇𝑘𝐶𝑘𝑖𝑖𝑥𝑖 (9)

Δ𝑑𝑥𝑖 = 𝑑𝑥𝑖 (󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨 , cos (𝛿𝑖𝑗 − 𝛼𝑖𝑗)) − 𝑛∑
𝑘=1

𝜇𝑘 (𝐼𝑘𝑚𝑥𝑖 + 𝑇𝑘𝑤𝑖) (10)

Δ𝑑𝑦𝑖 = 𝑑𝑦𝑖 (󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨 , sin (𝛿𝑖𝑗 − 𝛼𝑖𝑗)) − 𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑦𝑖. (11)

In order to cope with the nonlinearity of DFIG, a neural
observer is introduced to estimate the state variables of DFIG,
where a neural controller is used to compute the weightings
according the tracking error.

According (5) and (6), the observer can be written aṡ̂𝑥𝑖 = 𝑛∑
𝑘=1

𝜇𝑘 [𝐴𝑘𝑖𝑖𝑥𝑖 + 𝐵𝑘𝑖 𝑢𝑖 + 𝑇𝑘𝑤𝑖 + 𝐼𝑘𝑚𝑥𝑖 + 𝐿𝑘𝑖 (𝑦𝑖 − 𝑦𝑖)]
= 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔 [𝐴𝑘𝑖𝑖𝑥𝑖 + 𝐵𝑘𝑖 𝑢𝑖 + 𝑇𝑘𝑤𝑖 + 𝐼𝑘𝑚𝑥𝑖 + 𝐿𝑘𝑖𝐶𝑘𝑖𝑖𝑒𝑖
+ 𝐿𝑘𝑖Δℎ𝑖 + 𝐿𝑘𝑖Δ𝑑𝑦𝑖 + 𝐿𝑘𝑖V𝑖] ,

(12)

where 𝜇𝑘 is the output of the ANN, 𝑦𝑖 = ∑𝑛𝑘=1 𝜇𝑘(𝐶𝑘𝑖𝑖𝑥𝑘𝑖 −𝐼𝑘𝑚𝑦𝑖)
is the observer output, 𝑒𝑖 = 𝑥𝑖−𝑥𝑖 is the state estimation error,
and ̇𝑒𝑖 = �̇�𝑖 − ̇̂𝑥𝑖 = 𝑛∑

𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔 [(𝐴𝑘𝑖𝑖 − 𝐿𝑘𝑖𝐶𝑔𝑖𝑖) 𝑒 + Δ𝑓𝑖
+ Δ𝑔𝑖 + Δ𝑑𝑥𝑖 − 𝐿𝑘𝑖Δℎ𝑖 − 𝐿𝑘𝑖Δ𝑑𝑦𝑖 − 𝐿𝑘𝑖V𝑖 + 𝑤𝑖] . (13)

2.3. Neural Adaptive Weighting Controller. The Elman ANN
can be described as the following equations [18]:

V𝑚 = 𝑊𝑈𝑚𝑢in +𝑊𝐶𝑚𝑋𝐶𝑚𝑋𝐻𝑚 = 𝑓1 (V𝑚)𝑋𝐶𝑚 = 𝛼𝑋𝐻𝑚−1𝑦out = 𝑓2 (𝑊𝑂𝑚𝑋𝐻𝑚) ,
(14)

where𝑊𝑈𝑚 ,𝑊𝐶𝑚 , and𝑊𝑂𝑚 are weight matrixes of input layer,
context unit, and output layer, respectively, 𝑢in and 𝑦out are
the input and output vectors, respectively, V𝑚 and 𝑋𝐻𝑚 are
the input and output vectors of hidden layer, respectively,𝑋𝐶𝑚 is the output vector of context unit, 𝑓1(∙) and 𝑓2(∙) are
activation functions of hidden layer and output layer, and 𝛼
is the self-feedback gain of context unit.

This paper employs an ANN controller shown in Figure 1
to approximate the nonlinear model of DFIG according the
tracking error 𝑥𝑒𝑖(𝑚) = 𝑦𝑖(𝑚) − 𝑦𝑖(𝑚), where 𝑚 denotes the𝑚th interval. The objective of the ANN controller is defined
as

𝐽𝑁𝑖 (𝑚) = 12𝑥𝑇𝑒𝑖 (𝑚)𝑄𝑁𝑥𝑒𝑖 (𝑚) + 12𝑈𝑇𝑖 (𝑚) 𝑅𝑁𝑈𝑖 (𝑚) , (15)

where𝑄𝑇𝑁 = 𝑄𝑁 > 0 and 𝑅𝑇𝑁 = 𝑅𝑁 > 0 are weighting matrix-
es and 𝑈𝑖(𝑚) = [𝜇∗𝑖,1(𝑚) ⋅ ⋅ ⋅ 𝜇∗𝑖,𝑛(𝑚)] is the output vector of
the ANN (which is also the weightings represented by vector
form).

The gradient descent method is employed to minimize
the objective shown in (15). Then, the output layer weighting
matrix of the ANN controller 𝑊𝑂(𝑚) can be updated as
follows: 𝑊𝑂 (𝑚) = 𝑊𝑂 (𝑚 − 1) − 𝜂∇𝑊𝑂(𝑚)𝐽𝑁 (𝑚) , (16)

where 𝜂 is the learning rate and ∇𝑊𝑂(𝑚)𝐽𝑁𝑖(𝑚) is the gradient
of 𝐽𝑁𝑖(𝑚) with respect to𝑊𝑂(𝑚).𝜕𝐽𝑁𝑖 (𝑚)𝜕𝑊𝑂 (𝑚) = 𝜕𝐽𝑁𝑖 (𝑚)𝜕𝑈𝑖 (𝑚) 𝜕𝑈𝑖 (𝑚)𝜕𝑊𝑂 (𝑚) = {−𝑄𝑁𝑥𝑒 (𝑚)

⋅ [𝐶𝑇 (𝑚) 𝑥𝑖. (𝑚) + 𝐼𝑚𝑦𝑖 (𝑚)]} 𝜕𝑈𝑖 (𝑚)𝜕𝑊𝑂 (𝑚) ,
(17)

where 𝑦𝑖(𝑚) = ∑𝑛𝑘=1 𝜇𝑖,𝑘(𝑚)(𝐶𝑘𝑖𝑖(𝑚)𝑥𝑖.(𝑚) + 𝐼𝑘𝑚𝑦𝑖(𝑚)) =𝑈𝑖(𝑚)(𝐶𝑇(𝑚)𝑥𝑖.(𝑚) + 𝐼𝑚𝑦𝑖(𝑚)) is the observer output and𝐶𝑇(𝑚) = [𝐶1𝑖𝑖(𝑚) ⋅ ⋅ ⋅ 𝐶𝑛𝑖𝑖(𝑚)]𝑇.
The term 𝜕𝑈𝑖(𝑚)/𝜕𝑊𝑂(𝑚) can be computed by the back-

propagation method and no difficulty is involved in it. With
a similar approach, the weighting matrixes of input layer and
context unit can be updated. Then, the weighting vector 𝑈𝑖
(which is also the output of the Elman ANN) can be updated
adaptively according the mathematic model of the Elman
ANN shown in (14). It is noted that, for obtaining the reason-
able weightings, the activation function of the output layer is
a sigmoid function 𝑓(𝑥) = 1/(1 + 𝑒−𝑥), so that 0 < 𝜇∗𝑘 < 1.
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Bynormalizing𝜇∗𝑘 , the reasonableweightings can be obtained
as 𝜇𝑘 = 𝜇∗𝑘 /∑𝑛𝑔=1 𝜇∗𝑔 and ∑𝑛𝑘=1 𝜇𝑘 = 1.

It can be seen that the weighting 𝜇𝑘 is regulated adaptively
according the tracking error via a closed-loop approach. Con-
sidering the nonlinearity of ANN, the proposed weighting
controller can be regarded as an adaptive nonlinear con-
troller, which provides a desired approximation performance.

3. Controller Design

In this paper, the controller of rotor-side converter is chosen
as the same structure as the conventional PI controller for
taking its natural advantages of tracking control.

𝑢𝑖 = 𝑛∑
𝑔=1

𝜇𝑔 (𝑘𝑔𝑝𝑖𝑥𝑖 + 𝑘𝑔𝑖𝑖 ∫𝑡𝑓
𝑡0

𝑟𝑖 − 𝑦𝑖𝑑𝑡)
= 𝑛∑
𝑔=1

𝜇𝑔 (𝑘𝑔𝑝𝑖𝑥𝑖 + 𝑘𝑔𝑖𝑖𝑥𝑟𝑖) , (18)

where 𝑘𝑝𝑖 and 𝑘𝑖𝑖 are the respective proportion coefficient and
integration coefficient, 𝑟𝑖 is the set point vector for the 𝑖th
DFIG, 𝑥𝑟𝑖 = ∫𝑡𝑓𝑡0 (𝑟𝑖 − 𝑦𝑖)𝑑𝑡 is the integral of tracking error,
and�̇�𝑟𝑖 = 𝑟𝑖 − 𝑦𝑖

= 𝑟𝑖 − 𝑛∑
𝑘=1

𝜇𝑘𝑖 [𝐶𝑘𝑖𝑖 (𝑥𝑖 + 𝑒𝑖) + 𝐼𝑘𝑚𝑦𝑖] − Δℎ𝑖 − Δ𝑑𝑦𝑖
− V𝑖.

(19)

By combining (12)–(19), the closed-loop system model
can be written as

[[[
̇̂𝑥𝑖̇𝑒𝑖�̇�𝑟𝑖]]] =

𝑛∑
𝑘=1

𝜇𝑘
⋅ 𝑛∑
𝑔=1

𝜇𝑔([[[
𝐴𝑘𝑖𝑖 + 𝐵𝑘𝑖𝑖𝑘𝑔𝑝𝑖 𝐿𝑘𝑖𝐶𝑔𝑖𝑖 𝐵𝑘𝑖 𝑘𝑔𝑖𝑖0 𝐴𝑘𝑖𝑖 − 𝑗𝐿𝑘𝑖𝐶𝑔𝑖𝑖 0𝐶𝑔𝑖𝑖 𝐶𝑔𝑖𝑖 0 ]]][[[

𝑥𝑖𝑒𝑖𝑥𝑟𝑖]]]
+ [[[
0 𝐿𝑘𝑖𝐼 −𝐿𝑘𝑖0 −𝐼 ]]][

𝑤𝑖
V𝑖
]) + [[[

0Δ𝑓𝑖0 ]]] + [[[
0Δ𝑔𝑖0 ]]]

+ [[[[[[[

𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δℎ𝑖
− 𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δℎ𝑖−Δℎ𝑖
]]]]]]]
+ [[[
00𝑟𝑖]]] +

[[[[[[[[

𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑥𝑖0− 𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑦𝑖
]]]]]]]]

+ [[[
0Δ𝑑𝑥𝑖0 ]]] +

[[[[[[[

𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δ𝑑𝑦𝑖
− 𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δ𝑑𝑦𝑖−Δ𝑑𝑦𝑖
]]]]]]]
+ [[[[[
𝑛∑
𝑘=1

𝜇𝑘𝑇𝑘𝑤𝑖00
]]]]]
.

(20)

By defining augment state vector 𝑥𝑖 = [𝑥𝑖 𝑒𝑖 𝑥𝑟𝑖]𝑇, the
compact form of (20) is

�̇�𝑖 = 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔 (𝐴𝑘𝑔𝑖 𝑥𝑖 + 𝐸𝑘𝑖𝑤𝑖) + Δ𝑓𝑖 + Δ𝑔𝑖 + Δℎ𝑖𝑖
+ 𝐼𝑚𝑖 + Δ𝑑𝑥𝑖 + Δ𝑑𝑦𝑖 + 𝑇𝑤𝑖 + 𝑟𝑖, (21)

where

𝐴𝑘𝑔𝑖 = [[[[
𝐴𝑘𝑖𝑖 + 𝐵𝑘𝑖𝑖𝑘𝑔𝑝𝑖 𝐿𝑘𝑖𝐶𝑔𝑖𝑖 𝐵𝑘𝑖 𝑘𝑔𝑖𝑖0 𝐴𝑘𝑖𝑖 − 𝑗𝐿𝑘𝑖𝐶𝑔𝑖𝑖 0𝐶𝑔𝑖𝑖 𝐶𝑔𝑖𝑖 0

]]]] ,
𝐸𝑘𝑖 = [[[[

0 𝐿𝑘𝑖𝐼 −𝐿𝑘𝑖0 −𝐼
]]]]

Δ𝑓𝑖 = [[[
0Δ𝑓𝑖0 ]]]

Δ𝑔𝑖 = [[[
0Δ𝑔𝑖0 ]]] ,

𝑟 = [[[
00𝑟𝑖
]]]𝑖

Δ𝑑𝑥𝑖 = [[[
0Δ𝑑𝑥𝑖0 ]]] ,

Δℎ𝑖𝑖 = [[[[[[[

𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δℎ𝑖
− 𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δℎ𝑖−Δℎ𝑖
]]]]]]]
,

𝐼𝑚𝑖 = [[[[[[[[

𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑥𝑖0
− 𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑦𝑖
]]]]]]]]
,

Δ𝑑𝑦𝑖 = [[[[[[[

𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δ𝑑𝑦𝑖
− 𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δ𝑑𝑦𝑖−Δ𝑑𝑦𝑖
]]]]]]]
,



6 Mathematical Problems in Engineering

𝑇𝑤𝑖 = [[[[[
𝑛∑
𝑘=1

𝜇𝑘𝑇𝑘𝑤𝑖00
]]]]]
.

(22)

Assumption 1. There exist bounding matrixes Δ𝐴 𝑖, Δ𝐵𝑖, Δ𝐶𝑖,Δ𝐷𝑖, Δ𝐸𝑖, Δ𝐹𝑥𝑖, and Δ𝐹𝑦𝑖 such that󵄩󵄩󵄩󵄩Δ𝑓𝑖󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩Δ𝐴 𝑖𝑥𝑖󵄩󵄩󵄩󵄩2 (23)

󵄩󵄩󵄩󵄩Δ𝑔𝑖󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑛∑𝑘=1𝜇𝑘Δ𝐵𝑖 (𝑘𝑘𝑝𝑖𝑥𝑖 + 𝑘𝑘𝑖𝑖𝑥𝑟𝑖)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 (24)

󵄩󵄩󵄩󵄩Δℎ𝑖󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩Δ𝐶𝑖𝑥𝑖󵄩󵄩󵄩󵄩2 (25)󵄩󵄩󵄩󵄩Δ𝑑𝑥𝑖󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩Δ𝐷𝑖𝑥𝑖󵄩󵄩󵄩󵄩2 , (26)󵄩󵄩󵄩󵄩󵄩Δ𝑑𝑦𝑖󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩Δ𝐸𝑖𝑥𝑖󵄩󵄩󵄩󵄩2 , (27)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑛∑𝑘=1𝜇𝑘𝐼𝑘𝑚𝑥𝑖
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑛∑𝑘=1𝜇𝑘Δ𝐹𝑘𝑥𝑖𝑥𝑖
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 (28)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑦𝑖󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 ≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑛∑𝑘=1𝜇𝑘Δ𝐹𝑘𝑦𝑖𝑥𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 . (29)

Since the parameters𝑇𝑤𝑖 and 𝑟𝑖 are limited by the capacity
of a DFIG, their upper bounds can be easily determined as󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑛∑𝑘=1𝜇𝑘𝑇𝑘𝑤𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩Δ𝐻𝑖𝑥𝑖󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩𝑟𝑖󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩Δ𝐺𝑖𝑥𝑖󵄩󵄩󵄩󵄩2 , (30)

where the details of Δ𝐻𝑖 and Δ𝐺𝑖 can be found in Appendix
A.1.

According (23)–(30), we have

(Δ𝑓𝑖)𝑇 (Δ𝑓𝑖) = (Δ𝑓𝑖)𝑇 (Δ𝑓𝑖) ≤ (Δ𝐴 𝑖𝑥𝑖)𝑇 (Δ𝐴 𝑖𝑥𝑖)= ([Δ𝐴 𝑖 Δ𝐴 𝑖 0] 𝑥𝑖)𝑇 ([Δ𝐴 𝑖 Δ𝐴 𝑖 0] 𝑥𝑖)= (𝜑𝑓𝑖𝑥𝑖)𝑇 (𝜑𝑓𝑖𝑥𝑖)
(31)

(𝑟𝑖)𝑇 (𝑟𝑖) ≤ (Δ𝐺𝑖𝑥𝑖)𝑇 (Δ𝐺𝑖𝑥𝑖) = ([Δ𝐺𝑖 Δ𝐺𝑖 0] 𝑥𝑖)𝑇⋅ ([Δ𝐺𝑖 Δ𝐺𝑖 0] 𝑥𝑖) = (𝜑𝑟𝑖𝑥𝑖)𝑇 (𝜑𝑟𝑖𝑥𝑖) (32)

(Δ𝑔𝑖)𝑇 (Δ𝑔𝑖) = (Δ𝑔𝑖)𝑇 (Δ𝑔𝑖) ≤ ( 𝑛∑
𝑘=1

𝜇𝑘 (Δ𝐵𝑖𝑘𝑘𝑝𝑖𝑥𝑖
+ Δ𝐵𝑖 𝑘𝑘𝑘𝑖𝑖𝑥𝑟𝑖))𝑇( 𝑛∑

𝑘=1

𝜇𝑘 (Δ𝐵𝑖𝑘𝑘𝑝𝑖𝑥𝑖 + Δ𝐵𝑖 𝑘𝑘𝑘𝑖𝑖𝑥𝑟𝑖))

= ( 𝑛∑
𝑘=1

𝜇𝑘 [Δ𝐵𝑖𝑘𝑘𝑝𝑖 0 Δ𝐵𝑖𝑘𝑘𝑖𝑖] 𝑥𝑖)𝑇( 𝑛∑
𝑘=1

𝜇𝑘
⋅ [Δ𝐵𝑖𝑘𝑘𝑝𝑖 0 Δ𝐵𝑖𝑘𝑘𝑖𝑖] 𝑥𝑖) ≤ 𝑛∑

𝑘=1

𝜇𝑘 {(𝑘𝜑𝑔𝑖𝑥𝑖)𝑇
⋅ (𝑘𝜑𝑔𝑖𝑥𝑖)}

(33)

(Δℎ𝑖)𝑇 (Δℎ𝑖) = 2( 𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δℎ𝑖)𝑇( 𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δℎ𝑖)
+ Δℎ𝑇𝑖 Δℎ𝑖 ≤ 2( 𝑛∑

𝑘=1

𝜇𝑘Δ𝐶𝑖𝑥𝑖)𝑇( 𝑛∑
𝑘=1

𝜇𝑘Δ𝐶𝑖𝑥𝑖)
+ (Δ𝐶𝑖𝑥𝑖)𝑇 Δ𝐶𝑖𝑥𝑖 = 2( 𝑛∑

𝑘=1

𝜇𝑘
⋅ [𝐿𝑘𝑖Δ𝐶𝑖 𝐿𝑘𝑖Δ𝐶𝑖 0] 𝑥𝑖)𝑇( 𝑛∑

𝑘=1

𝜇𝑘
⋅ [𝐿𝑘𝑖Δ𝐶𝑖 𝐿𝑘𝑖Δ𝐶𝑖 0] 𝑥𝑖) + ([Δ𝐶𝑖 Δ𝐶𝑖 0] 𝑥𝑖)𝑇
⋅ ([Δ𝐶𝑖 Δ𝐶𝑖 0] 𝑥𝑖) ≤ 2 𝑛∑

𝑘=1

𝜇𝑘 {(𝜑𝑘ℎ1𝑖𝑥𝑖𝑖)𝑇
⋅ (𝜑𝑘ℎ1𝑖𝑥𝑖𝑖)} + (𝜑ℎ2𝑖𝑥𝑖)𝑇 (𝜑ℎ2𝑖𝑥𝑖)

(34)

(Δ𝑑𝑥𝑖)𝑇 (Δ𝑑𝑥𝑖) ≤ (Δ𝐷𝑖𝑥𝑖)𝑇 (Δ𝐷𝑖𝑥𝑖)= ([Δ𝐷𝑖 Δ𝐷𝑖 0] 𝑥𝑖)𝑇 ([Δ𝐷𝑖 Δ𝐷𝑖 0] 𝑥𝑖)= (𝜑𝑑𝑥𝑖𝑋𝑖)𝑇 (𝜑𝑑𝑥𝑖𝑋𝑖)
(35)

(Δ𝑑𝑦𝑖)𝑇 (Δ𝑑𝑦𝑖) = 2( 𝑛∑
𝑘=1

𝜇𝑘𝐿𝑘𝑖Δ𝑑𝑦𝑖)𝑇( 𝑛∑
𝑘=1

𝜇𝑘
⋅ 𝐿𝑘𝑖Δ𝑑𝑦𝑖) + (Δ𝑑𝑦𝑖)𝑇 (Δ𝑑𝑦𝑖) ≤ 2( 𝑛∑

𝑘=1

𝜇𝑘Δ𝐸𝑖𝑥𝑖)𝑇
⋅ ( 𝑛∑
𝑘=1

𝜇𝑘Δ𝐸𝑖𝑥𝑖) + (Δ𝐸𝑖𝑥𝑖)𝑇 Δ𝐸𝑖𝑥𝑖 = 2( 𝑛∑
𝑘=1

𝜇𝑘
⋅ [𝑗𝐿𝑖Δ𝐸𝑖 𝑗𝐿𝑖Δ𝐸𝑖 0] 𝑥𝑖)𝑇( 𝑛∑

𝑘=1

𝜇𝑘
⋅ [𝑗𝐿𝑖Δ𝐸𝑖 𝑗𝐿𝑖Δ𝐸𝑖 0] 𝑥𝑖) + ([Δ𝐸𝑖 Δ𝐸𝑖 0] 𝑥𝑖)𝑇
⋅ ([Δ𝐸𝑖 Δ𝐸𝑖 0] 𝑥𝑖) ≤ 2 𝑛∑

𝑘=1

𝜇𝑘 {(𝜑𝑘𝑑𝑦1𝑖𝑥𝑖)𝑇



Mathematical Problems in Engineering 7

⋅ (𝜑𝑘𝑑𝑦1𝑖𝑥𝑖)} + (𝜑𝑑𝑦2𝑖𝑥𝑖)𝑇 (𝜑𝑑𝑦2𝑖𝑥𝑖)
(36)

(𝑇𝑤𝑖)𝑇 (𝑇𝑤𝑖) = ( 𝑛∑
𝑘=1

𝜇𝑘𝑇𝑘𝑤𝑖)𝑇( 𝑛∑
𝑘=1

𝜇𝑘𝑇𝑘𝑤𝑖)
≤ (Δ𝐻𝑖𝑥𝑖)𝑇 (Δ𝐻𝑖𝑥𝑖) = ([Δ𝐻𝑖 Δ𝐻𝑖 0] 𝑥𝑖)𝑇⋅ [Δ𝐻𝑖 Δ𝐻𝑖 0] 𝑥𝑖 ≤ (𝜑𝑑𝑖𝑥𝑖)𝑇 (𝜑𝑑𝑖𝑥𝑖)

(37)

(Δ𝐼𝑚𝑖)𝑇 (Δ𝐼𝑚𝑖) = ( 𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑥𝑖)𝑇( 𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑥𝑖)
+ ( 𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑦𝑖)𝑇( 𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑦𝑖) ≤ ( 𝑛∑
𝑘=1

𝜇𝑘Δ𝐹𝑘𝑥𝑖𝑥𝑖)𝑇
⋅ ( 𝑛∑
𝑘=1

𝜇𝑘Δ𝐹𝑘𝑥𝑖𝑥𝑖) + ( 𝑛∑
𝑘=1

𝜇𝑘Δ𝐹𝑘𝑦𝑖𝑥𝑖)𝑇
⋅ ( 𝑛∑
𝑘=1

𝜇𝑘Δ𝐹𝑘𝑦𝑖𝑥𝑖) = ( 𝑛∑
𝑘=1

𝜇𝑘 [Δ𝐹𝑘𝑥𝑖 Δ𝐹𝑘𝑥𝑖 0] 𝑥𝑖)𝑇
⋅ ( 𝑛∑
𝑘=1

𝜇𝑘 [Δ𝐹𝑘𝑥𝑖 Δ𝐹𝑘𝑥𝑖 0] 𝑥𝑖)
+ ( 𝑛∑
𝑘=1

𝜇𝑘 [Δ𝐹𝑘𝑦𝑖 Δ𝐹𝑘𝑦𝑖 0] 𝑥𝑖)𝑇
⋅ ( 𝑛∑
𝑘=1

𝜇𝑘 [Δ𝐹𝑘𝑦𝑖 Δ𝐹𝑘𝑦𝑖 0] 𝑥𝑖)
≤ 𝑛∑
𝑘=1

𝜇𝑘 {(𝑗𝜑𝑚𝑥𝑖𝑥𝑖)𝑇 (𝑗𝜑𝑚𝑥𝑖𝑥𝑖)
+ (𝑗𝜑𝑚𝑦𝑖𝑥𝑖)𝑇 (𝑗𝜑𝑚𝑦𝑖𝑥𝑖)} ,

(38)

where 𝜑𝑓𝑖 = [Δ𝐴 𝑖 Δ𝐴 𝑖 0], 𝜑𝑘𝑔𝑖 = [Δ𝐵𝑖𝑘𝑘𝑝𝑖 0 Δ𝐵𝑖𝑘𝑘𝑖𝑖],𝜑𝑘ℎ1𝑖 = [𝐿𝑘𝑖Δ𝐶𝑖 𝐿𝑘𝑖Δ𝐶𝑖 0], 𝜑ℎ2𝑖 = [Δ𝐶𝑖 Δ𝐶𝑖 0],𝜑𝑟𝑖 = [Δ𝐺𝑖 Δ𝐺𝑖 0], 𝜑𝑑𝑥𝑖 = [Δ𝐷𝑖 Δ𝐷𝑖 0],𝜑𝑘𝑑𝑦1𝑖 = [𝐿𝑘𝑖Δ𝐸𝑖 𝐿𝑘𝑖Δ𝐸𝑖 0], 𝜑𝑑𝑦2𝑖 = [Δ𝐸𝑖 Δ𝐸𝑖 0],𝜑𝑘𝑚𝑥𝑖 = [Δ𝐹𝑘𝑥𝑖 Δ𝐹𝑘𝑥𝑖 0], 𝜑𝑘𝑚𝑦𝑖 = [Δ𝐹𝑘𝑦𝑖 Δ𝐹𝑘𝑦𝑖 0], and𝜑𝑑𝑖 = [Δ𝐻𝑖 Δ𝐻𝑖 0].
3.1. 𝐻∞ Controller Design. The 𝐻∞ control is the common
solution for external disturbance rejection, of which objective
can be defined as

𝐽𝑖∞ = ∫𝑡𝑓
𝑡0

𝑥𝑇𝑖 𝑄1𝑖𝑥𝑑𝑡
≤ 𝑥𝑇𝑖 (𝑡0) 𝑃1𝑖𝑥 (𝑡0) + 𝜌2 ∫𝑡𝑓

𝑡0

𝑤𝑇𝑖 (𝑡) 𝑤𝑖 (𝑡) 𝑑𝑡, (39)

where 𝜌 is a prescribed attenuation level and weighting
matrixes 𝑃1𝑖𝑇 = 𝑃1𝑖 > 0 and 𝑄1𝑖𝑇 = 𝑄1𝑖 > 0.

A Lyapunov function for system of (21) is chosen as
following form:

𝑉 (𝑥) = 𝑥𝑇𝑃𝑥. (40)

By differentiating (40), we obtain

�̇� = �̇�𝑇𝑖 𝑃𝑖1𝑥𝑖 + 𝑥𝑇𝑖 𝑃𝑖1�̇�
= ( 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔 (𝐴𝑘𝑔𝑖 𝑥𝑖 + 𝐸𝑖𝑘𝑤𝑖) + Δ𝑓𝑔ℎ)𝑇 𝑃1𝑖𝑥𝑖
+ 𝑥𝑇𝑖 𝑃1𝑖( 𝑛∑

𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔 (𝐴𝑘𝑔𝑖 𝑥𝑖 + 𝐸𝑖𝑘𝑤𝑖) + Δ𝑓𝑔ℎ)
= ( 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝐴𝑘𝑔𝑖 𝑥𝑖)𝑇 𝑃1𝑖𝑥𝑖
+ 𝑥𝑇𝑖 𝑃1𝑖( 𝑛∑

𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝐴𝑘𝑔𝑖 𝑥𝑖)
+ ( 𝑛∑
𝑘=1

𝜇𝑘𝐸𝑖𝑘𝑤𝑖)𝑇 𝑃1𝑖𝑥𝑖 + 𝑥𝑇𝑖 𝑃1𝑖( 𝑛∑
𝑘=1

𝜇𝑘𝐸𝑖𝑘𝑤𝑖)
+ Δ𝑓𝑇𝑔ℎ𝑃1𝑖𝑥𝑖 + 𝑥𝑇𝑖 𝑃1𝑖Δ𝑓𝑔ℎ,

(41)

where Δ𝑓𝑔ℎ = Δ𝑓𝑖 + Δ𝑔𝑖 + Δℎ𝑖 + 𝑟𝑖 + 𝐼𝑚𝑖 + Δ𝑑𝑥𝑖 + Δ𝑑𝑦𝑖 + 𝑇𝑤𝑖.
Lemma 2. Give two vectors 𝑥 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑛; the following
inequality is identical:

𝑥𝑇𝑦 + 𝑦𝑇𝑥 − 𝜉2𝑥𝑇𝑥 − 𝜉−2𝑦𝑇𝑦
= − (𝜉𝑥𝑇 − 𝜉−1𝑦)𝑇 (𝜉𝑥𝑇 − 𝜉−1𝑦) ≤ 0 (𝜉 ̸= 0) . (42)

According Lemma 2, the following inequalities can be
obtained:

( 𝑛∑
𝑘=1

𝜇𝑘𝐸𝑖𝑘𝑤𝑖)𝑇 𝑃1𝑖𝑥𝑖 + 𝑥𝑇𝑖 𝑃1𝑖( 𝑛∑
𝑘=1

𝜇𝑘𝐸𝑖𝑘𝑤𝑖)
≤ 𝜌−2𝑥𝑇𝑖 𝑃1𝑖( 𝑛∑

𝑘=1

𝜇𝑘𝐸𝑖𝑘)( 𝑛∑
𝑘=1

𝜇𝑘𝐸𝑖𝑘)𝑇 𝑃1𝑖𝑥𝑖
+ 𝜌2𝑤𝑇𝑖 𝑤𝑖

(43)
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Δ𝑓𝑇𝑔ℎ𝑃1𝑖𝑥𝑖 + 𝑥𝑇𝑖 𝑃1𝑖Δ𝑓𝑔ℎ = (Δ𝑓𝑖 + Δ𝑔𝑖 + Δℎ𝑖 + 𝑟𝑖+ 𝐼𝑚𝑖 + Δ𝑑𝑥𝑖 + Δ𝑑𝑦𝑖 + 𝑇𝑤𝑖)𝑇 𝑃1𝑖𝑥𝑖 + 𝑥𝑇𝑖 𝑃1𝑖 (Δ𝑓𝑖+ Δ𝑔𝑖 + Δℎ𝑖 + 𝑟𝑖 + 𝐼𝑚𝑖 + Δ𝑑𝑥𝑖 + Δ𝑑𝑦𝑖 + 𝑇𝑤𝑖)≤ 8𝑥𝑇𝑖 𝑃1𝑖𝑃1𝑖𝑥𝑖 + (Δ𝑓𝑖)𝑇 (Δ𝑓𝑖) + (Δ𝑔𝑖)𝑇 (Δ𝑔𝑖)+ (Δℎ𝑖)𝑇 (Δℎ𝑖) + (𝑟𝑖)𝑇 (𝑟𝑖) + (𝐼𝑚𝑖)𝑇 (𝐼𝑚𝑖)
+ (Δ𝑑𝑥𝑖)𝑇 (Δ𝑑𝑥𝑖) + (Δ𝑑𝑦𝑖)𝑇 (Δ𝑑𝑦𝑖) + (𝑇𝑤𝑖)𝑇⋅ (𝑇𝑤𝑖) .

(44)

By using (31)–(37), (44) can be rewritten as

Δ𝑓𝑇𝑔ℎ𝑃1𝑖𝑥𝑖 + 𝑥𝑇𝑖 𝑃1𝑖Δ𝑓𝑔ℎ ≤ (𝜑𝑓𝑖𝑥𝑖)𝑇 (𝜑𝑓𝑖𝑥𝑖) + 𝑛∑
𝑘=1

𝜇𝑘
⋅ {(𝜑𝑘𝑔𝑖𝑥𝑖)𝑇 (𝜑𝑘𝑔𝑖𝑥𝑖)} + 2 𝑛∑

𝑘=1

𝜇𝑘
⋅ {(𝜑𝑘ℎ1𝑖𝑥𝑖𝑖)𝑇 (𝜑𝑘ℎ1𝑖𝑥𝑖𝑖)} + (𝜑ℎ2𝑖𝑥𝑖)𝑇 (𝜑ℎ2𝑖𝑥𝑖)
+ (𝜑𝑟𝑖𝑥𝑖)𝑇 (𝜑𝑟𝑖𝑥𝑖) + (𝜑𝑑𝑥𝑖𝑥𝑖)𝑇 (𝜑𝑑𝑥𝑖𝑥𝑖) + 2 𝑛∑

𝑘=1

𝜇𝑘
⋅ {(𝜑𝑘𝑑𝑦1𝑖𝑥𝑖)𝑇 (𝜑𝑘𝑑𝑦1𝑖𝑥𝑖)} + (𝜑𝑑𝑦2𝑖𝑥𝑖)𝑇 (𝜑𝑑𝑦2𝑖𝑥𝑖)
+ (𝜑𝑑𝑖𝑥𝑖)𝑇 (𝜑𝑑𝑖𝑥𝑖) + 𝑛∑

𝑘=1

𝜇𝑘
⋅ {(𝜑𝑘𝑚𝑥𝑖𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑥𝑖𝑥𝑖) + (𝜑𝑘𝑚𝑦𝑖𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑦𝑖𝑥𝑖)}
+ 8𝑥𝑇𝑖 𝑃1𝑖𝑃1𝑖𝑥𝑖.

(45)

According (43) and (45), (41) can be rewritten as

�̇� = �̇�𝑇𝑖 𝑃𝑖1𝑥𝑖 + 𝑥𝑇𝑖 𝑃𝑖1�̇� ≤ 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝑥𝑇𝑖 {(𝐴𝑘𝑔𝑖 )𝑇 𝑃1𝑖
+ 𝑃1𝑖𝐴𝑘𝑔𝑖 + 𝜌−2𝑃1𝑖 (𝐸𝑖𝑘 (𝐸𝑖𝑘)𝑇 + 8𝐼)𝑃1𝑖
+ (𝜑𝑓𝑖)𝑇 (𝜑𝑓𝑖) + (𝜑𝑘𝑔𝑖)𝑇 (𝜑𝑘𝑔𝑖) + 2 (𝜑𝑘ℎ1𝑖)𝑇 (𝜑𝑘ℎ1𝑖)+ (𝜑ℎ2𝑖)𝑇 (𝜑ℎ2𝑖) + (𝜑𝑟𝑖)𝑇 (𝜑𝑟𝑖) + (𝜑𝑑𝑥𝑖)𝑇 (𝜑𝑑𝑥𝑖)+ 2 (𝜑𝑘𝑑𝑦1𝑖)𝑇 (𝜑𝑘𝑑𝑦1𝑖) + (𝜑𝑑𝑦2𝑖)𝑇 (𝜑𝑑𝑦2𝑖)
+ (𝜑𝑑𝑖)𝑇 (𝜑𝑑𝑖) + (𝜑𝑘𝑚𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑥𝑖)
+ (𝜑𝑘𝑚𝑦𝑖)𝑇 (𝜑𝑘𝑚𝑦𝑖)} 𝑥𝑖 + 𝜌2𝑤𝑇𝑖 𝑤𝑖.

(46)

Then, the following result can be obtained.

Theorem 3. In the nonlinear augmented system (21), if 𝑃𝑇1𝑖 =𝑃1𝑖 > 0 is the common solution for the matrix inequality

(𝐴𝑘𝑔𝑖 )𝑇 𝑃1𝑖 + 𝑃1𝑖𝐴𝑘𝑔𝑖 + 𝜌−2𝑃1𝑖 (𝐸𝑖𝑘 (𝐸𝑖𝑘)𝑇 + 8𝐼)𝑃1𝑖
+ (𝜑𝑓𝑖)𝑇 (𝜑𝑓𝑖) + (𝜑𝑘𝑔𝑖)𝑇 (𝜑𝑘𝑔𝑖) + 2 (𝜑𝑘ℎ1𝑖)𝑇 (𝜑𝑘ℎ1𝑖)+ (𝜑ℎ2𝑖)𝑇 (𝜑ℎ2𝑖) + (𝜑𝑟𝑖)𝑇 (𝜑𝑟𝑖) + (𝜑𝑑𝑥𝑖)𝑇 (𝜑𝑑𝑥𝑖)+ 2 (𝜑𝑘𝑑𝑦1𝑖)𝑇 (𝜑𝑘𝑑𝑦1𝑖) + (𝜑𝑑𝑦2𝑖)𝑇 (𝜑𝑑𝑦2𝑖)
+ (𝜑𝑑𝑖)𝑇 (𝜑𝑑𝑖) + (𝜑𝑘𝑚𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑥𝑖)+ (𝜑𝑘𝑚𝑦𝑖)𝑇 (𝜑𝑘𝑚𝑦𝑖) + 𝑄1𝑖 < 0

(47)

for 𝑘, 𝑔 = 1, 2, . . . , 𝑛, then the performance of the proposed𝐻∞
controller shown in (39) is guaranteed for a prescribed 𝜌2.
Proof. From (47),

(𝐴𝑘𝑔𝑖 )𝑇 𝑃1𝑖 + 𝑃1𝑖𝐴𝑘𝑔𝑖 + 𝜌−2𝑃1𝑖 (𝐸𝑖𝑘 (𝐸𝑖𝑘)𝑇 + 8𝐼)𝑃1𝑖
+ (𝜑𝑓𝑖)𝑇 (𝜑𝑓𝑖) + (𝜑𝑘𝑔𝑖)𝑇 (𝜑𝑘𝑔𝑖)+ 2 (𝜑𝑘ℎ1𝑖)𝑇 (𝜑𝑘ℎ1𝑖) + (𝜑ℎ2𝑖)𝑇 (𝜑ℎ2𝑖) + (𝜑𝑟𝑖)𝑇 (𝜑𝑟𝑖)+ (𝜑𝑑𝑥𝑖)𝑇 (𝜑𝑑𝑥𝑖) + 2 (𝜑𝑘𝑑𝑦1𝑖)𝑇 (𝜑𝑘𝑑𝑦1𝑖)+ (𝜑𝑑𝑦2𝑖)𝑇 (𝜑𝑑𝑦2𝑖) + (𝜑𝑑𝑖)𝑇 (𝜑𝑑𝑖)
+ (𝜑𝑘𝑚𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑥𝑖) + (𝜑𝑘𝑚𝑦𝑖)𝑇 (𝜑𝑘𝑚𝑦𝑖) < −𝑄1𝑖.

(48)

From (46) and (48), we get

�̇� = �̇�𝑇𝑖 𝑃𝑖1𝑥𝑖 + 𝑥𝑇𝑖 𝑃𝑖1�̇�
≤ 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝑥𝑇𝑖 (−𝑄1𝑖) 𝑥𝑖 + 𝜌2𝑤𝑇𝑖 𝑤𝑖
≤ 𝑥𝑇𝑖 (−𝑄1𝑖) 𝑥𝑖 + 𝜌2𝑤𝑇𝑖 𝑤𝑖.

(49)

By integrating (49) from 𝑡 = 𝑡0 to 𝑡 = 𝑡𝑓, we have
𝑉(𝑡𝑓) − 𝑉 (𝑡0) ≤ −∫𝑡𝑓

𝑡0

𝑥𝑇𝑖 𝑄1𝑖𝑥𝑑𝑡 + 𝜌2 ∫𝑡𝑓
𝑡0

𝑤𝑇𝑖 𝑤𝑖𝑑𝑡. (50)

Then,

∫𝑡𝑓
𝑡0

𝑥𝑇𝑖 𝑄1𝑖𝑥𝑑𝑡 ≤ 𝑉 (𝑡0) − 𝑉 (𝑡𝑓) + 𝜌2 ∫𝑡𝑓
𝑡0

𝑤𝑇𝑖 𝑤𝑖𝑑𝑡
≤ 𝑥𝑇𝑖 𝑃1𝑖𝑥𝑖 + 𝜌2 ∫𝑡𝑓

𝑡0

𝑤𝑇𝑖 𝑤𝑖𝑑𝑡. (51)

From (51), it is seen that, under the constrain of (47),
the 𝐻∞ control performance is achieved with a prescribed𝜌2.
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3.2. 𝐻2 Controller Design. The𝐻2 controller (power regula-
tor and automatic voltage regulator (AVR)) is developed, of
which objective can be written as

min 𝐽𝑖2 (𝑢𝑖)
= ∫𝑡𝑓
𝑡0

[(𝑟𝑖 − 𝑦𝑖)𝑇𝑄2𝑖 (𝑟𝑖 − 𝑦𝑖) + 𝑢𝑇𝑖 𝑅𝑖𝑢𝑖] 𝑑𝑡. (52)

Since that the external disturbances 𝑤𝑖 have been effi-
ciently eliminated by the proposed 𝐻∞ controller, the 𝐻2
controller should be designed without considering 𝑤𝑖. For
the approximation errors have been considered, it is hard
to obtain the optimal solution of (52). Thus, a suboptimal
method is employed to minimize its upper bound.

By substituting (18) into (52), we have

𝐽𝑖2 (𝑢𝑖) = ∫𝑡𝑓
𝑡0

[[(𝑟𝑖 − 𝑦𝑖)𝑇𝑄2𝑖 (𝑟𝑖 − 𝑦𝑖)
+ ( 𝑛∑
𝑔=1

𝜇𝑔 (𝑘𝑔𝑝𝑖𝑥𝑖 + 𝑘𝑔𝑖𝑖𝑥𝑟𝑖))𝑇
⋅ 𝑅𝑖( 𝑛∑
𝑔=1

𝜇𝑔 (𝑘𝑔𝑝𝑖𝑥𝑖 + 𝑘𝑔𝑖𝑖𝑥𝑟𝑖))]]𝑑𝑡
≤ ∫𝑡𝑓
𝑡0

[[(𝑥𝑟𝑖)𝑇𝑄2𝑖 (𝑥𝑟𝑖) + (
𝑛∑
𝑔=1

𝜇𝑔𝐾𝑔𝑖 𝑥𝑖)𝑇

⋅ 𝑅𝑖( 𝑛∑
𝑔=1

𝜇𝑔𝐾𝑔𝑖 𝑥𝑖) + 𝑑𝑡𝑑 (𝑥𝑇𝑖 𝑃2𝑖𝑥𝑖)]]𝑑𝑡+ 𝑥𝑇𝑖 (𝑡0) 𝑃2𝑖𝑥𝑖 (𝑡0) − 𝑥𝑇𝑖 (𝑡𝑓) 𝑃2𝑖𝑥𝑖 (𝑡𝑓)
≤ ∫𝑡𝑓
𝑡0

[[(𝑥𝑟𝑖)𝑇𝑄2𝑖 (𝑥𝑟𝑖) + (
𝑛∑
𝑔=1

𝜇𝑔𝐾𝑔𝑖 𝑥𝑖)𝑇

⋅ 𝑅𝑖( 𝑛∑
𝑔=1

𝜇𝑔𝐾𝑔𝑖 𝑥𝑖) + �̇�𝑇𝑖 𝑃2𝑖𝑥𝑖 + 𝑥𝑇𝑖 𝑃2𝑖�̇�𝑖]]𝑑𝑡+ 𝑥𝑇𝑖 (𝑡0) 𝑃2𝑖𝑥𝑖 (𝑡0) ,

(53)

where𝐾𝑔𝑖 = [𝑘𝑘𝑝𝑖 0 𝑘𝑘𝑖𝑖].
From (41) and (45), (53) can be rewritten as

𝐽𝑖2 (𝑢𝑖) ≤ ∫𝑡𝑓
𝑡0

((𝑥𝑖)𝑇𝑄2𝑖 (𝑥𝑖) + ( 𝑛∑
𝑔=1

𝜇𝑔𝐾𝑔𝑖 𝑥𝑖)𝑇
⋅ 𝑅𝑖( 𝑛∑

𝑔=1

𝜇𝑔𝐾𝑔𝑖 𝑥𝑖)

+ ( 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝐴𝑘𝑔𝑖 𝑥𝑖)𝑇 𝑃1𝑖𝑥𝑖
+ 𝑥𝑇𝑖 𝑃1𝑖( 𝑛∑

𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝐴𝑘𝑔𝑖 𝑥𝑖)
+Δ𝑓𝑇𝑔ℎ𝑃1𝑖𝑥𝑖 + 𝑥𝑇𝑖 𝑃1𝑖Δ𝑓𝑔ℎ)𝑑𝑡
+ 𝑥𝑇𝑖 (𝑡0) 𝑃2𝑖𝑥𝑖 (𝑡0)
≤ ∫𝑡𝑓
𝑡0

𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔 (𝑥𝑖)𝑇 {𝑄2𝑖
+ (𝐾𝑔𝑖 )𝑇 𝑅𝑖 (𝐾𝑔𝑖 )
+ (𝐴𝑘𝑔𝑖 )𝑇 𝑃1𝑖 + 𝑃1𝑖𝐴𝑘𝑔𝑖 + (𝜑𝑓𝑖)𝑇 (𝜑𝑓𝑖)
+ (𝜑𝑘𝑔𝑖)𝑇 (𝜑𝑘𝑔𝑖) + 2 (𝜑𝑘ℎ1𝑖)𝑇 (𝜑𝑘ℎ1𝑖)+ (𝜑ℎ2𝑖)𝑇 (𝜑ℎ2𝑖) + (𝜑𝑟𝑖)𝑇 (𝜑𝑟𝑖)+ (𝜑𝑑𝑥𝑖)𝑇 (𝜑𝑑𝑥𝑖) + 2 (𝜑𝑘𝑑𝑦1𝑖)𝑇 (𝜑𝑘𝑑𝑦1𝑖)+ (𝜑𝑑𝑦2𝑖)𝑇 (𝜑𝑑𝑦2𝑖) + (𝜑𝑑𝑖)𝑇 (𝜑𝑑𝑖)
+ (𝜑𝑘𝑚𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑥𝑖) + (𝜑𝑘𝑚𝑦𝑖)𝑇 (𝜑𝑘𝑚𝑦𝑖)}
⋅ 𝑥𝑖𝑑𝑡 + 𝑥𝑇𝑖 (𝑡0) 𝑃2𝑖𝑥𝑖 (𝑡0) ,

(54)

if

𝑄2𝑖 + (𝐾𝑔𝑖 )𝑇 𝑅𝑖 (𝐾𝑔𝑖 ) + (𝐴𝑘𝑔𝑖 )𝑇 𝑃1𝑖 + 𝑃1𝑖𝐴𝑘𝑔𝑖
+ (𝜑𝑓𝑖)𝑇 (𝜑𝑓𝑖) + (𝜑𝑘𝑔𝑖)𝑇 (𝜑𝑘𝑔𝑖) + 2 (𝜑𝑘ℎ1𝑖)𝑇 (𝜑𝑘ℎ1𝑖)+ (𝜑ℎ2𝑖)𝑇 (𝜑ℎ2𝑖) + (𝜑𝑟𝑖)𝑇 (𝜑𝑟𝑖) + (𝜑𝑑𝑥𝑖)𝑇 (𝜑𝑑𝑥𝑖)+ 2 (𝜑𝑘𝑑𝑦1𝑖)𝑇 (𝜑𝑘𝑑𝑦1𝑖) + (𝜑𝑑𝑦2𝑖)𝑇 (𝜑𝑑𝑦2𝑖)
+ (𝜑𝑑𝑖)𝑇 (𝜑𝑑𝑖) + (𝜑𝑘𝑚𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑥𝑖)+ (𝜑𝑘𝑚𝑦𝑖)𝑇 (𝜑𝑘𝑚𝑦𝑖) < 0.

(55)

From (55), the upper bound of the 𝐻2 objective is
obtained as

𝐽𝑖2 (𝑢𝑖) ≤ ∫𝑡𝑓
𝑡0

𝑥𝑇𝑖 (−𝑄2𝑖) 𝑥𝑖𝑑𝑡 + 𝑥𝑇𝑖 (𝑡0) 𝑃2𝑖𝑥𝑖 (𝑡0)
≤ 𝑥𝑇𝑖 (𝑡0) 𝑃2𝑖𝑥𝑖 (𝑡0) (56)
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Figure 2: Region 𝑆(𝛼, 𝑟, 𝜃).
Therefore, the suboptimal 𝐻2 control can be formulated

as following minimization problem:

min
𝑃2𝑖

𝑥𝑇𝑖 (𝑡0) 𝑃2𝑖𝑥𝑖 (𝑡0)
Subject to 𝑃2𝑖 > 0 and (55) . (57)

3.3. Mixed 𝐻2/𝐻∞ Control with Regional Pole Placement.
Since the𝐻∞ and𝐻2 controllers have been developed sepa-
rately, the mixed𝐻2/𝐻∞ control is developed to satisfy both
suboptimal 𝐻2 performance in (56) and 𝐻∞ performance
in (39). The proposed mixed 𝐻2/𝐻∞ controller can be
formulated as the following suboptimization problem:

min
𝑃𝑖

𝑥𝑇𝑖 (𝑡0) 𝑃𝑖𝑥𝑖 (𝑡0) (58)

Subject to 𝑃𝑖 = 𝑃1𝑖 = 𝑃2𝑖 > 0, (47) and (55) . (59)

In order to further improve DFIG damping performance,
the poles of closed-loop system of (21) are placed within the
region 𝑆(𝛼, 𝑟, 𝜃) shown in Figure 2, of which characteristic
LMI can be written as following forms [19]:

𝐴𝑘𝑔𝑖 𝑃𝑖 + 𝑃𝑖𝑗𝑘(𝐴𝑘𝑔𝑖 )𝑇 + 2𝛼𝑃𝑖 < 0
[[
−𝑟𝑃𝑖 𝐴𝑘𝑔𝑖 𝑃𝑖𝐴𝑘𝑔𝑖 𝑃𝑖 −𝑟𝑃𝑖 ]] < 0

[[[[
sin 𝜃(𝐴𝑘𝑔𝑖 𝑃𝑖 + 𝑃𝑖 (𝐴𝑘𝑔𝑖 )𝑇) cos 𝜃(𝐴𝑘𝑔𝑖 𝑃𝑖 − 𝑃𝑖 (𝐴𝑘𝑔𝑖 )𝑇)
cos 𝜃(𝑃𝑖 (𝐴𝑘𝑔𝑖 )𝑇 − 𝐴𝑘𝑔𝑖 𝑃𝑖) sin 𝜃(𝐴𝑘𝑔𝑖 𝑃𝑖 + 𝑃𝑖 (𝐴𝑘𝑔𝑖 )𝑇)]]]]< 0.

(60)

After solving the mixed 𝐻2/𝐻∞ problem shown in
(58)–(60), the attenuation level 𝜌2 can be minimized so that
the performance degradation due to 𝑤𝑖 is minimized; that is,

min
𝑃𝑖

𝜌2
Subject to (58)–(60). (61)

It should be pointed out that (59) and (60) are not
convex, which can not be directly solved by using LMI

technology. Fortunately, by using the Schur complement,
those inequalities can be transferred into three eigenvalue
problems with constrain of LMIs [20], which is convex and
can be solved easily by using Matlab LMI toolbox.

It is noted here that the stability of the closed-loop system
in (21) can be guaranteed by (47) at the equilibrium 𝑥𝑖(𝑡) =0 without considering the disturbance 𝑤𝑖, of which proof is
given in Appendix A.2.

Then, themixed𝐻2/𝐻∞ problem shown in (58)–(60) can
be solved by using LMI technology. However, it is difficult
to give the appropriate values of those bounding matrixes
shown in (23)–(29). This paper adopts an iteration processer
to obtain the suitable values of bounding matrixes Δ𝐴 𝑖, Δ𝐵𝑖,Δ𝐶𝑖, Δ𝐷𝑖, Δ𝐸𝑖, Δ𝐹𝑥𝑖, and Δ𝐹𝑦𝑖 [20].
Assumption Correction Processer

(a) Give an initial attenuation level 𝜌2 and the bounding
matrixes, select weighting matrixes 𝑄1𝑖, 𝑄2𝑖, and 𝑅𝑖,
and solve the problem in (58) to obtain the observer
gain 𝐿𝑘𝑖 and the controller parameters 𝑘𝑘𝑝𝑖 and 𝑘𝑘𝑖𝑖.

(b) Check assumption (23)–(29). If they are not satisfied,
expand the bounds for all elements in Δ𝐴 𝑖, Δ𝐵𝑖, Δ𝐶𝑖,Δ𝐷𝑖, Δ𝐸𝑖, Δ𝐹𝑥𝑖, and Δ𝐹𝑦𝑖, and then repeat (a)-(b).

(c) Check positive definiteness of𝑃𝑖11−1 > 0,𝑃𝑖22 > 0, and𝑃𝑖33−1 > 0 (where 𝑃𝑖 = 𝑏𝑙𝑘 diag{𝑃𝑖11, 𝑃𝑖22, 𝑃𝑖33}). If it is
not satisfied, increase 𝜌 and then repeat (b)-(c).

(d) Substitute 𝑃𝑖 and 𝜌 into (59) and (60) to confirm the
stability and verify those inequalities.

When the appropriate values of the bounding matrixes
have been obtained, the neural adaptive observer in (12) and
mixed𝐻2/𝐻∞ neural PI controller in (18) can be constructed.
It is noted that in the second step of the above iteration
method, (26)-(27) involves global variables 𝐸󸀠𝑗 and 𝛿𝑖𝑗. Before
constructing the observer and the controller, the correction
ofΔ𝐷𝑖 andΔ𝐸𝑖 should be solved in a decentralized approach.

From (10) and (11), we get

Δ𝑑𝑥𝑖 ≤ 𝑑𝑥𝑖 (󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨max
, 1) − 𝑛∑

𝑘=1

𝜇𝑘 (𝐼𝑘𝑚𝑥𝑖 + 𝑇𝑘𝑤𝑖) ≤ Δ𝐷𝑖𝑥𝑖
Δ𝑑𝑦𝑖 ≤ 𝑑𝑦𝑖 (󵄨󵄨󵄨󵄨󵄨𝐸󸀠𝑗󵄨󵄨󵄨󵄨󵄨max

, 1) − 𝑛∑
𝑘=1

𝜇𝑘𝐼𝑘𝑚𝑦𝑖 ≤ Δ𝐸𝑖𝑥𝑖. (62)

|𝐸󸀠𝑗|max is the prescribed value according the normal
capacity of the 𝑗th generator, and 𝑇𝑤𝑖, 𝐼𝑚𝑥𝑖, and 𝐼𝑚𝑦𝑖 can be
computed by only using local signals. Thus, the correction ofΔ𝐷𝑖 and Δ𝐸𝑖 of (26) and (27) can be replaced by (62), where
the decentralized control is achieved.

From the above derivations, it is seen that the neural
weighting controller is proposed to cope with the nonlin-
earity of DFIG, and approximation error caused by neural
approximation and parameter uncertainty has been consid-
ered and stabilized by a proposed robust controller. Based on
the characteristics of power system, several advanced tech-
nologies have been integrated smoothly into the proposed
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Table 1: Parameter of DFIG (per unit: 𝑆base = 10WM; 𝑉base = 575V).
Parameter 𝑅𝑠 𝐿 𝑠 𝑅𝑟 𝐿𝑟 𝐿𝑚 𝐻tot Converter capacity
Value in pu 0.007 0.171 0.005 0.156 2.9 5.04 50%
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Figure 3: Multimachine power system model for assessing the
performance of the proposed controller.

neural PI controller, which leads to amultiobjective optimiza-
tion in comparisonwith the conventional PI controller which
is a signal-objective control.

It is seen that the proposed neural PI controller has a simi-
lar structure as the conventional PI controller, which takes the
natural advantage of conventional PI controller in tracking
control.However, the proposedneural PI controller considers
the interactions from network which is represented by only
using local variables. This means system-wide feedback
control can be replaced by only using local variables.Thus, the
proposed controller can be regarded as a decentralized coor-
dinated control, which is a desired result for the controller
design of large-scale geographically extensive systems.

4. Simulations

For assessing the performance of the proposed controller, a
multimachine power system shown in Figure 3 is modelled
in Matlab/Simulink, and the parameters of DFIG are given
in Tables 1 and 2. The power system model consists of two
fields, the load center comprised by two SGs, and the remote
terminal comprised of two DFIG-based WFs. Those two
fields are connected by the transmission line L5 with a long
distance of 200 km to investigate the proposed controller
capabilities in a weak power system, which is difficult to
guarantee the LVRT capability of DFIG, especially under
sensor fault case. In order to restore the terminal voltage of
WFs, a Var compensator (VC) is connected to the common
coupling point (CCP) of WFs Bus B3-2.

In this section, the capabilities of the proposed control
strategy are assessed under small disturbance and large
disturbance, respectively. The small disturbance is identified
as a slight sensor fault, which is mimicked by a bounded
stochastic disturbance shown in Figure 4. The large distur-
bance is the slight sensor fault plus three-phase ground faults.
For comparison purpose, the responseswith the conventional
PI (CPI) controller is also presented and discussed. In order
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Figure 4: Stochastic disturbance 𝑤𝑖.
to simplify the introduction, the proposed control strategy is
identified as the neural PI (NPI) controller.

4.1. Responses to Small Disturbances. In this subsection, a
slight sensor fault represented by a stochastic bounded dis-
turbance shown in Figure 4 is applied in the sensor of active
power. The WF1 responses with the proposed neural PI
controller and the conventional PI controller are shown in
Figure 5.

It can be seen that the MPPT performance with the CPI
controller is reduced drastically under the disturbance 𝑤𝑖.
(𝑃𝑒 of Figure 5(b)), which causes the dc-link voltage Vdc
oscillated seriously (Vdc of Figure 5(b)). However, the MPPT
performance under the same sensor fault is still acceptable
when the NPI controller is installed. It can be seen that the
effect of the disturbance 𝑤𝑖 has been efficiently suppressed
by the 𝐻∞ controller, and the oscillation bound of 𝑃𝑒 with
the NPI controller is narrow (𝑃𝑒 of Figure 5(a)), which helps
to smooth the dc-link voltage (Vdc of Figure 5(a)). It can be
seen that the oscillation of Vdc is very small when the NPI
controller is used.

In order to show this difference directly, the integral of
absolute error (IAE) defined as IAE = ∫𝑡𝑓

𝑡0
|𝑃𝑒ref − 𝑃𝑒|𝑑𝑡 is

used to evaluate the MPPT performances with different con-
trollers. The IAE is 251 when the NPI controller is used.
However, the value with the CPI controller is 526, which is
two times of that with the NPI controller.

It is concluded that the MPPT performance under the
slight sensor fault has been considerably improved by theNPI
controller, which is valuable for WFs installed in the remote
regions without timely maintenance.

4.2. Responses to Large Disturbances. In this subsection, a
three-phase ground fault is applied in the middle of line L1
at 𝑡 = 0+, and it is cleared after 0.1 s. The responses of WF1
with the NPI and CPI controllers are shown in Figure 6(a).
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Table 2: Parameter of the conventional PI controller [14].

Parameter Power regulator Voltage regulator Rotor current regulators
Proportion coefficient 𝑘𝑝𝑝 = 1 𝑘V𝑝 = 1.25 𝑘𝑖𝑑𝑝 = 𝑘𝑖𝑞𝑝 = 0.3
Integration coefficient 𝑘𝑝𝑖 = 100 𝑘V𝑖 = 300 𝑘𝑖𝑑𝑖 = 𝑘𝑖𝑞𝑖 = 7
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Figure 5: MPPT performances with sensor fault: (a) NPI controller; (b) CPI controller.

For illustrating the contribution to network supports, the
response of Bus B1-2which is theCCPof SGs is also presented
in Figure 6(b).

It is seen that both the NPI controller and CPI controller
can provide acceptable damping performance; however the
NPI controller is better (𝑃𝑒 of Figure 6(a)). Since the NPI
controller has achieved an effective control of internal voltage
vector by reducing its angle jump, the terminal voltage
drop is smaller in comparison with the CPI controller
used. The smaller terminal voltage drop makes DFIG output
more active power in the faults. Thus, less active power is
accumulated in the dc-link, which reduces the peak value of
dc-link voltage (Vdc of Figure 6(a)). Terminal under voltage
and dc-link over voltage are regarded as twomajor reasons to
limit LVRT capability of DFIG, which have been considerably
improved by the NPI controller.

Figure 6(b) shows the contribution of the NPI controller
to network supports, such as improved system damping (𝑃𝑒
of Figure 6(b)), better terminal voltage recovery capability

(|V𝑠| of Figure 6(b)), and system frequency support (Hz of
Figure 6(b)).

4.3. Contribution on Transient Stability. A three-phase
ground fault is applied in the terminal of transformer T3 at𝑡 = 0+, and it is cleared after 0.1 s. The fault is closer to the
WF1, which means that the disturbance is more serious. The
system responses are shown in Figure 7.

It is seen that, under such a large disturbance, the WF1
with the CPI controller is tripped at 𝑡 = 0.1084 s for terminal
under voltage (|V𝑠| of Figure 7(a)) and its output active power
drops to zero at the same time (𝑃𝑒 of Figure 7(a)). The trip of
WF1 leads to surplus reactive power, which rises the terminal
voltage ofWF2 and triggers the terminal over voltage protec-
tion to trip theWF2 at 𝑡 = 0.2481 (𝑃𝑒 of Figure 7(b)).The trip
of WFs makes power system lose large-scale active power in
a very short time. Since the large inertial of thermal power
plant, the SGs are not capable of generating the correspond-
ing active power immediately, which drops the rotor speed of
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Figure 6: Fault responses at 𝑠1 = 0.2 pu: NPI controller (full line); CPI controller (dashed line).

Table 3: Operating points chosen for establishing the model bank (motor convention).

Operating point 𝑢𝑑𝑠 𝑢𝑞𝑠 𝑖𝑑𝑠 𝑖𝑞𝑠 V𝑑𝑟 V𝑞𝑟 𝑃𝑒 𝑄𝑒𝜔𝑟 = 0.80 −1.0 0.0 0.3 0.34 −0.32 −0.03 −0.2 0.36𝜔𝑟 = 0.92 0.1 −1.0 −0.4 0.4 0.03 −0.1 −0.4 0.36𝜔𝑟 = 0.97 −0.39 0.93 0.51 −0.3 −0.02 0.03 −0.46 0.36𝜔𝑟 = 1.03 1.0 −0.14 −0.64 −0.28 −0.04 −0.003 −0.62 0.37𝜔𝑟 = 1.12 −1.0 −0.19 0.57 0.48 0.09 0.04 −0.71 0.37𝜔𝑟 = 1.20 −0.45 0.9 0.65 −0.49 0.13 −0.15 −0.89 0.36

SG1𝜔𝑟 from 1 pu to 0.9954 pu (𝜔𝑟 of Figure 7(c)) very quickly.
This may cause the SG1 to be tripped and leads to imbalance
of active power, which leads to frequency collapse and further
worsens power system transient stability.

It is seen that, as opposed to the CPI controller, the
NPI controller ensures that WF1 can be connected to the
grid with acceptable rotor speed (𝜔𝑟 of Figure 7(a)), which
providesDFIGwith continuing network support capability to
balance the active power and reactive power.Thus, the power
system frequency can be operated in a permissible range. It
is noticeable that the NPI controller provides the system with
good terminal voltage recovery capability (|V𝑠| of Figure 7).

Figures 6 and 7 show the capabilities of the NPI controller
to improve system damping, MPPT, LVRT, and its contribu-
tion to network support at both subsynchronous and supper
synchronous conditions.

5. Conclusions

This paper proposes an adaptive neural decentralized coor-
dinated control of DFIG, where a neural interaction mea-
surement observer is proposed to approximate the nonlinear
model of DFIG. The approximation error due to neural
approximation has been considered, and a robust stabiliza-
tion technique is also proposed to override the effect of the
approximation error. For considering the slight sensor fault
represented by stochastic disturbance, the 𝐻∞ controller is
employed to suppress the fault effect.The𝐻2 controller is also
employed to achieve specified engineering purposes. Then,
the proposed controller can be formulated as amixed𝐻2/𝐻∞
optimization problem with constrains of PI structure and
regional pole placement, which can be solved by using LMI
technique. Simulation results are presented and discussed,
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Figure 7: Fault responses at 𝑠1 = −0.122 pu: NPI controller (full line); CPI controller (dashed line).

which demonstrate the capabilities of the proposed control
strategy to system damping, voltage recovery and LVRT,
and its contributions on power system transient stability,
especially for frequency support.

This paper demonstrates that, in comparison with the
conventional PI controller, the proposed control strategy pro-
vides DFIG with the greater capabilities of fault-tolerant con-
trol of MPPT and continuing network support during power
system fault conditions.

Appendix

A. Proofs of the Upper Bound and the Stability

A.1. Upper Bound Computation. For a DFIG-based wind
turbine, the reference value of output active power 𝑃𝑒ref is
determined by the mechanical torque of wind turbine, which
is written as following form [21]:

𝑇𝑚𝑖 = (0.5𝜌air𝑆𝑤𝑡𝑅𝑤𝑡𝐶𝑃-max𝜆opt )
𝑖

𝜔2𝑤𝑡𝑖 = 𝐾󸀠𝑤𝑡𝑖𝜔2𝑟𝑖. (A.1)

By linearizing (A.1), we have

Δ𝑇𝑘𝑚𝑖 = 2𝐾󸀠𝑤𝑡𝑖𝜔𝑟𝑖0Δ𝜔𝑟𝑖 = [2𝜔𝑟𝑖0𝐾󸀠𝑤𝑡𝑖 0 0] 𝑥𝑖. (A.2)

Themaximum rotor speed𝜔𝑟𝑖 is 1.2 pu; then the following
inequality can be obtained:󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 𝑛∑𝑘=1𝜇𝑘𝑇𝑘𝑤𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩[2.4𝐾󸀠𝑤𝑡𝑖 0 0] 𝑥𝑖󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩Δ𝐻𝑖𝑥𝑖󵄩󵄩󵄩󵄩2 . (A.3)

It is known that the maximum reference values of output
active power and reactive power of DFIG are determined by
its mechanical power 𝑃𝑚𝑖 = 𝑇𝑚𝑖𝜔𝑤𝑡𝑖 and apparent power 𝑆𝑖.𝑃𝑒ref 𝑖 ≤ 𝐾󸀠𝑤𝑡𝑖𝜔3𝑟𝑖𝑄𝑒ref 𝑖 ≤ 󵄨󵄨󵄨󵄨𝑆𝑖󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝐸 󸀠𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨max (󵄨󵄨󵄨󵄨󵄨󵄨󵄨󳨀→𝑖 ∗𝑠𝑖󵄨󵄨󵄨󵄨󵄨󵄨󵄨) < √𝐸󸀠2𝑑𝑖 + 𝐸󸀠2𝑞𝑖 , (A.4)

where the maximum value of |󳨀→𝑖 ∗𝑠𝑖| is the normal capacity of
DFIG, of which value is less than 1 pu.

By linearizing (A.4), we haveΔ𝑃𝑒ref 𝑖 ≤ 3𝐾󸀠𝑤𝑡𝑖𝜔2𝑟𝑖0Δ𝜔𝑟𝑖 = [3𝐾󸀠𝑤𝑡𝑖𝜔2𝑟𝑖0 0 0] 𝑥𝑖
Δ𝑄𝑒ref 𝑖 < 𝐸󸀠𝑑𝑖0󵄨󵄨󵄨󵄨𝐸󸀠𝑖 󵄨󵄨󵄨󵄨0Δ𝐸󸀠𝑑𝑖 + 𝐸

󸀠
𝑞𝑖0󵄨󵄨󵄨󵄨𝐸󸀠𝑖 󵄨󵄨󵄨󵄨0Δ𝐸󸀠𝑞𝑖

= [0 𝐸󸀠𝑞𝑖0󵄨󵄨󵄨󵄨𝐸󸀠𝑖 󵄨󵄨󵄨󵄨0 𝐸󸀠𝑑𝑖0󵄨󵄨󵄨󵄨𝐸󸀠𝑖 󵄨󵄨󵄨󵄨0]𝑥𝑖.
(A.5)
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Then, we obtain 󵄩󵄩󵄩󵄩𝑟𝑖󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩Δ𝐺𝑖𝑥𝑖󵄩󵄩󵄩󵄩2 . (A.6)

A.2. Stability Proof. Before solving themixed𝐻2/𝐻∞ subop-
timization problem, the stability of the closed-loop system in
(21) should be guaranteed at the equilibrium𝑥𝑖(𝑡) = 0without
considering the disturbance 𝑤𝑖. The Lyapunov function of
system of (21) is chosen as

�̇� = �̇�𝑇𝑖 𝑃𝑖1𝑥𝑖 + 𝑥𝑇𝑖 𝑃𝑖1�̇�
= ( 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝐴𝑘𝑔𝑖 𝑥𝑖)𝑇 𝑃1𝑖𝑥𝑖
+ 𝑥𝑇𝑖 𝑃1𝑖( 𝑛∑

𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝐴𝑘𝑔𝑖 𝑥𝑖) + Δ𝑓𝑇𝑔ℎ𝑃1𝑖𝑥𝑖
+ 𝑥𝑇𝑖 𝑃1𝑖Δ𝑓𝑔ℎ.

(A.7)

From (45), (A.7) can be rewritten as

�̇� = �̇�𝑇𝑖 𝑃𝑖1𝑥𝑖 + 𝑥𝑇𝑖 𝑃𝑖1�̇� ≤ ( 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝐴𝑘𝑔𝑖 𝑥𝑖)𝑇 𝑃1𝑖𝑥𝑖
+ 𝑥𝑇𝑖 𝑃1𝑖( 𝑛∑

𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔𝐴𝑘𝑔𝑖 𝑥𝑖) + (𝜑𝑓𝑖𝑥𝑖)𝑇 (𝜑𝑓𝑖𝑥𝑖)
+ 𝑛∑
𝑘=1

𝜇𝑘 {(𝜑𝑘𝑔𝑖𝑥𝑖)𝑇 (𝜑𝑘𝑔𝑖𝑥𝑖)} + 2 𝑛∑
𝑘=1

𝜇𝑘
⋅ {(𝜑𝑘ℎ1𝑖𝑥𝑖𝑖)𝑇 (𝜑𝑘ℎ1𝑖𝑥𝑖𝑖)} + (𝜑ℎ2𝑖𝑥𝑖)𝑇 (𝜑ℎ2𝑖𝑥𝑖)
+ (𝜑𝑟𝑖𝑥𝑖)𝑇 (𝜑𝑟𝑖𝑥𝑖) + (𝜑𝑑𝑥𝑖𝑥𝑖)𝑇 (𝜑𝑑𝑥𝑖𝑥𝑖) + 2 𝑛∑

𝑘=1

𝜇𝑘
⋅ {(𝜑𝑘𝑑𝑦1𝑖𝑥𝑖)𝑇 (𝜑𝑘𝑑𝑦1𝑖𝑥𝑖)} + (𝜑𝑑𝑦2𝑖𝑥𝑖)𝑇 (𝜑𝑑𝑦2𝑖𝑥𝑖)
+ (𝜑𝑑𝑖𝑥𝑖)𝑇 (𝜑𝑑𝑖𝑥𝑖) + 𝑛∑

𝑘=1

𝜇𝑘 {(𝜑𝑘𝑚𝑥𝑖𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑥𝑖𝑥𝑖)
+ (𝜑𝑘𝑚𝑦𝑖𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑦𝑖𝑥𝑖)} + 8𝑥𝑇𝑖 𝑃1𝑖𝑃1𝑖𝑥𝑖 = 𝑛∑

𝑘=1

𝜇𝑘
⋅ 𝑛∑
𝑔=1

𝜇𝑔𝑥𝑇𝑖 ((𝐴𝑘𝑔𝑖 )𝑇 𝑃1𝑖 + 𝑃1𝑖 (𝐴𝑘𝑔𝑖 ) + (𝜑𝑓𝑖)𝑇 (𝜑𝑓𝑖)
+ 2 (𝜑𝑘𝑔𝑖)𝑇 (𝜑𝑘𝑔𝑖) + 2 (𝜑𝑘ℎ1𝑖)𝑇 (𝜑𝑘ℎ1𝑖) + (𝜑𝑘ℎ2𝑖)𝑇⋅ (𝜑𝑘ℎ2𝑖) + (𝜑𝑟𝑖)𝑇 (𝜑𝑟𝑖) + (𝜑𝑑𝑥𝑖)𝑇 (𝜑𝑑𝑥𝑖) + (𝜑𝑘𝑑𝑦1𝑖)𝑇⋅ (𝜑𝑘𝑑𝑦1𝑖) + (𝜑𝑑𝑦2𝑖)𝑇 (𝜑𝑑𝑦2𝑖) + (𝜑𝑑𝑖)𝑇 (𝜑𝑑𝑖)
+ (𝜑𝑘𝑚𝑥𝑖)𝑇 (𝜑𝑘𝑚𝑥𝑖) + (𝜑𝑘𝑚𝑦𝑖)𝑇 (𝜑𝑘𝑚𝑦𝑖) + 8𝑃1𝑖𝑃1𝑖)𝑥𝑖.

(A.8)

According (47), (A.8) can be rewritten as

�̇� = �̇�𝑇𝑖 𝑃𝑖1𝑥𝑖 + 𝑥𝑇𝑖 𝑃𝑖1�̇� ≤ 𝑛∑
𝑘=1

𝜇𝑘 𝑛∑
𝑔=1

𝜇𝑔
⋅ 𝑥𝑇𝑖 [−𝜌−2𝑃1𝑖 (𝐸𝑖𝑘 (𝐸𝑖𝑘)𝑇 + 8𝐼)𝑃1𝑖 − 𝑄1𝑖] 𝑥𝑖
< 0.

(A.9)

It is seen the closed-loop system of (21) is locally quadrat-
ically stable at the equilibrium 𝑥𝑖(𝑡) = 0 without considering
the disturbances 𝑤𝑖.
Nomenclature

V𝑠, V𝑟: Stator and rotor voltages𝑖𝑠, 𝑖𝑟: Stator and rotor currents𝐸󸀠: Internal voltage𝑃𝑒, 𝑄𝑒: Output active power and reactive power of
DFIG𝑃𝑠, 𝑄𝑠: Output active power and reactive power of
stator of DFIG𝑇𝑚, 𝑇𝑒: Mechanical torque and electric torque of
DFIG𝑅𝑠, 𝑅𝑟: Stator and rotor resistances𝑋󸀠𝑠,𝑋𝑠: Transient and open-circuit reactances𝐿 𝑠𝑠, 𝐿𝑟𝑟: Stator and rotor self-inductances𝐿𝑚: Mutual inductance𝑇󸀠0: Transient open-circuit time constant𝛿12: Power angle difference between SG1 and
SG2𝑠, 𝜔𝑟: Rotor slip and rotor speed𝑑, 𝑞: Subscript for component of 𝑑 and 𝑞 axis𝑥, 𝑦: Subscript for component of 𝑥 and 𝑦-axis

ref : Subscript for reference value.
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