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Iterative image reconstruction (IIR) with sparsity-exploitingmethods, such as total variation (TV)minimization, claims potentially
large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D
reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam
computed tomography (CBCT) with GPU implementation has been proposed in this paper. In the first place, an algorithm based
on alternating direction total variation using local linearization and proximity technique is proposed for CBCT reconstruction.
The applied proximal technique avoids the horrible pseudoinverse computation of big matrix whichmakes the proposed algorithm
applicable and efficient for CBCT imaging. The iteration for this algorithm is simple but convergent. The simulation and real CT
data reconstruction results indicate that the proposed algorithm is both fast and accurate. The GPU implementation shows an
excellent acceleration ratio of more than 100 compared with CPU computation without losing numerical accuracy. The runtime
for the new 3D algorithm is about 6.8 seconds per loop with the image size of 256 × 256 × 256 and 36 projections of the size of
512 × 512.

1. Introduction

Recently, iterative image reconstruction (IIR) algorithms
[1–6], especially compressive sensing (CS) [7–10] based
ones, have been developed for X-ray computed tomogra-
phy (CT). As is widely known, CS based IIR algorithms
can provide much higher image quality than the popular
Feldkamp-Davis-Kress algorithm [11] (FDK) under sparse
views. Constrained total variation (TV) based methods
obtain impressive results for sparse view reconstruction in
CT imaging [3, 12]. Although theoretical researches show that
IIR possesses great advantages over analytical ones in image
quality, it is still far from being put into practical use due
to the expensive computation cost, especially for cone-beam
computed tomography (CBCT). Fast image reconstruction is
often required in clinical use to reduce thewaiting time for the
patient. Reconstruction speed is even more critical in real-
time imaging applications, such as cardiac CBCT or online
therapy.

Researchers in both optimization theory and hardware
acceleration have made lots of progresses, aiming at devel-
oping more robust and efficient methods. The development
of TV minimization indicates that the alternating direction
method (ADM) [12, 13] can provide relatively better results.
The representative algorithms using ADM are Lagrangian
function based ones [14] and split Bregman method [15].
The two ADM based methods are equivalent under linear
constraints. Both of the two kinds of optimization meth-
ods have been applied in CT reconstructions [12, 13, 16].
From another point of view, CBCT reconstruction can be
regarded as an instance of high-performance computing [17].
Therefore, parallel processing can serve as an acceleration
technique.

Originally designed for accelerating the computer graph-
ics computation, the graphics processing unit (GPU) has
emerged as a versatile platform for runningmassively parallel
computation [18–21]. GPU provides clear advantages for
CBCT image reconstruction: high memory bandwidth, high
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computation throughput, support for floating-point arith-
metic, low price cost, and friendly programming interface.
The acceleration of the filtered back-projection type algo-
rithms using GPU represents a classic implementation of
a nongraphics application on dedicated graphics hardware
[22]. With the development of compute-specific APIs, CBCT
reconstruction was accelerated using Brook [23] and CUDA
[24–26]. In CUDA, FDK acceleration mainly focuses on
back-projection making use of techniques of thread assign-
ing, memory optimization, in-built arithmetic instructions,
and so on [25, 26]. However, parallel processing for IIR algo-
rithms meets new issues because these algorithms are fun-
damentally sequential. GPU acceleration needs sufficiently
parallel workload [27]. Therefore, algorithms with minimal
computation within each loop are not proper for GPU
implementation. For instance, the algebraic reconstruction
technique (ART) is not suitable for the GPU because each
loop only processes a single beam. Amore suitable algorithm
is simultaneous ART (SART), which updates the image after
the back-projection of an entire projection view. Several other
iterative algorithms were also adapted to the GPU [28–30],
including total variation reconstruction [31].

This paper proposes an efficient 3D IIR algorithm based
on alternating TV minimization method for CBCT recon-
struction based on GPU acceleration. An inexact ADM
iteration using local linearization and proximity technique is
adopted to avoid the pseudoinverse calculation. The exper-
iments using both simulation and real CT data prove that
the proposed algorithm for CBCT is both fast and accurate.
The paper is outlined as follows. Section 1 briefly discusses
the incomplete data CBCT reconstruction problems and
related works. Section 2 shows the new method in detail and
its parallelization analysis. The CUDA implementation and
experiments on both simulation and real data results are
introduced and shown in Section 3. Finally, Section 4 brings
a brief discussion and conclusion.

2. Methods

ACBCT scanning systemmainly consists of an X-ray source,
interested object, and a flat panel detector. From a discrete to
discrete point of view, the image system can be modeled as
the following linear system:

𝑝 = 𝑊𝑓, (1)

where vector 𝑝 ∈ R𝑁rays has a length of 𝑁rays which is the
vectorization of the projection data; the vector 𝑓 ∈ R𝑁voxels

has a length of𝑁voxels which stands for the discrete vectorized
form of the object function. Matrix𝑊 ∈ R𝑁rays×𝑁voxels models
the imaging systemwhich has𝑁rays rows and𝑁voxels columns.
In this work, the value in the system matrix is modeled
using the ray intersection length with the cubic voxel. For
incomplete angle problem, (1) is always undersampled and ill-
conditioned. The CS theory indicates that the linear system

can achieve exact solution under certain sparse representa-
tion by the following L1-norm minimization:

𝑓
∗
= arg min 󵄩󵄩󵄩󵄩Ψ (𝑓)

󵄩󵄩󵄩󵄩1
,

s.t. 𝑝 = 𝑊𝑓.

(2)

For CT images, it is always the case that most of the
images have very sparse gradient-magnitude images (GMI)
[3]. It is a good tool to use GMI for CS based image
reconstruction which is the origination of the famous TV-
based algorithms.

2.1. Review of Alternating Direction TV Minimization Recon-
struction. First of all, a brief review of alternating direction
TV minimization reconstruction (ADVTM) [12] algorithm
is carried out for the completeness of this paper. Apply the
TV regularization to (1); then we will get the constrained
TV minimization reconstruction model. Here, we use the
anisotropic TV for CBCT reconstruction; that is, ‖Ψ(𝑓)‖

1
=

‖𝑓‖
𝑇𝑉

≜ ∑
𝑗
‖𝐷
𝑗
𝑓‖
1
, 𝑗 = 1, 2, 3. Here, 𝐷

1
, 𝐷
2
, and 𝐷

3
stand

for the differential operator in 𝑋, 𝑌, and 𝑍 directions. The
unconstrained form of (2) can be written as

min 1

2

󵄩󵄩󵄩󵄩𝑝 − 𝑊𝑓
󵄩󵄩󵄩󵄩

2
+ 𝜌∑

𝑗

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩1
, (3)

where 𝜌 stands for the penalty factor. Let𝐷
𝑗
𝑓 = 𝑧

𝑗
; equation

(3) can also be transformed as

min 1

2

󵄩󵄩󵄩󵄩𝑝 − 𝑊𝑓
󵄩󵄩󵄩󵄩

2
+ 𝜌∑

𝑗

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑗

󵄩󵄩󵄩󵄩󵄩1
. (4)

The corresponding Lagrangian function of the above problem
is

min𝐿
𝐴
(𝑓, 𝑧, 𝑢)

= min 1

2

󵄩󵄩󵄩󵄩𝑝 − 𝑊𝑓
󵄩󵄩󵄩󵄩

2
+ ∑

𝑗

(𝜌
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑗

󵄩󵄩󵄩󵄩󵄩1
+

𝜆

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗
𝑓 − 𝑧
𝑗
+

𝑢
𝑗

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

) ,

(5)

where 𝑢
𝑗
∈ R𝑁voxels is multiplier, and 𝜆 ∈ R is the factor for

square formation. Under the ADM framework, splitting the
variables 𝑓 and 𝑧, we get the following iteration form:

𝑓
(𝑘+1)

=argmin
𝑓

(
󵄩󵄩󵄩󵄩𝑝 − 𝑊𝑓

󵄩󵄩󵄩󵄩

2
+ 𝜆∑

𝑗

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗
𝑓 − 𝑧
(𝑘)

𝑗
+ 𝑢
(𝑘)

𝑗
/𝜆

󵄩󵄩󵄩󵄩󵄩

2

),

𝑧
(𝑘+1)

𝑗
= argmin

𝑧𝑗

(2𝜌
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑗

󵄩󵄩󵄩󵄩󵄩1
+ 𝜆

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑗
𝑓
(𝑘+1)

− 𝑧
𝑗
+ 𝑢
(𝑘)

𝑗
/𝜆

󵄩󵄩󵄩󵄩󵄩

2

) ,

𝑢
(𝑘+1)

𝑗
= 𝑢
(𝑘)

𝑗
+ 𝜆 (𝐷

𝑗
𝑓
(𝑘+1)

− 𝑧
(𝑘+1)

𝑗
) .

(6)
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The minimization with respect to 𝑧
𝑗
has the following

closed form solution:

𝑧
(𝑘+1)

𝑗

= max
{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷
𝑗
𝑓
(𝑘)

+

𝑢
(𝑘)

𝑗

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
𝜌

𝜆
, 0

}

}

}

sgn(𝐷
𝑗
𝑓
(𝑘)

+

𝑢
(𝑘)

𝑗

𝜆
) .

(7)

For the minimization with respect to 𝑓, the optimization is a
quadratic function and set its derivative to 0:

(𝜆∑

𝑗

𝐷
𝑇

𝑗
𝐷
𝑗
+ 𝑊
𝑇
𝑊)𝑓

= (𝑊
𝑇
𝑝 + 𝜆∑

𝑗

𝐷
𝑇

𝑗
(𝑧
(𝑘)

𝑗
−

𝑢
(𝑘)

𝑗

𝜆
)) .

(8)

The basic idea to find the solution to the above equation is to
calculate the pseudoinverse of 𝜆∑

𝑗
𝐷
𝑇

𝑗
𝐷
𝑗
+𝑊
𝑇
𝑊.Therefore,

the exact solution for the (𝑘 + 1)th iteration of the above 𝑓

subproblem is as in the following expression:

𝑓
(𝑘+1)

= (𝜆∑

𝑗

𝐷
𝑇

𝑗
𝐷
𝑗
+ 𝑊
𝑇
𝑊)

+

× (𝑊
𝑇
𝑝 + 𝜆∑

𝑗

𝐷
𝑇

𝑗
(𝑧
(𝑘)

𝑗
−

𝑢
(𝑘)

𝑗

𝜆
)) ,

(9)

where 𝑋
+ stands for the Moore-Penrose pseudoinverse of

matrix𝑋. The update form of multipliers is

𝑢
(𝑘+1)

𝑗
= 𝑢
𝑘

𝑗
+ 𝜆 (𝐷

𝑗
𝑓
(𝑘+1)

− 𝑧
(𝑘+1)

𝑗
) . (10)

Therefore, the ADTVM algorithm has the following iteration
form.

Algorithm 1. While “not converged,” 𝑘 ← 0Do

(1) Update 𝑓 using 𝑓
(𝑘+1)

=

(𝜆∑
𝑗
𝐷
𝑇

𝑗
𝐷
𝑗
+ 𝑊
𝑇
𝑊)
+

(𝑊
𝑇
𝑝+𝜆∑

𝑗
𝐷
𝑇

𝑗
(𝑧
(𝑘)

𝑗
−𝑢
(𝑘)

𝑗
/𝜆));

(2) Update 𝑧 using 𝑧
(𝑘+1)

𝑗
= max{|𝐷

𝑗
𝑓
(𝑘)

+ (𝑢
(𝑘)

𝑗
/𝜆)| −

(𝜌/𝜆), 0} sgn(𝐷
𝑗
𝑓
(𝑘)

+ (𝑢
(𝑘)

𝑗
/𝜆));

(3) Update 𝑢 using 𝑢
(𝑘+1)

𝑗
= 𝑢
𝑘

𝑗
+ 𝜆(𝐷

𝑗
𝑓
(𝑘+1)

− 𝑧
(𝑘+1)

𝑗
);

(4) 𝑘 ← 𝑘 + 1

End Do

The ADTVM algorithm use exact solutions for each
subproblem at each iterative loop and it has the assurance of
the convergence. The application of ADTVM algorithm for
2D reconstruction has already shown some impressive results
[12].

2.2. The 3D Inexact Alternating Direction Reconstruction. It
can easily be seen that the ADTVM reconstruction has a
very simple iteration form, and its convergence property
makes it a robust algorithm. However, let us take a more
careful analysis of the above algorithm. In fact, it should
be pointed out that the ADTVM iteration involves a very
expensive calculation of the pseudoinverse for a huge matrix
𝜆∑
𝑗
𝐷
𝑇

𝑗
𝐷
𝑗
+𝑊
𝑇
𝑊. More seriously, the ADTVMmay fail in

cone-beam reconstruction for even a small scale of 3D data
set, saying a cube having size of 256 × 256 × 256. Actually, it is
impossible to have such hugememory to store the cone-beam
system matrix for a personal computer. Consequently, for a
cone-beam reconstruction problem, the ADTVM is actually
not applicable for it cannot be implemented. In fact, methods
that only use 𝑊 and its transpose make sense in finding the
solution to cone-beam reconstruction problems. Therefore,
it is essential to develop a more practical and efficient algo-
rithm for 3D reconstruction based on alternating direction
method.

In this subsection, a practical alternating direction recon-
struction using local linearization and proximity technique
is proposed with GPU aided computation. In matrix com-
putation theory [31], matrix with some special structures,
such as diagonal matrixes or those which can be diagonalized
by FFTs, can help in improving the calculation performance
greatly. However, for the general matrix𝑊 in CBCT,𝑊𝑇𝑊 is
neither diagonal nor FFT diagonalizable.We adopt an inexact
strategy to tackle this subproblem of minimization for 𝑓. For
minimizationwith respect to𝑓, the fidelity termof ‖𝑝 − 𝑊𝑓‖

2

in (6), that is, the term containing 𝑊, is linearized at the
current point 𝑓(𝑘) and its proximal form is

󵄩󵄩󵄩󵄩𝑝 − 𝑊𝑓
󵄩󵄩󵄩󵄩

2
≈
󵄩󵄩󵄩󵄩󵄩
𝑝 − 𝑊𝑓

(𝑘)󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑔
𝑇

𝑘
(𝑓 − 𝑓

(𝑘)
) +

1

𝜏

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

(𝑘)󵄩󵄩󵄩󵄩󵄩

2

,

(11)

where 𝑔
𝑘

= 𝑊
𝑇
(𝑊𝑓
(𝑘)

− 𝑝) is the gradient of ‖𝑝 − 𝑊𝑓‖
2

at the current point of 𝑓(𝑘), and 𝜏 > 0. Consequently, the
subproblem of 𝑓 can be converted into the following form:

min
𝑓

󵄩󵄩󵄩󵄩󵄩
𝑝 − 𝑊𝑓

(𝑘)󵄩󵄩󵄩󵄩󵄩

2

+ 2𝑔
𝑇

𝑘
(𝑓 − 𝑓

(𝑘)
)

+
1

𝜏

󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑓

(𝑘)󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆∑

𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐷
𝑗
𝑓 − 𝑧
(𝑘)

𝑗
+

𝑢
(𝑘)

𝑗

𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(12)

Set the derivative of the above quadratic function to 0, we get

(
1

𝜏
𝐼 + 𝜆∑

𝑗

𝐷
𝑇

𝑗
𝐷
𝑗
)𝑓 = 𝑐

𝑘
, (13)

where 𝑐
𝑘
= (1/𝜏)𝑓

(𝑘)
−𝑊
𝑇
(𝑊𝑓
(𝑘)

−𝑝)+𝜆∑
𝑗
𝐷
𝑇

𝑗
(𝑧
(𝑘)

𝑗
−𝑢
(𝑘)

𝑗
/𝜆).

Under the periodic boundary condition, ∑
𝑗
𝐷
𝑇

𝑗
𝐷
𝑗
is a block

circulant matrix. Therefore, the coefficient matrix on the left
hand side of (13) can be diagonalized by three-dimensional
fast Fourier transform F

3
via F
3
((1/𝜏)𝐼+𝜆∑

𝑗
𝐷
𝑇

𝑗
𝐷
𝑗
)F−1
3

= 𝑀.
Let Λ(𝑀) = 𝐽 ∈ R𝑁voxels , where Λ(𝑀) = 𝐽 means that 𝐽 is
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composed by the elements on the diagonal of 𝑀. Apply 3D
Fourier; transform both sides of (13); the solution of (13) can
be computed efficiently by

𝑓
(𝑘+1)

= F
−1

3

× (F
3
(

1

𝜏
𝑓
(𝑘)

−W𝑇 (𝑊𝑓
(𝑘)

− 𝑝)

+𝜆∑

𝑗

𝐷
𝑇

𝑗
(𝑧
(𝑘)

𝑗
−

𝑢
(𝑘)

𝑗

𝜆
)) × 𝐽

−1
) ,

(14)

where the division of𝐴/𝐵 is a component-wise operation.The
new algorithm is implemented as the following list.

Algorithm 2. While “not converged,” 𝑘 ← 0Do
(1) Update 𝑓 using 𝑓

(𝑘+1)
= F−1

3
(F
3
((1/𝜏)𝑓

(𝑘)
−

W𝑇(𝑊𝑓
(𝑘)

− 𝑝) + 𝜆∑
𝑗
𝐷
𝑇

𝑗
(𝑧
(𝑘)

𝑗
− 𝑢
(𝑘)

𝑗
/𝜆))/𝐽),

(2) Update 𝑧 using 𝑧
(𝑘+1)

𝑗
= max{|𝐷

𝑗
𝑓
(𝑘)

+ (𝑢
(𝑘)

𝑗
/𝜆)| −

(𝜌/𝜆), 0} sgn(𝐷
𝑗
𝑓
(𝑘)

+ (𝑢
(𝑘)

𝑗
/𝜆));

(3) Update 𝑢 using 𝑢
(𝑘+1)

𝑗
= 𝑢
𝑘

𝑗
+ 𝜆(𝐷

𝑗
𝑓
(𝑘+1)

− 𝑧
(𝑘+1)

𝑗
);

(4) 𝑘 ← 𝑘 + 1

End Do

It can easily be seen that the calculation of𝑓(𝑘+1) is closely
related to 𝑓

(𝑘) which is different from that in Algorithm 1.
Notably, the ADTVM involves the calculation of 𝑊𝑇𝑊 and
(𝜆∑
𝑗
𝐷
𝑇

𝑗
𝐷
𝑗
+ 𝑊
𝑇
𝑊)
+ which can only be implemented based

on storing the system matrix 𝑊 beforehand. However, even
for the occasion of 2D reconstruction, the system matrix
is actually so tremendous that its pseudoinverse calculation
is very time consuming. Furthermore, for 3D situation for
ADTVM, there is no such a huge storage device which can
accommodate such a big system matrix. Consequently, the
pseudoinverse computation in ADTVM is very impractical
or even impossible to be implemented for 3D reconstruc-
tion because of time and memory consumption. The new
algorithm utilizes the linearization technique which ably
avoids the bother of storing the system matrix. Moreover,
the new method also averts the horrible computation of
𝑊
𝑇
𝑊 and (𝜆∑

𝑗
𝐷
𝑇

𝑗
𝐷
𝑗
+ 𝑊
𝑇
𝑊)
+. In addition, the involved

FFT techniques can further improve the computation effi-
ciency. These characteristics make the new algorithm an
indispensable method for cone-beam image reconstruction
based on the alternating direction method. The conver-
gence property is guaranteed and discussed in detail in
[32].

2.3. GPU Implementation. The related forward- and back-
ward-projection operations in 𝑊

𝑇
(𝑊𝑓
(𝑘)

− 𝑝) has very high
complexity for CPU computation. Generally, the forward-
projection in Algorithm 2 can be defined as

𝑝
𝑖
= ∑

𝑗∈𝑄𝑖

𝑤
𝑖,𝑗
𝑓
𝑗
, (15)

where 𝑓 is the attenuation coefficient, 𝑤
𝑖,𝑗

is the value in
the system matrix 𝑊 at position of (𝑖, 𝑗), and 𝑄

𝑖
is the

set containing all the indices of voxels that have nontrivial
intersections with the beam 𝑖. Analogously, the backward-
projection can be defined as

𝑓
𝑗
= ∑

𝑖∈𝑄𝑗

𝑤
𝑖,𝑗
𝑝
𝑖
, (16)

where 𝑄
𝑗
is the set containing all the indices of beam that

have nontrivial intersections with the voxel 𝑗. The itera-
tion of Algorithm 2 is simple but convergent. Although
there are only one forward- and one backward-projection
operation in 𝑊

𝑇
(𝑊𝑓
(𝑘)

− 𝑝) at each iterative loop, these
two operations can occupy most of the computation time.
For more efficient implementation, more advanced hard-
ware optimization besides local linearization and proximity
technique in algorithm design should be taken into con-
sideration. Traditional method for calculating the forward-
projection is the ray tracing method proposed by Siddon.
Siddon’s algorithm uses a parametric line representation of
the beam which makes the complexity of computing the
intersection lengths of each beam with 3D domain still with
respect to 1D line. For CBCT reconstruction, the system
matrix is so tremendous that Siddon’s algorithm is not suit-
able for computing both forward and backward projections
simultaneously.

For efficient computation, a fast and parallel algorithm
[33] for forward and backward projections is utilized in this
paper. A brief review of this algorithm is given here and the
detailed interpretation can be found in [33].When computing
the forward-projection, the 3D region of the object is divided
into a group of planes in one direction according to the slope
of the beam. This limits the number of the voxel intersected
with the beam within quite few situations. Computing the
length can be executed in parallel by each plane, which
makes the calculation pretty efficient. When dealing with the
backward-projection, the parallelization can be realized in
parallel for each voxel. In finding the corresponding beams, a
shadow region method is utilized [33].

Although iterative algorithm is fundamentally sequential,
the reconstruction algorithm we designed here for CBCT
can be implemented efficiently with the aid of GPU consid-
erably. The three update formulas can all be computed on
GPU for speedup. The operations involved in the proposed
method mainly include matrix-vector multiplications and
vector additions. These operations include 𝐷

𝑗
𝑓, 𝐷𝑇
𝑗
𝑓, 𝑊𝑓,

and𝑊
𝑇
𝑓. The operation of𝐷

𝑗
𝑓 and𝐷

𝑇

𝑗
𝑓 can be straightfor-

wardly put intoGPUcalculation, with each thread computing
the difference of a voxel.Themost expensive calculation parts
are 𝑊𝑓 and 𝑊

𝑇
𝑓 which stand for forward- and backward-

projections. With the aid of the fast and parallel algorithm,
the forward- and backward-projections can potentially be
accelerated significantly. With the GPU aided computation,
the flow chart of the proposed algorithm is shown in
Figure 1.
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Table 1: Dataset for situations 1 and 2.

Volume data Projection data Voxel size Detector bin size
Situation 1 128 × 128 × 128 256 × 256 × 36 0.50mm 0.50mm
Situation 2 256 × 256 × 256 512 × 512 × 36 0.25mm 0.25mm

Table 2: Running time for related operation in the reconstruction (unit for time: seconds).

Situation 1 Situation 2
CPU GPU Speedup CPU GPU Speedup

𝐷
𝑗
𝑓 0.030000 0.0002312 129.76 0.398274 0.0026197 152.03

𝐷
𝑇

𝑗
𝑓 0.042977 0.0003432 125.22 0.529065 0.0032604 162.27

𝑊𝑓 10.248665 0.058801 174.29 83.390976 0.452213 184.41
𝑊
𝑇
𝑓 73.074226 0.399989 182.69 636.070923 3.151384 201.83

Yes

No

(1) Start

(2) Load projections on GPU memory

(3) Initialize parameters, f, z, and u

(6) Update multipliers u using formula (10)

(7) Enough iterative loops?

(8) Transfer data to CPU and output

(9) End

(4) Solve f subproblem using formula (14)

(5) Solve z subproblem using formula (7)

Figure 1: Flow chart of the proposed inexact alternating direction
CBCT reconstruction algorithm. Blocks 4–6 correspond to 1–3 of
Algorithm 2.

3. Experiments

3.1. Computation Efficiency. To evaluate the performance of
the CUDA aided implementation, we implement and test

Table 3: RMSE of GPU computation for related operation.

𝐷
𝑗
𝑓 𝐷

𝑇

𝑗
𝑓 𝑊𝑓 𝑊

𝑇
𝑓

Situation 1 0.5𝐸 − 6 0.4𝐸 − 6 2.3𝐸 − 6 1.7𝐸 − 6

Situation 2 0.2𝐸 − 6 0.1𝐸 − 6 1.5𝐸 − 6 0.9𝐸 − 6

the operation of 𝐷
𝑗
𝑓, 𝐷𝑇
𝑗
𝑓, 𝑊𝑓, and 𝑊

𝑇
𝑓 both on CPU

and on GPU. In addition, there are two data sets running
on NVIDIA Tesla K20c. This GPU device has 2496 CUDA
cores and 5120MB global memory. In the performance test,
a 3D digital Moby mouse phantom in which the attenuation
coefficient is in 0.0∼1.0 is utilized. A single circle trajectory is
utilized for cone-beam scanning. The source to axis distance
is 30 cm, and the source to the center of the flat panel distance
is 60 cm. The detector panel has a size of 12.8 cm × 12.8 cm.
The phantom has a size of 6.4 cm × 6.4 cm × 6.4 cm. The
projection data are collected by 36 equally angular views in
360 degrees.

In order to test the four operations under different
data sets, two kinds of discretization are applied which is
listed in Table 1. All the experiments are carried out on the
workstation configured with dual cores of Intel Xeon CPU
of E5-2620 @ 2.10GHz (only one core was used) equipped
with Tesla K20c. The time consumption for both CPU and
differentGPU is listed inTable 2 togetherwith its speedup.All
the time consumption is calculated by the statistical average
of fifty times. The computation between CPU and GPU is
expressed in root mean square error (RMSE) by RMSE =

√∑((𝑥CPU − 𝑥GPU)
2
/𝑁), where𝑁 stands for the total number

of values; 𝑥CPU and 𝑥GPU stand for CPU results and GPU
results, respectively. The RMSEs are listed in Table 3. The
speedup in Table 2 shows that the acceleration strategy
applied here can improve the performance greatly with GPU
while Table 3 indicates that the numerical differences can be
ignored.

3.2. Reconstruction Verifications. The reconstruction algo-
rithm proposed in this paper is composed of𝐷

𝑗
𝑓,𝐷𝑇
𝑗
𝑓,𝑊𝑓,

𝑊
𝑇
𝑓, and a few vector additions and comparisons. In this

subsection, reconstruction using both simulation data and
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real CT projections is carried out. The goal is to test the
performance of the entire routine of the new algorithm and
the image reconstruction quality. For the reconstruction of
simulation data, the above data set of situation 2 in Section 3.1
is utilized. Its scanning configuration is the same as that in
Section 3.1. For the real data reconstruction, projections of a
medical head phantom are acquired with the cone-beam CT
system which mainly consists of a flat panel detector (Var-
ian4030E, USA) and an X-ray source (Hawkeye 130, Thales,
France).The distance between source and the rotation axis of
scanner is 678mm and the distance between source and the
detector is 1610mm. The detector bin has a size of 0.508mm
× 0.508mm. The projection size is 768 pixels × 432 pixels ×
72 views.The size of reconstruction image is 384 voxels × 384
voxels× 216 voxels with 0.214mm× 0.214mm× 0.214mmper
voxel.

In the reconstructions, the proposed algorithm is com-
pared with FDK algorithm and the adaptive-steepest-
descent-POCS (ASD-POCS) [3] algorithm. The parameters
of the new method are empirically chosen as 𝜏 = 1, 𝜌 = 1,
and 𝜆 = 1. The parameters of ASD-POCS are the same as
those in [3]. The iteration number of both simulation and
real data reconstruction is 100.The simulation reconstruction
results are shown in Figure 2, where a 3D slice of 𝑧 = 31, 𝑦 =

128, and 𝑥 = 128 is presented. The RMSEs for ASD-POCS
and the proposed method for simulation reconstruction
are listed in Table 4. The convergence behavior of the new
method for simulation is drawn in Figure 3.The real CT data
experiments use 72 equally angular views. Reconstructions
of the FDK, ASD-POCS, and the new method are shown in
Figure 4.

The reconstruction results of FDK algorithm in Figures 2
and 4 suffer from streak artifacts so severely that the useful
and detail structures are degraded or even lost. Therefore,
the FDK reconstructions from 36 or 72 views can hardly
be put into practical use. The ASD-POCS and the proposed
algorithms provide satisfying image quality. The reconstruc-
tion results of these two methods do not show visible
differences. Meanwhile, the RMSEs behavior of the new
method in Figure 3 shows a robust convergence. The time
consumptions for each reconstruction are listed in Table 5.
From this table, it can be seen that the GPU device plays the
key role for improving the reconstruction performance, and
the acceleration ratio of the new method for GPU compared
with CPU is about 106 for simulation and 120 for real data
reconstruction, respectively. The reconstruction qualities of
the proposed algorithm for simulation data and real data
are both satisfying and are potential to be put into practical
use.

4. Discussion and Conclusion

Reconstruction performance is an important issue and its
acceleration is of crucial significance for iterative algorithms
and this paper try to do some related work. This paper
has proposed a GPU based alternating direction reconstruc-
tion method for cone-beam CT imaging. The new method
utilizes a local point linearization and proximity strategy

Table 4: RMSEs for two reconstruction algorithms.

20 40 60 80 100
ASD-POCS 0.1301 0.0150 0.0082 0.0058 0.0037
New method 0.1000 0.0102 0.0055 0.0045 0.0028

Table 5: Running time for simulation and real data experiments of
the new algorithm.

New method
on CPU

New method
on GPU

Acceleration
Ratio

Simulation data 72114 seconds 681 seconds 105.89

Real data 3.733𝐸 + 5

seconds 3114 seconds 119.88

which avoids the calculation of pseudoinverse of matrix.
The proximal process applied in the new algorithm makes
it efficient and applicable for CBCT reconstruction using the
ADM routine. Although the new method utilizes an approx-
imate or inexact strategy to tackle the 𝑓 subproblem, the
reconstructions in both simulation and real data experiments
show a robust convergence property. In fact, the augmented
Lagrangian function (5) is expected to be minimized by solv-
ing 𝑓 subproblem and 𝑧 subproblem alternately. Therefore,
solving these two subproblems accurately at each sweep may
be unnecessary.

Furthermore, the advantages for the inexact strategy are
not only avoiding the pseudoinverse computation, but also
making the reconstructions able to efficiently be launched on
GPU cardswhich is a key to improve the overall performance.
Each calculation of the subproblems has some computation
parts that can be executed in parallel on GPU cards, and
the acceleration ratio for these parts can be rather high. The
most important matter focuses on accelerating the most time
consumption parts which will make an outstanding improve-
ment. For the entire algorithm, the acceleration ratio is a little
lower than that of each part which is mainly due to the serial
computation parts running on CPU.The results in the recon-
struction experiments show a considerable acceleration for
the new algorithm while the reconstruction qualities are well
kept.

The new algorithm applies a highly efficient technique
to settle the difficulties faced by ADTVM in cone-beam
imaging. Actually, the technique utilized in this paper is
ingenious but necessary. The proximal method has no influ-
ence on the convergence of the algorithm. It is robust and
its 3D reconstructions are both accurate and fast. Although
the application presented here is circular cone-beam CT, it
is clear that this algorithm and its GPU acceleration can
be applied to other tomographic imaging modalities with
linear system models. Future work will focus on further
improving and optimizing the acceleration efficiency, so that
the algorithm can be more practical for actual scanning
systems.
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This paper
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Figure 2: Digital phantom and the reconstructions for simulation data. The first column in the left is the phantom of 3D Moby mouse and
the second, third, and fourth columns are the reconstructions of FDK, ASD-POCS, and the GPU accelerated new method. From the top row
to the bottom row, there are slices of 𝑧 = 31, 𝑦 = 128, and 𝑥 = 128 in phantom and the reconstructions.
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Figure 3: RMSEs versus iteration number for two algorithms.
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FDK

(a)

ASD-POCS

(b)

This paper (GPU)

(c)

Figure 4: The reconstructions of real CT data experiments. The first, second, and third columns from the left to the right are results of FDK,
ASD-POCS, and the GPU accelerated new method. From the top to the bottom row, there are results of slices of median sagittal section,
central coronal section, and central transverse section.
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