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The aim of this paper is to present some coincidence and common fixed point results for generalized (v, ¢)-contractive mappings
using partially weakly G-a-admissibility in the setup of G-metric space. As an application of our results, periodic points of weakly
contractive mappings are obtained. We also derive certain new coincidence point and common fixed point theorems in partially
ordered G-metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results.

1. Introduction and Mathematical
Preliminaries

The concept of a generalized metric space, or a G-metric
space, was introduced by Mustafa and Sims [1]. In recent
years, many authors have obtained different fixed point the-
orems for mappings satisfying various contractive conditions
on G-metric spaces. For a survey of fixed point theory,
its applications, different contractive conditions, and related
topics in G-metric spaces we refer the reader to [1-33] and the
references mentioned therein.

Recall that very recently Samet et al. [33] and Jleli and
Samet [22] proved that several results in G-metric spaces
can be deduced from the usual one. Later on, Agarwal and
Karapnar [23] and Asadi et al. [25] suggested some new
contraction mapping type to fail the approaches in [22, 33].

Definition 1 (G-metric space [1]). Let X be a nonempty set
andlet G : X — R be a function satisfying the following
properties:

(G]) G(x, y,2) =0ifx =y =z;
(G2) 0 < G(x,x, y), forall x, y € X with x # y;

(G3) G(x,x, y) <G(x, y,z), forall x, y,z € X with y # z;

(G4) G(x, y,2) = G(x,2,y) = G(y,2,x) = --- (symmetry
in all three variables);

(G5) G(x, y,2) < G(x,a,a)+G(a, y,z),forallx, y,z,a € X
(rectangle inequality).

Then, the function G is called a G-metric on X and the
pair (X, G) is called a G-metric space.

Definition 2 (see [1]). Let (X, G) be a G-metric space and let
{x,} be a sequence of points of X. A point x € X is said to be
the limit of the sequence {x,} if lim,, ,, , ,,G(x, x,,, x,,,) = 0.
In this case, one says that the sequence {x,} is G-convergent
to x. Thus, if x, — x in a G-metric space (X,G), then,
for any ¢ > 0, there exists a positive integer N such that
G(x,x,,x,,,) < & forallm,m > N.

Definition 3 (see [1]). Let (X,G) be a G-metric space. A
sequence {x,} is called G-Cauchy if for every ¢ > 0, there
is a positive integer N such that G(x,,, x,,,, x;) < ¢, for all n, m,
I > N; that is, if G(x,,, x,,,, x;) — 0,asn,m,l — oo.

Lemma 4 (see [1]). Let (X, G) be a G-metric space. Then, the
following are equivalent:

(1) {x,} is G-convergent to x;

(2) G(x,, x,,x) = 0,asn — 00;
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(3) G(x,, x,x) — 0,asn — ©0;

(4) G(x,,,x,,x) — 0,asm,n — 0.

Lemma 5 (see [34]). If (X, G) is a G-metric space, then {x,}
is a G-Cauchy sequence if and only if for every € > 0, there
exists a positive integer N such that G(x,,, x,,,, x,,) < &, for all
m>n>N.

Definition 6 (see [1]). A G-metric space (X, G) is said to be
G-complete (or complete G-metric space) if every G-Cauchy
sequence in (X, G) is G-convergent in X.

Proposition 7 (see [1]). Let X be a G-metric space. Then for
each x, y,z,a € X it follows that

(1) ifG(x, y,2) =0thenx = y = z,
(2) G(x, y,2) < G(x,x, ) + G(x, x, 2),
(3) G(x, y, y) <2G(y, x, x),

(4) G(x, y,2) < G(x,a,z) + G(a, y, 2).

Definition 8 (see [1]). Let (X, G) and (X ', G') be two G-metric
spaces. Then a function f : X — X' is G-continuous at a
point x € X if and only if it is G-sequentially continuous at
x; that is, whenever {x,} is G-convergent to x, { f (x,)} is G-
convergent to f(x).

The concept of an altering distance function was intro-
duced by Khan et al. [35] as follows.

Definition 9. The function v : [0,00) — [0,00) is called
an altering distance function, if the following properties are
satisfied.

(1) y is continuous and nondecreasing.

(2) y(t) = 0ifand only if t = 0.

Samet et al. [36] defined the notion of a-admissible
mappings in the framework of metric spaces as follows.

Definition 10. Let T be a self-mapping on X and let & : X x
X — [0,00) be a function. We say that T is an a-admissible
mapping if

xyeX, a(xy)=21= a(Tx,Ty)>1. (1)
For more details on a-admissible mappings we refer the
reader to [37-39].

Definition 11 (see [40]). Let (X,G) be a G-metric space and
let f be a self-mapping on X and let a : X> — [0, 00) be a
function. We say that f is a G-a-admissible mapping if

a(x,y,2) 21 = a(fx, fy, fz) 21. (2)

Definition 12. Let X be an arbitrary set, ¢ : X X X x X —
[0,00), and f : X — X. A mapping f is called an a-
dominating map on X if a(x, fx, fx) > 1 or a(x, x, fx) > 1
for each x in X.

x, ¥,z € X,
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Example 13. Let X = [0,1]. Let f : X — X be defined by
fx = x"andleta : X x X x X — [0,00) be defined by
a(x, y,2) = y+z—2x+ 1. Then, x < x> = fxforall x € X.
That is, 2x'/* — 2x + 1 > 1. Thus, f is an a-dominating map.

Definition 14. Let (X, G) be a G-metric space. We say that X
is ae-regular if and only if the following hypothesis holds.
For any sequence {x,} in X with &(x,, X, X,.2)
such that x, — zasn — o0, it follows that a(x,, z, z)
ora(z,x,,z) = lora(z,z,x,) > 1, foralln e N.

1
1

\Vi \Y]

Definition 15. Let X be asetand let f,g: X — X be given
mappings. We say that the pair (f, g) is partially weakly G-a-
admissible if and only if «( fx, gfx, gfx) > 1 forall x € X.

Let X be a nonempty set and f : X — X a given
mapping. For every x € X, let f_l(x) ={ueX| fu=x}

Definition 16. Let X be a set and let f,g,R : X — X be
given mappings. We say that the pair ( f, g) is partially weakly
G-a-admissible with respect to R if and only if for all x € X,
«(fx, gy, gy) = 1, where y € R™'(fx).

If f = g, we say that f is partially weakly G-«-admissible
with respect to R.

If R = Iy (the identity mapping on X), then the previous
definition reduces to the partially weakly G-a-admissible
pair.

Following is an example of mappings f, g, h, R, S,
and T for which ordered pairs (f, g), (g,h), and (h, f) are
partially weakly G-a-admissible with respect to R, S, and T,
respectively.

Example 17 Let X =
_f)g)h)R>S7T:X - be

[0,00). We define functions

£ x, 0<x<1, ) Vx, 0<x<1,
X) = X) =
1, 1<x<o00, 9 1, 1<x<o00,
xz, 0<x<1,
h(x) =
1, 1<x<o00,
3
, 0<x<1, vJx, 0<x<1,
Rix)=1{" x s = 1 V% X
1, 1 <x < o0, 1, 1<x<o00,
Jx, 0<x<1,
T = |V 05%
1, 1< x<o0.
(3)

Also,leta(x, y,z) = 1+sinh_1(\3/y +z-2x/1+(x+y+ 2)h).
Jungck in [41] introduced the following definition.

Definition 18 (see [42]). Let (X, G) be a G-metric space and
let f,g : X — X.The pair (f, g) is said to be compatible if
and only if lim,, _,  G(fgx,, fgx,, gfx,) = 0, whenever {x,}
is a sequence in X such that lim, _, . fx,, = lim,, , gx, =t
for some t € X.



The Scientific World Journal

The aim of this paper is to prove some coincidence and
common fixed point theorems for nonlinear weakly (v, ¢)-
contractive mappings (f,g), (g,h), and (h, f) which are
partially weakly «-admissible with respect to R, S, and T,
respectively, in a G-metric space.

2. Main Results

Let (X, G) be a metric space and let f,g,h,R,S,T : X —
X be six self-mappings. In the rest of this paper, unless
otherwise stated, for all x, y,z € X, let

M (x, y,2)
€ {G (Tx,Ry, Sz),

G(Tx, gy, gy) + G (Ry, hz,hz) + G (Sz, fx, fx)
6 bl

G(Tx,Tx, gy) + G(Ry, Ry, hz) + G(Sz, Sz, fx)
6 bl

G (Tx, fx, fx) + G (Ry, gy, gy) + G(Sz, Sz, hz)
6 bl

G(Tx,Tx, fx) + G(Ry,Ry, gy) + G (Sz, hz, hz) }

6
(4)

From now on, let o : X> — [0, 00) be a function having the
following property:

Ifa(x,y,y) >1and a(y,z,w) > 1, then a(x, y,w) > 1.
©)
For example, one can take « [0,00)° —
alx, y,z) = eV,
Our first result is the following.

[0,00) by

Theorem 19. Let (X, G) be a G-complete G-metric space. Let
£9,hRS,T : X — X be six mappings such that f(X) <
R(X), g(X) € S(X), and h(X) € T(X). Suppose that, for every
three elements x, y, and z with a(Tx, Ry, Sz) > 1, one has

v (G (fx,gy.hz)) <y (M (x,y,2)) -9 (M (x, y,2)), (6)

where y, @ : [0,00) — [0, 00) are altering distance functions.
Let f, g, b, R, S, and T be continuous, the pairs (f,T), (g, R),
and (h,S) compatible, and the pairs (f, g), (g, h), and (h, f)
partially weakly «-admissible with respect to R, S, and T,
respectively. Then, the pairs (f,T), (g,R), and (h,S) have a
coincidence point z in X. Moreover, if a(T'z, Rz, Sz) > 1, then
z is a coincidence point of f, g, h, R, S, and T.

Proof. Let x, € X be an arbitrary point. Since f(X) < R(X),
we can choose x; € X such that fx;, = Rx;. Since g(X) <
S(X), we can choose x, € X such that gx; = Sx,. Also, as
h(X) ¢ T(X), we can choose x5 € X such that hx, = Tx;.

Continuing this process, we can construct a sequence {z,,}
defined by

z3n+1 = Rx3n+1 = fx3n’
Z3p4 = SX3p40 = GX3ui1s (7)
Zans = T3 = Xy

foralln > 0.

Now, since x, € R'(fx,), x, € S '(gx,), and x; ¢
T"l(hxz) and (f, g), (g, h), and (h, f) are partially weakly «-
admissible with respect to R, S, and T, respectively, we obtain
that

a (fxg = Rxy, gx; = Sx5, g% = Sx,) = 1,
a (gx; = Sxy, hxy = Txy, hx, = Txs) 2 1, (8)
o« (hx, = Txs, fx; = Rx,, fx; = Rx,) > 1.
Continuing this process, from (5), we get
o (T3 RX30,,15 SX30,2) 2 1 €)

forallm € N.

Define Gy, = G(2, 241> Zk42)- Suppose Gy, = 0, for some
ko. Then, z; = 2 = ez In the case that k, = 3#n, then
Z3n = Zagr1 = Zansa 8IVES Zanp) = Zapyg = Zapes- Indeed,

V(G (230415 Zans2> Z3ne3))
= Y (G (X3 9X3001> WX342))

S Y (M (X3 X311 X342)) = @ (M (X35 X33415 X342)) -

(10)
If
M (X3 X301 X3p42) = G (T30 RX3041,SX312) - (11)
then
M (X3 X301 X3n42) = G (23> Zana1> Z3me2) = 0. (12)
Thus,

V(G (230115 Znsz> Z3na3)) < ¥ (0) — 9 (0), (13)

which implies that z;,,,, = 23,,5 = Z343-

Analogously, for other values of M (x5, X3,,1> X3,42)> We
can get this result.

Similarly, if k, = 3n + 1, then z3,,,; = 23,,,, = 23,3 gives
Zapsa = Zapes = Zapsa- Also,ifky = 3n+2,thenz;,,, = 25,3 =
Zapeq implies that zs, » = 25,4 = 23,,,5. Consequently, zy, isa
coincidence point of the pairs (£, T), (g, R), and (h, S). Indeed,
let k, = 3n. Then, we know that z5, = 25,,1 = 23,12 = Z3,43-

So,

23, = Txs, = hX3, g = 23,4 = Rxg,01 = fX3,

= Zaua2 = SXapa2 = GX3na1 = Zapes = 1 X303 = MXg
(14)



This means that T(x5,) = f(x3,), R(x3,.1) = g(X3,41)>
and 8(x3,,,,) = h(x3,,,,)-

On the other hand, the pairs (f,T), (g,R), and (h,S)
are compatible. So, they are weakly compatible. Hence,
JT(x3,) = Tf (x3,), GR(x3,41) = RG(x3,,,1), and hS(x3,,,,) =
Sh(Xs,,,,) or, equivalently, fzs, = Tz, 923001 = R2Zapins
and hz;,,,; = S2343.

Now, since 23, = Z3,,] = Zapsz = Zaps3> We have fz, =
Tzs,, 923, = Rz;,, and hz;, = Sz,,,.

In the other cases, when k, = 3n+1 (k, = 3n+2), similarly,
one can show that z5, ., (23,,,) is a coincidence point of the
pairs (£, 1), (g, R), and (h, S).

So, suppose that

Gy = G (21 Zs1 Zkaz) > 0 (15)

for each k; that is, z; # z,, for each k.
We complete the proof in three steps as follows.

Step 1. We will prove that lim _, . G(2, Zis 15 Zk41) = 0.
Since a(T'x3,, Rx3,,1,Sx3,,,) = 1, using (6), we obtain
that

V(G (23415 Zanras Z3ns3))
= Y (G (fX3 9%3115 hX3045))
S Y (M (X3 X311 X342)) = @ (M (X3 X3,0115 X342))

S Y (M (X3 X315 X3042)) -

(16)
Since v is a nondecreasing function, we get that
G (23041 Zans2> Z3ne3) S M (X3 X1 X342 - 17)
If M(%3,5 X315 X3n42) = G(T%3, R340, Sx3,45)5 then
(17) becomes
G (23041 Z3ns2> Z3n43) < G (23 Zape 1> Zanea) - (18)
If

M (x3n’ X3n+1> x3n+2)
= (G (T3 GX3p11> GX3n1) + G (RX3001 hX405 X305
+ G (SX3425 [X3 [X3,)) 16

(19)
then, from (G3) and (G4) in Definition 1,
M (X3 X301 X3142)
= (G (23m Z3ps2> Z3m2) + G (Z3mi1> Zanez> Zames)
+ G (23002 Zane 1> Zans1)) 16 (20)

< (G (23w Z3ns15 Z3ns2) + G (23115 Z3ns2s Z3n43)

+ G (23415 Z3ns2> Zans3)) 165

and then (17) will be

G (Z311> Z3n12 Z3nv3) < G (Zaps Zanat> Zanea) - (21
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If
M (x3n’ X3n+1> x3n+2)

= (G (T3 T3 GX311) + G (R3115 R340, HX3005)

+ G (X342, X342 [X3,)) 165
(22)

then, again from (G3) and (G4),
M (X3 X301 X3042)
= (G (23n Z3n Zans2) + G (230415 Z3me1> Zanes)
+ G (23420 Z3me2 Zane1)) /6
< (G (23 23120 Z3n2) + G (Zane1> Zane3o Zanes) - (23)
+ G (23042 Z3ns1> Zane1)) /3
< (G (23 Z3nr1> Z3ns2) + G (Zane1> Z3na2 Zanas)
+ G (23001 Z3n42 Zane3)) /35
and then (17) becomes
G (Z3n01> Z3n42> Z3me3) < G (23> Z3me1> Zanez) - (24)
If
M (X3 X341 X342)
= (G (T3> X3 fx30) + G (RX3115 GX301 GX3p41)

+ G (%3425 SX3405 HX3045)) 16
(25)

then, again from (G3) and (G4),
M (X3 X341> X3p42)
= (G (231 Zans1> Zans1) + G (Z3ne1> Zanaz> Zanez)
+ G (23120 Z3ne2 Zanea)) /6
< (2G (23 23w Z3ne1) + 2G (Z3n41> Zane1> Zana2) (26)
+2G (23420 Z3nme3 Zane3)) /6
< (2G (23 Z3ne1 Zans2) + 2G (23415 Z3me2> Zanes)
+2G (230015 Z3ne2 Z3n43)) 165
and then (17) becomes
G (231415 Z3me2 Z3ne3) < G (23 Zana1> Zanea) - (27)
Finally, if
M (X3 X315 X3p42)
= (G (T3 Txzs fX3) + G (R 15 R¥30415 GX3001)

+ G (X342 hX3405 BX34)) /3
(28)
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then
M (X3 X341 X3p42)
= (G (231 Zan Zane1) + G (Z3ns1> Z3ne1> Z3ne2)
+ G (23120 233 Z3n43)) /6 (29)
< (G (23 Z3ne1> Zane2) + G (230115 Z3me2s Zanes)
+ G (23115 Z3ne2 Zane3)) /6,
and then (17) becomes
G (231> Z3ne2> Z3ns3) < G (23 Zani1> Z3nsn) - (30)

Similarly it can be shown that

G (2342 Z3n43 Z3nsa) < G (Z3p11> Z3ps2s Z3n43) » ()
31
G (23043 Zanas Z3nss) < G (Zna2s Zanrs Zansa) -

Hence, we conclude that {G(zy, 21> Zks2)} 1S @ nonde-
creasing sequence of nonnegative real numbers. Thus, there
isanr > 0 such that

klim G (21 Zps1> Zaa) = 1 (32)
— 00
Reviewing the above argument, from (17), we have

G (230415 23142 Z3n43)
(33)
< M (X35 X35415 X3242) < G (23 Zapi 1> Z3n42) -

In general, we can show that

G (zk+1)zk+2’zk+3) <M (xk’xk+1>xk+2) <G (Zk’ Ze+1> zk+2) .

(34)
Letting k — 00 in (34), we get that
Jim M (Xpo K12 Xpr2) = 7 (35)
— 00

Lettingn — oo and using (6), (35), and the continuity of
y and @, we get y(r) < y(r) — @(r), and hence ¢(r) = 0. This
gives us that

klim G (2> Zis1> Zir2) = 0, (36)
— 00

from our assumptions about ¢. Also, from Definition 1, part
(G3), we have

klim G (Zk, Zki1> Zk+1) =0. (37)
— 00

Step 2. We will show that {z,} is a G-Cauchy sequence in X.
So, we will show that, for every € > 0, there exists k € N such
that, for all m,n > k, G(z,,, z,, 2,,) < &.

Suppose the above statement is false. Then, there exists
& > 0 for which we can find subsequences {2, } and {z;,,)}
of {z;,} such that n(k) > m(k) > k satisfying that

G (Z3m(k)> Zan(hy Zan) = € (38)

and n(k) is the smallest number such that (38) holds; that is,
G (Z3mmy> Zan(k)-1> Z3n)-1) < & (39)

From rectangle inequality,

G (Z3m(k)>z3n(k)+1’ z3n(k)+2) <G (z3m(k)> Z3n(k)-1> Z3n(k)—1)

+G (ZSn(k%l’ Z3n(k)+1> Z3n(k)+2) .
(40)

Hence, in (40), if k — o©o, using (36) and (39), we have

h,fn SUP G (Z3m(k)> Zan(ry+1> Zan(kyr2) < & (41)
— 00

Also,
G (Zsm(k)> Z3n(k)> an(k))
<G (Z3m(k)’ Z3n(k)+1> an(k)+1) +G (Z3n(k)+1’ Z3n(k)> Z3n(k))

<G (Z3m(k)> Z3n(k)+1> zSn(k)+2) +G (Z3n(k)+1’ Z3n(k)> Z3n(k)) .

(42)
Hence, in (42),if k — o0, using (36) and (38), we have
hklr_{ iogf G (Z3m(k)> Zani+1> Zan(iy2) 2 & (43)
On the other hand,
G (23 Z3n(o+2> Zanrz) < G (Zam(e Zanti+1> Zanz) -
(44)
Hence, in (44), if k — 00, from (43), we have
1im sup G (Zam()> Zan(i+2> Zanky 12) < &- (45)

k— oo

Also,
G (z3m(k)’ Z3n(k)> z3n(k))

<G (Zsm(k)> Z3n(k)+2> Z3n(k)+2) +G (an(k)w Z3n(k)> z3n(k)) .
(46)

Hence, in (46), if k — 00, using (36) and (38), we have
11krr_1> iOI}JfG (Z3m(k) Zantoy+2> Zantio+2) 2 & (47)
In a similar way, we have
G (Z3m(k)+1> Z3m(+1> Zan(io+2)
< 2G (Zamg 1> Zan(io+2> Zaniio2)

< 2G (Zamry 115 Zam(k)> Zam) + 2G (Zam(ry Zany+2> Zan(iy+2) -
(48)

Therefore, from (48) by taking limit when k — 00, using
(36) and (45), we get that

li;n SUP G (Zam(ky+ 1> Zamky o1 Zanihye2) < 28 (49)
— 00
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Further, we can obtain that where

M (xSm(k)’ X3n(k)+1> x3n(k)+2)

hin SUP G (Zam(hy+ 1> Zan(i 2> Zanyo2) < 46 € {G (TX30 RX3011> SX3m(iy42) »
— 00

(50) (G (Tx
. 3m(k)> 9X3n(k)+1> gx3n(k)+1)
llm Sup G (ZSrn(k)’ Z3m(k)’ Z3n(k)+2) < 2e.
k— oo + G (R0 415 B30 12> P31 42)

+G (SX300+2> [Xam@ys X3mery)) 165

Also, (G (TxSm(k)’ Tx3m(k)’ gxsn(k)+1)

+ G (R¥300)415 R34 11> P30 42)

lim inf 2G (Z3,(k)> Z3n(ky 2> Zanciy+2)
k— 0o 51) +G (SX3n)42> SXan(hyr2> [Xam(uy)) 165

> limi >
= hknllgcl)fc (z3m(k)’Z3n(k)+2’z3n(k)+2) 2 &, G (szm(k)) Famio fx3m(k))

+ G (RX300)41> 9% 300415 9% 3n(k)+1)
or, equivalently,
d Y +G (SX300)42> SX 31125 W31 42)) 165
(G (Tx3m(k)’ Tx3m(k)> f: x3m(k))

. (52)
+ G (RX30k)415 R0k 415 9% 1)

| m

liknlior})f G (Z3m(k)> Z3m(k)> Z3n+2) =

G (S%3n(42 M¥an(r 2 ¥t 12)) 16} (56
Also,
= {G (ZSm(k)’ Z3n(k)+1> z3n(k)+2) >

G (Z3m(ry> Z3n(i» Z3nik)) (G (Z3miky» Z3n(io+2> Zantie2)

+G(z ,Z ,Z
< G (Z3m(rys Zamy 1> Z3mm+1) + G (Zamiy 1> Z3nkys Zanci)) (2300041 230061 3> Zamiky43)

+G(z ,\Z ,\Z 6,
< G (Z3m(ry> Zam(yr1> Z3my+1) + G (Zam(iy 1> Zany+2> Zangiy+2) (Z3n06+2> Zamwy1> Zamt 1)) /

+ G (Zan(k)42> Zan(k)> Zank)) (G (Zamtor Zamiir Zanigea)

+G(z ,Z ,Z
< G (Z3m(rys Zam(ky 1> Z3mmy+1) + G (Zam(iy 1> Zany+2> Zan(iy+3) (2300041 Z3nt6 11> Zamiky13)

+G(z ,Z ,Z 6,
+G(ZSn(k)+2’Z3n(k)’z3n(k))' ( 3n(k)+2> “3n(k)+2 3m(k)+l))/

53
(53) (G (Z3m(k)’ Z3m(k)+1> Z3m(k)+1)
+G (Z3n(k)+1’ Z3n(k)+2> an(k)+2)
Hence, in (53), if k — 00, using (36) and (38), we have
+G (Zan(ky 12> Zan(ys2> Zan(iy+3)) 165
. (G (Z3m(k)’ Z3m(k)> Z3m(k)+l)
im sup G (23t 1> Zan( 42> Zancioe3) = & (54)
k—co +G (Z3n(k)+1’ Z3n(k)+1> an(k)+2)

+G (Z3n(k) 12> Zan(k)43 Zan(iy+3)) 16}
Since a(Tx3,,)> RX3n(0)41> SX3n(k)42) = 1, putting x = x5,

Y = Xa9+1> and 2 = X3, in (6), for all k > 0, we have UM (X300 X310+ ¥3nk142) = G(Zamtig» Zanti+1> Zan(i+2)>

from (54) and (41), if k — oo in (55), we have

V(G (Zsmikys1> Z3n(hys2> Zan(hy+3)) v sy (111?1 sup G (Zam(iy+1> Zan(ky 2> an(k)+3))
= ¥ (G (fX3m(r» I¥3nti0+1 FX3m(r+2)) P
3m(k)> 9X3n(k)+1> X 3n(k)+2 (55) <y(e)-¢ hknllolcl)fG(z3m(k)’Z3n(k)+1’z3n(k)+2) ,
<sy(M (x3m(k)’ X3u(k)+1> x3n(k)+2)) (57)

- (M (x3m(k)’ X3n(k)+1> xSn(k)+2)) > which is a contradiction to (43).
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If
M (x3m(k)’ X3n(k)+1> x3n(k)+2)
= (G (Z3m(k)> Z3n(k)+2> an(k)+2) +G (an(k)+1’ Z3n(k)+3> an(k)+3)

+ G (Zan(ys2> Zam)+1> Z3mky1)) 165
(58)

from (37), (45), (49), and (54), if k — ©0 in (55), we have

v (€)

e+ 2¢
<v(5

) -9 (hkrg iolng (%3m(k)> X3n(iy+15 x3n(k)+2)> ,
(59)

which is a contradiction to (47).
If

M (x3m(k)> Xan(k)+1> x3n(k)+2)
= (G (Z3m(k)’ Z3m(k)> an(k)+z) +G (an(k)+1> Z3n(k)+1> an(k)+3)

+ G (Zan(k) 42> Zan(y+2> Zamy+1)) 165
(60)

from (37), (50), and (54), if k — oo in (55), we have
€ ..
y(e) <y (§> —¢ <hknllolng (X3m(i> 3n(io+ 1> x3n(k)+2)) )
(61)

which is a contradiction to (52).
If

M (X3m(10> %3m0 +1> X3n(0+2)
=(G (Z3m(k)’ Z3m(k)+1> ZSm(k)+1)
(62)

+G (Zan(k)+1> Z3n(k)+2> an(k)+z)

+G (Z3n) 12> Z3n(k)+2 Zane+3)) /65
from (37) and (54), if k — oo in (55), we have

v(e) <y (0)-¢(0)=0. (63)

If

M (x3m(k)> X3n(k)> x3n(k)+1)

= (G (z3m(k)’ Z3m(k)> Z3m(k)+1) +G (z3n(k)+1’ Z3n(k)+1> an(k)+2)

+G (Zan(ky 120 Zan()+3> Zan(y+3)) 165
(64)

from (37) and (54), if k — oo in (55), we have
() <y (0)-9(0) =0. (65)

Hence, (63) and (65) yield that ¢ = 0 which is a
contradiction. Consequently, {z,} is a G-Cauchy sequence.

Step 3. We will show that f, g, h, R, S, and T have a
coincidence point.

Since {z,} is a G-Cauchy sequence in the complete G-
metric space X, there exists z € X such that

nlLHgOG (231> Z3ns15 2)

= lim

o (Rx341, RX3,1,2) = nli_,n(}OG (fX30 fX3002) = 0,

nhj%oG (232> Z3n42 2)

nangOG (8%3042> SX3042> 2)

nangoG (gx3n+1’ 9X3n+1> Z) = 0’

Jim G (23143 Z3n13:2)

nlergoG (T35 TX3043, 2)

nlLIrgoG (hX3420 hX342,2) = 0.

(66)
Hence,
Txs3, — 2, fX3, — 2, asn— oo. (67)
As (f,T) is compatible, so
Jim G (Tfx3 fTX30 fT3,) = 0. (68)
Moreover, from lim,_, G(fxs,, fxs,,2) = 0,

lim, , G(Tx;,,z,2)
f, we obtain

= 0, and the continuity of T and

Jim G (Tfxs,, Tfxs,, Tz) = 0 = lim G (fTxy, fz, fz).

(69)
By the rectangle inequality, we have
G(Tz, fz, fz)
< G(Tz, Tfx3,, Tfx3,) + G (Tfxy,,, f2, f2) 70)

<G (TZ’ Tf'x3n’ foSn) +G (fo3n’ fo3n’ fo3n)
+G(fTxs, f2, f2).

Taking limitas n — oo in (70), using (68) and (69), we
obtain

G(Tz, fz, fz) <0, (71)

which implies that fz = Tz; that is, z is a coincidence point
of fand T.

Similarly, we can obtain that gz = Rz and hz = Sz.

Now, let «(T'z, Rz, Sz) > 1. By (6), we have

¥ (G(fz, 92.h2)) < v (M (2,2,2)) - ¢ (M (2,2,2)),
(72)



where

M (z,z,z)
€ {G(Tz, Rz,8z),

G(Tz gz, gz) + G (Rz, hz, hz) + G(Sz, fz, fz)

c ;
G(Tz, Tz, gz) + G(Rz, Rz, hz) + G (Sz, Sz, fz)

c ;
G(Tz, fz, fz) + G(Rz, gz, gz) + G (Sz, Sz, hz)

5 ;
G(Tz Tz, fz) + G(Rz, Rz, gz) + G (Sz, hz, hz) }

6

(73)

Let G(fz, gz, hz) > O thatis, fz # gz = hz or fz = gz #
hz.

If M(z,z,z) = G(T'z, Rz, Sz) = G(fz, gz, hz), from (72),
we have

v (G(fz.92.hz)) <y (G(fz g2 hz)) - ¢ (G (fz g2, h@)} )

hence, G( fz, gz, hz) = 0, a contradiction.
If M(z,z,z) = (G(Tz,gz,9z) + G(Rz,hz,hz) +
G(Sz, fz, fz))/6 and fz # gz = hz, then

M (z,z,2)

.G (fz, 9z, 9z) + G (gz, hz, hz) + 2G (hz, hz, fz)
= 6 (75)

3G (hz, hz, fz) .36 (fz, gz, hz)

= >

6 6
so, from (72), we have
v (G(fz, gz, hz))
B l//(G(fz,gz,hz))

B 2 (76)

>

G(fz,gz,9z) + 0+ G (hz, fz, fz)
o ; )

that is,

G(fz,9z,9z) + 0+ G (hz, fz, fz)
o : )

. (77)
<y ( G (iz, gz, hz)

‘ )—wc (fo 92,h2) < 0

hence, fz = gz = hz, a contradiction to G(fz = gz = hz) >
0.

In the other cases, by a similar manner, we can show that
fz=gz=hz=Tz=Rz =Sz O
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In the following theorem, we will omit the compatibility
and continuity assumptions.

Theorem 20. Let (X, G) be an a-regular G-metric space and
90 RS, T: X — X six mappings such that f(X) € R(X),
g(X) € $(X), and h(X) < T(X) and RX, SX, and TX are G-
complete subsets of X. Suppose that, for elements x, y, and z
with «(Tx, Ry, Sz) > 1, we have

v (G (fx, gy, hz)) <y (M (x,9,2)) =9 (M (x, y,2)),
(78)

where y, ¢ : [0,00) — [0, 00) are altering distance functions.
Then, the pairs (f,T), (g,R), and (h,S) have a coincidence
point z in X provided that the pairs (f,T), (g, R), and (h,S)
are weakly compatible and the pairs (f, g), (g, h), and (h, f)
are partially weakly a-admissible with respect to R, S, and T,
respectively. Moreover, if «(Tz,Rz,Sz) > 1, then z € X isa
coincidence point of f, g, h, R, S, and T.

Proof. Following the proof of Theorem 19, there exists z € X
such that

klin;OG (23> 21-2) = 0. 79)
Since R(X) is G-complete and {z,,,,,} € R(X), therefore z €
R(X), so there exists u € X such that z = Ru and
lim G (23,,1> 231> Ru) = lim G (Rxy,,, 1, Rsy, 1, Ru) = 0.
o o (80)
Similarly, there exists v, w € X such that z = Sv = Tw and
Jim G (83,120 Sx3,,20 Sv) = 1im G (Tx3,,, Ty, Tw) = 0.
(81)

Now we prove that w is a coincidence point of f and T

AsTx,, — z=Tw = Ru=S8vasn — 00, a-regularity
of X implies that a(Txs,, Ru, Sv) > 1. Therefore, from (6), we
have

Y (G (fxzm g hv)) < ¥ (M (x5 v)) = 9 (M (3,4, v)) ,
(82)

where

M (x3n’ u, V)
€ {G (Tx,,, Ru,Sv),

G (Txs,, gu, gu) + G (Ru, hv, hv) + G (Sv, fx,,,, fx3,)
c ,

G (Tx,, Tx3,, gu) + G (Ru, Ru, hv) + G (Sv, S, fxs,,)
. ,

G (Tx3,, fx3, fX3,) + G (Ru, gu, gu) + G (Sv, Sv, hv)
< ,

G (Tx3,,, TX3, fx3,)+ G (Ru, Ru, gu)+ G (Sv, hv, hv)}
6

(83)
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Let M(x5,, u,v) = G(Txs,, Ru, Sv).
Lettingn — oo in (82), from the continuity of v and ¢,
we get

v (G (2, gu, hv)) <y (0) — 9 (0) = 0, (84)

soTw=Ru=S8v=z=gu=hv.
As g and R are weakly compatible, we have gz = gRu =
Rgu = Rz. Thus z is a coincidence point of f and T.
Similarly, in other cases for M(x, y, z), it can be shown
that z is a coincidence point of the pairs (g, R) and (h, S).
The rest of the proof is similar to the proof of Theorem 19.

O
Assume that
M (x, y,2)
€ «{G (%, 5.2),
G(x,9y.9y) + G(y,hz,hz) + G (2, fx, fx)
6 bl
(85)
G(x,x,g9y) +G(y, y,hz) + G(z,z, fx)
6 bl
G(x, fx, fx)+G (v, gy, g9y) + G (2,2, hz)
6 bl
G(x,x, fx)+G (v, y,9y) + G(z,hz, hz) }
5 :

Taking R = § = T = Iy (the identity mapping on X)
in the previous theorems, we obtain the following common
fixed point result.

Corollary 21. Let (X, G) be a G-complete G-metric space. Let
f,g-h : X — X be three mappings. Suppose that, for every
three elements x, y, and z with «(x, y, z) > 1, we have

v (G (fx, gy, hz)) <y (M, (x, 3,2)) — 9 (M, (x, ,2)),
(86)

where y, ¢ : [0,00) — [0, 00) are altering distance functions.
Let the pairs (f, g), (g,h), and (h, f) be partially weakly -
admissible. Then, the triple (f, g, h) has a common fixed point
z in X provided that (a) f, g, and h are continuous or (b) X is
a-regular.

Assume that

M; (x, y,2)
€ {G(Rx, Ry,Rz),

G (Rx, fy, fy) + G (Ry, f2, f2) + G (Rz, fx, fx)
3

G (Rx, Rx, fy) + G(Ry, Ry, fz) + G(Rz, Rz, fx)
3 b

G (Rx, fx, fx) + G (Ry, fy, fy) + G(Rz, fz, fz)
; :

G (Rx,Rx, fx) + G (Ry, Ry, fy) + G(Rz, Rz, fz) }

3
(87)

Taking f = g = h in Theorems 19 and 20, we obtain the
following coincidence point result.

Corollary 22. Let (X, G) be a G-metric space. Let f,R: X —
X be two mappings such that f(X) € R(X). Suppose that, for
every three elements x, y, and z with a(Rx, Ry, Rz) > 1, we
have

v (G(fx, [y, f2)) < v (M5 (x, ,2) = 9 (M5 (%, ,2)),
(88)

where v, ¢ : [0,00) — [0, 00) are altering distance functions.
Let the pair (f,R) be compatible and f is partially weakly «-
admissible w.r.t. R. Then, (f,R) has a coincidence point z in
X provided that (a) f and R are continuous and (X, G) is a
G-complete G-metric space or (b) X is a-regular and R(X) is
G-complete.

Theorem 23. Under the hypotheses of Corollary 22, f and R
have a common fixed point in X if R is an «-dominating map.
Moreover, f and R have one and only one common fixed point
if a(u,u,v) > 1 or a(u,v,v) > 1, where u and v are common

fixed points of f and R.

Proof. Corollary 22 guarantees that there is a z € X such that
fz = Rz. Since f and R are weakly compatible (since the pair
(f, R) is compatible), we have fRz = Rfz. Let w = Rz = fz.
Therefore, we have

Sfw = Rw. (89)

Since R is an a-dominating map,

« (w, w, Rw) = a (Rz, Rz, Rw) > 1. (90)

If z = w, then z is a common fixed point of f and R. If
z # w, then, from (90) «(Rz, Rz, Rw) > 1, from (88), we have

v (G(fz f2, fw)) < v (M5 (2,2, w)) - 9 (M; (2,2, w)),
(o1
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where

M; (z,z,w)
€ <lG (Rz, Rz, Rw),

G (Rz, fz, fz) + G(Rz, fw, fw) + G (Rw, fz, fz)’
G (Rz,Rz, fz) + G(Rz, 162z, fw) + G (Rw, Rw, fz)’
G (Rz, fz, fz) + G(Rz, ;z, fz) + G (Rw, Rw, fu))’
G(Rz. Rz, f2) +G (Rz,61;z, f2) +G (Rw, fuw, fw) } |

(92)

Let Ms(z,z,w) = (G(Rz, fz, fz) + G(Rz, fw, fw) +
G(Ruw, fz, fz))/6. Then, from (91),

v (G(fz fz, fw))

G(Rz, fz, fz) + G(Rz, fw, fw) + G (Rw, fz, fz)
(s o st )

y ( G (Rz, fz, fz) + G(Rz, fw, fw) + G (Rw, fz, fz) )
6

_ (G (f2 fz, f2) + G (f2 fw, fw) + G (fw, [z, fz) )
= 1// 6

_ (G(fZ»fz,fZ) +G(fz fw, fw) + G(flU»fZ,fZ)>
¢ 6

<y

(ZG (fz, fz, fw) + G(fz, fz, fw) )
6

_ (G(f%fzny) +G(fz fw, fw) + G(fw>fZ’fZ)>
¢ 6 :

(93)

Therefore, ¢((G(fz, fz, fz) + G(fz, fw, fw) +
G(fw, fz, fz))/6) = 0.So, fz = fw. Now, sincew = Rz = fz
and fw = Rw, we have w = Rw = fw.

Suppose that a(u, u, v) > Lor a(u, v, v) > 1, where uand v
are common fixed points of f and R. We claim that common
fixed point of f and R is unique. Assume on the contrary that
fu=Ru=uand fv=Rv=vandu # v. Without any loss of
generality, we may assume that a(u, u,v) = «(Ru, Ru, Rv) >
1. Using (88), we obtain

v (G (1, u,v))

=y (G (fu fu, fv)) <y (M5 (w,1,7)) = ¢ (M; (1, v)).
(94)
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Let M;(u,u,v) = (G(Ru, fu, fu) + G(Ru, fv, fv) +
G(Rv, fu, fu))/6. Then we have

v (G (u,u,v))

<y < G (Ru, fu, fu) + G(Ru, fv, fv) + G(Rv, fu, fu))
B 6

G (Ru, fu, fu) + G(Ru, fv, fv) + G(Rv, fu, fu)
-+ : )

Slp(2G(v,u,u)6+G(v,u,u)>
B (G(u,u,u)+G(u,v,v)+G(v,u,u)>
¢ 3 .

(95)

Therefore, u = v, a contradiction.
In the other cases the proof will be done in a similar way.
O

Example 24. Let X = [0,00), G on X given by G(x, y,2z) =
|x—y|+|y-z|+|z—x|, forallx, y,z € X,and o : X> = [0,00)
given by a(x, y,z) = €7 7%. Define self-maps f, g, h, R, S,

and T on X by
fx=In(l+x), gx:1n<l+g>,
hx=1n<1+ f), (96)
3
Rx =e>* -1, Sx=e* -1, Tx =™ - 1.

To prove that (f,g) is partially weakly a-admissible with
respect to R, let x € X and y € R’ fx; thatis, Ry = fx.
By the definition of f and R, we have In(1 + x) = e — 1. So,
y =In(In(1 + x) + 1)/3 and hence

f@ =tz i1, 200D D)

(97)
21n<1+1n(1n(12+x)+1)):gy

Therefore, a( fx, gy, gy) = 1.

To prove that (g, h) is partially weakly a-admissible with
respect to S, let x € X and y € S”' gux; that is, Sy = gx. By the
definition of g and S, we have In(1 + (x/2)) = e” - 1. So,

9(x) =ln(1 +§) 21n<1+ In(n(1 +(92€/2))+ 1)/2)

S ln<1 N In(In(1 + (.;C/Z)) + 1)/2) _ hy.
(98)

Therefore, a(gx, hy, hy) > 1.
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To prove that (h, f) is partially weakly a-admissible with
respect to T, let x € X and y € T 'hx; that is, Ty = hx. By
the definition of 4 and T, we have In(1 + (x/3)) = €% — 1. So,

h(x):ln(1+§) 2ln<1+1n(1n(1+(x/3))+1)/6>

3

21n<1 . In(In(1 +(1c/3)) + 1)/6) - f.

(99)

Therefore, a(hx, fy, fy) > 1.

Furthermore, fX = gX = hX = RX = §SX = TX
[0, 00).

Define v, ¢ : [0,00) — [0,00) as w(t) = bt and ¢(t)
(b-1)t, forallt € [0,00), where 1 < b < 36.

Using the mean value theorem for all x, y, and z with
a(Tx, Ry, Sz) > 1 we have

v (G (fx, gy, hz))
=b|fx—gy| +b|gy — hz| + b|hz - fx|

:b|ln(1+x)—ln(1+%>)|

+b’ln<1+§)—ln<1+§))‘

+b|ln<1+§>—ln(1+x))|

sb’x—2’+b|z—z‘ b|5—x|
2 2 3 3
Sb|6x—3y|+b|3y—22|_Irb|2z—6x|
6 6
b | 6x b z
S£|e6 —1—[63}' 1]|+%'e3y 1—[e2—1”
b |2 x
+£|e2 1 [66—1”
=G (Tx, Ry, Sz)

=y (G(Tx,Ry,Sz)) — ¢ (G (Tx, Ry, Sz)).
(100)

Thus, (6) is true for M(x, y,z) = G(Tx, Ry, Sz). Therefore,
all the conditions of Theorem 19 are satisfied. Moreover, 0 is
a coincidence point of all six maps.

3. Periodic Point Results

Let F(f) = {x € X : fx = x} be the fixed point set of f.
Clearly, a fixed point of f is also a fixed point of f", for
every n € N; that is, F(f) ¢ F(f"). However, the converse is
false. For example, the mapping f: R — R, defined by fx =
(1/2) — x, has the unique fixed point 1/4, but every x € Risa

1

fixed point offz. If F(f) = F(f"), for everyn € N, then f is
said to have property P. For more details, we refer the reader
to [5, 42-45] and the references mentioned therein.

Assume that

M, (x, y,2)

€ {G(x,y,z),

G(x fy, fy) + G (y, fz, fz) + G (z, fx, fx)
- ,

G(xx fy)+G (1 y, f2) + G (2.2 fx)
p ,

G(x fx fx) + G (y fy fy) + G (2.2 f2)

6 >

G(xx fx) +G(y. 3, fy) + G (2 f2, f2) }
. .

(101)

Taking R = Iy (the identity mapping on X) in
Corollary 22, we obtain the following fixed point result.

Corollary 25. Let (X, G) be a G-complete G-metric space. Let
f: X — X beamapping such that f is partially weakly o-
admissible and, for every x, y,z € X such that a(x, y,z) > 1,

v (G(fx, fy, f2)) <y (Mo (x, ,2)) = ¢ (Mg (x, 3, 2)) »
(102)

where ¢ : [0,00) — [0, 00) is an altering distance function.
Then, f has a fixed point z in X provided that (a) f is
continuous or (b) X is a-regular.

Theorem 26. Let X and f be as in Corollary 25. Then f has
property P if f is an a-dominating map.

Proof. From Corollary 25, F(f) # 0. Let u € F(f")
for some n > 1. We will show that u = fu. We have
a(f"'u, f'u, f'u) > 1, as f is a-dominating. Using (6), we
obtain that
G (u, fu, fu)
— G(fnu, fn+1u,fn+1u)
G(ff" s ff"w, ff"u)

< M(f"_lu,f"u, f"u) - (p(M (f"_lu, f”u,f"u)) ,
(103)
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where
M (f" " u, f'u, f'u)
G (" u fru, f'u),

(G (™ ws ff"w f"1) + G (f"us ff"us f ")
+G (f"u, £ u, fF71u)) /6,

(G f" M fF"u) + G (f"w, [, ff ")
+G (fus fus " 0)) /6,

(G(f" s £ £ 1) + G (f'u, fF"u, ff"w)
G (f"u, ff"u, ff"u)) /6,

(G f" s S ) + G (f"w, [, ff ")
G (f"u, f"u, ff"u)) /6}

(104)

If M(f"'u, f'u, f'u) = G(f"*'u, f"u, f"u), then, from
(103), we have

G (u, fu, fu)

<G (f"_lu, fu, f”u) -9 (G (f"_lu, fu, f"u)).
(105)

Starting from G(f"'u, f™u, f"u) and repeating the above
process, we get

G (u, fu, fu)
<G (f"_lu, fu, f"u) -¢(G (f"_lu, fu, f"u))
<G(f"u 7w ) - o (G(F" 7w f 7 us £ 7))
~¢(G(f"u f'u f"u))

<G (u, fu, fu)

_ ZQD (G (fn—(i+1)u’ fn—(i)u’ fn—(i)u)) :
i=0
(106)
which from our assumptions about ¢ implies that

G(fn—(i+1)u, 0y, f”_(i)u) =0, (107)

forall 0 <i <n—1.Now, taking i = n — 1, we have u = fu.
Now, let

M (f"_lu,f"u, f"u)
= (G(f""'w ff"w, ff"u) + G (f"u, ff"u, ff"u) (108)
+G (f"u, " u, ff"1u)) /6.
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So, we have
G (u, fu, fu)
= G(f"u ", ")
=G (ff""w ff"u, ff"u)
(O )+ 6 ()
+G (f"u, f'u, f'u)) /6
—o((G(f" " ™ s £ ) + G (' f7 s £ 1)
+G (f"u, f"u, f"u1) ) /6)
< (G f'us fu) + 2G (f"us ™0 £ u) +0) /6
~o((G(S" ", )
G (f"un f" M, f" M u) +0) /6)

(109)
that is,
G (u, fu, fu)
=G(f"u f" )
<G(f"u, f'u, f"u) (10)

30 ((G (£ s )
+G (f"u, f" u, ) +0) /6)
Repeating the above process, we get
G(f" s ", f"u)
<4G (f"'u, f'u, f'u)
<G(f"u f"u, )

G(fu, ™u, f"u) +G( " 'u, f'u, f'u
_w< (f"2u f f); (f"u f f)>'

(111)

From the above inequalities, we have

G (u, fu, fu)
<G (u, fu, fu)

n—1
_6 G n—(i+1) i n—(i—1) i n—(i—1)
S a((0(r g g 0)

+ G(f"_(i)u, fn—(i—l)u’ fn—(i—l)u)) /6) )
(112)
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Therefore,

n-1

Z(P ((G (fn—(i+1)u, fn—(i—l)u, fn—(i—l)u)
i=0 (113)

+G (fn—(i)u, fn—(i—l)u’ fn—(i—l)u)) /6) =0,

which from our assumptions about ¢ implies that
G (fn—(i+1)u fn—(i—l)u fn—(i—l)u)

(114)
— G(fn_(i)u fn_(i_l)u fn—(i—l)u) =0
forall 0 <i <n— 1. Now, takingi = n — 1, we have u = fu.
In other three cases, the proof will be done in a similar
way. O

4. Results in Ordered G-Metric Spaces

Fixed point theorems for monotone operators in ordered
metric spaces are widely investigated and have found various
applications in differential and integral equations (see [46-
48], and references therein). As an application of our results,
we derive some new coincidence point and common fixed
point theorems for partially weakly increasing contractions
which generalize many results in the literature.

Definition 27 (see [49]). Let (X, <, G) be a partially ordered
G-metric space. We say that X is regular if and only if the
following hypothesis holds.

For any nondecreasing sequence {x,} in X such that
x, — zasn — 09, it follows that x,, < z forall n € N.

Definition 28 (see [49]). Let (X, <) be a partially ordered set
and f,g,h : X — X given mappings such that fX ¢ hX
and gX < hX. We say that f and g are weakly increasing
with respect to h if and only if for all x € X, fx < gy, for all
y € h'(fx),and gx < fy, forall y € h™'(gx).

If f = g, we say that f is weakly increasing with respect
to h.

Definition 29 (see [49]). Let (X, <) be a partially ordered set
and f and g two self-maps on X. An ordered pair (f, g) is said
to be partially weakly increasing with respect to h if fx < gy,
forall y € hil(fx).

If h = I (the identity mapping on X), then the previous
definition reduces to the weakly increasing mapping [50]
(also see [51, 52]).

Note that a pair (f, g) is weakly increasing with respect
to h if and only if ordered pairs (£, g) and (g, f) are partially
weakly increasing with respect to it.

Let (X, %, G) be a partially ordered set and let

1, x<y<z
Y=ry=z (115)

oc(x,y,z):{

0, otherwise.

Theorem 30. Let (X, <X, G) be a partially ordered G-complete
G-metric space. Let f,g,h,R,S,T : X — X be six mappings
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such that f(X) € R(X), g(X) ¢ S(X), and h(X) < T(X).
Suppose that, for every three elements Tx < Ry < Sz, one has

v (G (fx,gy,hz)) <y (M (x,9,2)) -9 (M (x, ,2)),
(116)

where y, ¢ : [0,00) — [0, 00) are altering distance functions.
Let f, g, h, R, S, and T be continuous, the pairs (f,T),
(9> R), and (h,S) compatible, and the pairs (f, g), (g, h), and
(h, f) partially weakly increasing with respect to R, S, and T,
respectively. Then, the pairs (f,T), (g,R), and (h,S) have a
coincidence point z in X. Moreover, if Tz < Rz < Sz, then
z is a coincidence point of f, g, h, R, S, and T.

Theorem 31. Let (X, <,G) be a regular partially ordered G-
metric space, f,g,h,R,S,T : X — X six mappings such that
f(X) € R(X), g(X) < S(X), and h(X) < T(X), and RX,
SX, and TXG-complete subsets of X. Suppose that, for elements
Tx < Ry < Sz, one has

v (G (fx,gy.hz)) <y (M (x,9,2)) -9 (M (x, y,2)),
a17)

where y, ¢ : [0,00) — [0, 00) are altering distance functions.
Then, the pairs (f,T), (g,R), and (h,S) have a coincidence
point z in X provided that the pairs (f,T), (g,R), and (h,S)
are weakly compatible and the pairs (£, g), (g, h), and (h, f) are
partially weakly increasing with respect to R, S, and T, respec-
tively. Moreover, if 'z < Rz < Sz, then z € X is a coincidence
pointof f, g, W R, S, and T.
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