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An analytical model for predicting the stress distributions within single-lap adhesively bonded beams under tension is presented
in this paper. By combining the governing equations of each adherend with the joint kinematics, the overall system of governing
equations can be obtained. Both the adherends and the adhesive are assumed to be under plane strain condition. With suitable
boundary conditions, the stress distribution of the adhesive in the longitudinal direction is determined.

1. Introduction

The use of adhesively bonded joint, which uses metallic,
composite, and ceramic materials, is of great interest to
many industrial sectors including aerospace, automotive,
marine, machine tools, package, and appliance industries.
This widespread use of adhesive joints is due to ease of
application, time and cost savings, high corrosion and fatigue
resistance, crack retardance, and good damping characteris-
tics [1–3].

Any joint occurring in practice is designed to carry a
given set of loads. Most of the adherends are loaded in
tension. The subsequent loads on the adhesive are then a
function of the geometry of the joint. Under most operating
loads and environmental conditions, the adherends behave in
a linearly elastic manner. However, the adhesive may exhibit
viscoelastic or nonlinear behaviour. The exact analytical
solution to the problem of stress distributions in the bonded
area is complex. The existing analytical studies are, therefore,
based on certain simplifying assumptions with regard to the
modelling of the adhesive and adherends.

In Volkersen’s shear-lag analysis, it was assumed that the
adhesive deforms only in shear, while the adherend deformed
only in tension [4]. The consequences of the rotation of
the adherends were first taken into account by Goland and
Reissner [5]. The authors derived equations to evaluate the

shearing and normal stresses in the bond layer as well
as those in the jointed plates, assuming that the peel and
shear stresses were constants across the adhesive thickness.
In Cornell’s work [6], a variation and extension of Goland
and Reissner’s method were presented for determining the
stresses in adhesive lap joints. The author assumed that the
two lap joint plates act like simple beam and the more elastic
adhesive layer is an infinite number of shear and tension
springs. Differential equations were set up which describe the
transfer of the load in one beam through the springs to the
other beam. From the solution of these differential equations
a fairly complete analysis of the stresses in the lap joint was
obtained.

Ojalvo and Eidinoff [7] presented results of an analytical
investigation on the influence of bond thickness upon the
stress distribution in single adhesive lap joints. The work
extended the basic approach for bonded joints, originally
introduced by Goland and Reissner, through the use of a
more complete shear-strain/displacement equation for the
adhesive layer. The work uncovers several interesting phe-
nomena without adding any significant complication to the
analysis. Delale et al. [8] analyzed a general plane strain
problemof adhesively bonded structureswhich consist of two
different orthotropic adherends. Both the transverse shear
stress effects in the adherends and the in-plane normal strain
in the adhesive were taken into account. The solution was
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Figure 1: Coordinate system.

obtained by assuming linear stress-strain relations for the
adhesive. The peak values of the shear as well as those of
the normal stress in the adhesive were found to be at the
edges of the overlap region. Rossettos et al. [9] established
the governing equations for a step lap joint with a void
using a modified shear-lag model, where the adhesive can
have extensional as well as shear deformations. The model
considers quadratic axial deformation across the adhesive
thickness.

The objective of this work is to present an analytical
model for predicting the stress distributions within a single-
lap adhesively bonded beam under tension. This model is a
development of the shear-lag analysismodel of Volkersen [4].
The derivations are similar to those of Goland and Reissner
[5] but the geometry employed is different. By combining
the governing equations of each adherend with the joint
kinematics, the overall system of governing equations can be
obtained. Both the adherends and the adhesive are assumed
to be under plane strain condition, and the adhesive stresses
are assumed to be uniform across the thickness.With suitable
boundary conditions, the stress distribution of the adhesive in
the longitudinal direction is determined.

2. Formulation of the Problem

Figure 1 shows the coordinate system used in this study; 𝑥
and 𝑧 are coordinates, while 𝑢 and𝑤 represent displacements.
A single-lap-jointed beam is shown in Figure 2. The joint
length is 2𝑐. The two adherends are considered to be of equal
thickness 𝑡 and equal length (𝑙 + 2𝑐). Two points 𝑎 and 𝑏 are
the points at the centre of two free edge of the single-lap-
jointed beam. The adhesive thickness is 𝜂. The joint width is
assumed to be large compared with the adherend thickness.
If the system is now loaded by tensile forces 𝑇 per unit of
adherend width at the points 𝑎 and 𝑏, the line of action of
the forces will be 𝑎𝑜𝑏.

For studying the system deformation, two coordinate
systems (𝑥

1
, 𝑧
1
) and (𝑥

2
, 𝑧
2
) are introduced in Figure 2.

The first system is used to analyze the behavior of the left-
hand adherend under load. The coordinate 𝑥

1
has its origin

at the point 𝑎, extends along the longitudinal axis of the

adherend, and is positive to the right.𝑤
1
represents transverse

deformation of the adherend from the unloaded condition
and is positive upwards. A similar definition is taken for
(𝑥
2
, 𝑧
2
) with reference to the joint.

If 𝑀
1
is equal to the bending moment in the adherend

at station 𝑥
1
and 𝑀

2
is equal to the moment in the joint at

station 𝑥
2
, each per unit of width, then

𝑀
1
= 𝑇 [tan𝛼

𝑛
𝑥
1
− 𝑤
1
] (0 ≤ 𝑥

1
≤ 𝑙) ,

𝑀
2
= 𝑇 [tan𝛼

𝑛
(𝑙 + 𝑥

2
) − 𝑤
2
−

𝑡 + 𝜂

2

] (0 ≤ 𝑥
2
≤ 𝑐) ,

(1)

where

tan𝛼
𝑛
=

(𝑡 + 𝜂) /2

𝑙 + 𝑐

. (2)

As 𝜂 ≪ 𝑡 and 𝑡 ≪ 𝑙, (1) then reduce to the simplified forms
by using Taylor series:

𝑀
1
= 𝑇 [𝛼

𝑛
𝑥
1
− 𝑤
1
] (0 ≤ 𝑥

1
≤ 𝑙) ,

𝑀
2
= 𝑇 [𝛼

𝑛
(𝑙 + 𝑥

2
) − 𝑤
2
−

𝑡

2

] (0 ≤ 𝑥
2
≤ 𝑐) .

(3)

As for deformations 𝑤
1
and 𝑤

2
, we have

𝑑
2
𝑤
1

𝑑𝑥
2

1

= −

𝑀
1

𝐷
1

,

𝑑
2
𝑤
2

𝑑𝑥
2

2

= −

𝑀
2

𝐷
2

,

(4)

where 𝐷
1
and 𝐷

2
are the flexural rigidities of the adherend

and joint, respectively.
From (3) and (4), we have

𝑑
2
𝑤
1

𝑑𝑥
2

1

= −

𝑇

𝐷
1

[𝛼
𝑛
𝑥
1
− 𝑤
1
] (0 ≤ 𝑥

1
≤ 𝑙) , (5)

𝑑
2
𝑤
2

𝑑𝑥
2

2

= −

𝑇

𝐷
2

[𝛼
𝑛
(𝑙 + 𝑥

2
) − 𝑤
2
−

𝑡

2

] (0 ≤ 𝑥
2
≤ 𝑐) . (6)

From the four boundary conditions

at 𝑥
1
= 0, 𝑤

1
= 0,

at 𝑥
1
= 𝑙, 𝑥

2
= 0, 𝑤

1
= 𝑤
2
,

at 𝑥
1
= 𝑙, 𝑥

2
= 0,

𝑑𝑤
1

𝑑𝑥
1

=

𝑑𝑤
2

𝑑𝑥
2

,

at 𝑥
2
= 𝑐, 𝑤

2
= 0.

(7)

The two preceding equations (5) and (6) have solutions of the
form

𝑤
1
= 𝐴
1
cosh 𝑏

1
𝑥
1
+ 𝐵
1
sinh 𝑏

1
𝑥
1
+ 𝛼
𝑛
𝑥
1

(0 ≤ 𝑥
1
≤ 𝑙) ,

𝑤
2
= 𝐴
2
cosh 𝑏

2
𝑥
2
+ 𝐵
2
sinh 𝑏

2
𝑥
2
+ 𝛼
𝑛
(𝑙 + 𝑥

2
−

𝑡

2

)

(0 ≤ 𝑥
2
≤ 𝑐) ,

(8)
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Figure 2: A single-lap-jointed beam.

where [5]

𝐴
1
=

− (𝑡/2) sinh (𝑏
2
𝑐)

sinh (𝑏
1
𝑙) cosh (𝑏

2
𝑐) + (𝑏

2
/𝑏
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) sinh (𝑏

1
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2
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,
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1
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,
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2
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2
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2
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2
/𝑏
1
) cosh (𝑏

1
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,

𝑏
2

1
=

𝑇

𝐷
1

,

𝑏
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2
=

𝑇

𝐷
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.

(9)

3. Stress Distributions in the Adhesive Layer

Figure 3 shows elements of the upper and lower adherends.
𝑀, 𝑉, and 𝑇 are the bending moments, vertical shear,
and axial tension in the adherends. The subscripts 𝑢 and
𝑙 designate quantities pertaining to the upper and lower
adherend, respectively. 𝜎

0
and 𝜏
0
are the transverse normal

stress and the shear stress, respectively.
The conditions of moment equilibrium for the elements

of the adherends are

𝑑𝑀
𝑢

𝑑𝑥

− 𝑉
𝑢
+ 𝜏
0

𝑡

2

= 0,

𝑑𝑀
𝑙

𝑑𝑥

− 𝑉
𝑙
+ 𝜏
0

𝑡

2

= 0.

(10)

The conditions of horizontal force equilibrium are

𝑑𝑇
𝑢

𝑑𝑥

− 𝜏
0
= 0,

𝑑𝑇
𝑙

𝑑𝑥

+ 𝜏
0
= 0.

(11)

The conditions of vertical force equilibrium for the
elements of the adherends are

𝑑𝑉
𝑢

𝑑𝑥

− 𝜎
0
= 0,

𝑑𝑉
𝑙

𝑑𝑥

+ 𝜎
0
= 0.

(12)

The transverse deflections of the upper and lower
adherends are denoted by ]

𝑢
and ]

𝑙
, respectively, both

measured positively upward.Then the thin plate theory gives

𝑑
2V
𝑢

𝑑𝑥
2
= −

𝑀
𝑢

𝐷
1

,

𝑑
2V
𝑙

𝑑𝑥
2
= −

𝑀
𝑙

𝐷
1

,

with 𝐷
1
=

𝐸𝑡
3

12 (1 − ]2)
,

(13)

where 𝐸 and ] are Young’s modulus and Poisson’s ratio of
adherends, respectively. 𝐷

1
refers to the flexural rigidity of

the adherends.
The longitudinal displacements of the adherend at the

adherend boundaries adjacent to the adhesive are denoted by
𝑢
𝑢
and 𝑢

𝑙
. Then from the stress-strain relations

𝑑𝑢
𝑢

𝑑𝑥

=

1

𝐸

(

𝑇
𝑢

𝑡

− 6

𝑀
𝑢

𝑡
2
) ,

𝑑𝑢
𝑙

𝑑𝑥

=

1

𝐸

(

𝑇
𝑙

𝑡

+ 6

𝑀
𝑙

𝑡
2
) .

(14)

Let 𝐸
𝑎𝑑

and 𝐺
𝑎𝑑

refer to Young’s and shear moduli,
respectively, of the adhesive material; then

𝜏
0

𝐺
𝑎𝑑

=

𝑢
𝑢
− 𝑢
𝑙

𝜂

,

𝜎
0

𝐸
𝑎𝑑

=

V
𝑢
− V
𝑙

𝜂

.

(15)

Combining equations from (10) to (14) and differentiating
equation (15) we have

𝑑
3
𝜏
0

𝑑𝑥
3
−

8𝐺
𝑎𝑑

𝐸𝑡𝜂

𝑑𝜏
0

𝑑𝑥

= 0, (16)

𝑑
4
𝜎
0

𝑑𝑥
4
+

24 (1 − ]2) 𝐸
𝑎𝑑

𝐸𝑡
3
𝜂

𝜎
0
= 0. (17)
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Figure 3: Free body diagram of joint with adhesive layer.

The boundary conditions can be written as

at 𝑥 = 𝑐, 𝑀
𝑢
= 𝑇
𝑢
= 𝑉
𝑢
= 0,

𝑀
𝑙
= 𝑀
0
, 𝑉

𝑙
= 𝑉
0
, 𝑇

𝑙
= 𝑇,

at 𝑥 = −𝑐, 𝑀
𝑙
= 𝑇
𝑙
= 𝑉
𝑙
= 0,

𝑀
𝑢
= −𝑀

0
, 𝑉

𝑢
= 𝑉
0
, 𝑇

𝑢
= 𝑇.

(18)

From (8) and (9) we have

𝑀
0
= (𝑀
1
)
𝑥
1
=𝑙
= −𝐷
1
(

𝑑
2
𝑤
1

𝑑𝑥
2

1

)

𝑥
1
=𝑙

= 𝑘

𝑇𝑡

2

,

𝑉
0
= (

𝑑𝑀
1

𝑑𝑥
1

)

𝑥
1
=𝑙

= 𝑘𝑇[3 (1 − ]2)
𝑇

𝐸𝑡

]

1/2

,

𝑘 =

sinh (𝑏
1
𝑙) cosh (𝑏

2
𝑐)

sinh (𝑏
1
𝑙) cosh (𝑏

2
𝑐) + (𝑏

1
/𝑏
2
) cosh (𝑏

1
𝑙) sinh (𝑏

2
𝑐)

.

(19)

On the basis of the differential equations (16) and (17) and
the boundary conditions, the distributions of 𝜎

0
and 𝜏
0
in the

adhesive are obtained in the form

𝜎
0
=

𝑝𝑡
2

Δ𝑐
2
[(𝑅
2
𝜆
2 𝑘

2

+ 𝜆𝑘
 cosh 𝜆 cos 𝜆) cosh 𝜆𝑥

𝑐

cos 𝜆𝑥
𝑐

+(𝑅
1
𝜆
2 𝑘

2

+ 𝜆𝑘
 sinh 𝜆 sin 𝜆) sinh 𝜆𝑥

𝑐

sin 𝜆𝑥
𝑐

]

𝜏
0
= −

𝑝𝑡

8𝑐

[

𝛽𝑐

𝑡

(1 + 3𝑘)

cosh (𝛽𝑥/𝑡)
sinh (𝛽𝑐/𝑡)

+ 3 (1 − 𝑘)] ,

(20)

where

𝜆 = 𝛾

𝑐

𝑡

, 𝛾
4
= 6

𝐸
𝑎𝑑

𝐸

𝑡

𝜂

, 𝛽
2
= 8

𝐺
𝑎𝑑

𝐸

𝑡

𝜂

,

𝑅
1
= cosh 𝜆 sin 𝜆 + sinh 𝜆 cos 𝜆,

𝑅
2
= sinh 𝜆 cos 𝜆 − cosh 𝜆 sin 𝜆,

Δ =

1

2

(sinh 2𝜆 + sin 2𝜆) , 𝑘 =

2𝑀
0

𝑝𝑡
2
, 𝑘

=

𝑉
0
𝑐

𝑝𝑡
2
,

𝑏
1
= 2[

3𝑝 (1 − ]2)

𝐸𝑡
2

]

1/2

, 𝑏
2
=

𝑏
1

2√2

.

(21)

If the materials and the thickness of the adherends are
different, then (17) may become a 7th order differential
equation. It is obvious that the analytical model is very
complex and only the stress distributions of the adhesive
in the longitudinal direction are determined. In addition,
the adhesive stresses actually are not uniform across the
thickness. In other words, the simplifications have restricted
the results. Usually, when we consider different boundary
conditions by a closed-form analysis, the limitation is how
tractable a realisticmathematicalmodel is within an algebraic
solution. To overcome this limitation, the finite element
analysis (FEA) technique can be employed.

4. Summary

An analytical model was presented for predicting the stress
distributions within a single-lap adhesively bonded beam
under tension. By combining the governing equations of each
adherend with the joint kinematics, the overall system of
governing equations can be obtained. Both the adherends and
the adhesive are assumed to be under plane strain condition,
and the adhesive stresses are assumed to be uniform across
the thickness. With suitable boundary conditions, the stress
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distribution of the adhesive in the longitudinal direction is
determined.
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