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The dynamic behavior of tied-arch bridges under the action of moving load is investigated. The main aim of the paper is to
quantify, numerically, dynamic amplification factors of typical kinematic and stress design variables by means of a parametric
study developed in terms of the structural characteristics of the bridge and moving loads. The basic formulation is developed by
using a finite element approach, in which refined schematization is adopted to analyze the interaction between the bridge structure
and moving loads. Moreover, in order to evaluate, numerically, the influence of coupling effects between bridge deformations
and moving loads, the analysis focuses attention on usually neglected nonstandard terms in the inertial forces concerning both
centripetal acceleration and Coriolis acceleration. Sensitivity analyses are proposed in terms of dynamic impact factors, in which
the effects produced by the external mass of the moving system on the dynamic bridge behavior are evaluated.

1. Introduction

The tied-arch bridge represents a valid solution in the field
of medium spans, since it combines both structural and
aesthetic advantages [1]. The structure consists, basically, of
an arch and a girder, which are connected through internal
supports. In particular, the bridge is based on an arch
entirely above the girder and a tie chord at girder level,
which eliminates the horizontal thrust of the arch. The
structural scheme of tied-arch bridges makes it possible to
have light structural components, involving low values of
ratios between dead and live loads. However, due to the new
developments in rapid transportation systems, the allowable
train speed range and the loads involved by the moving
system are much larger than the ones observed in the past.
Consequently, the moving system may influence the bridge
vibrations, since the external mass applied to the bridge
is quite comparable to the one involved by the structural
or nonstructural elements of the bridge. Moreover, existing
codes on arch bridges do not provide any explicit rela-
tionships to quantify numerically the dynamic amplification
factors involved in stress or displacement variables of the
bridge components. To this end, accurate investigations are
needed to describe the interaction between external moving

system and bridge vibrations and, consequently, to estimate,
correctly, dynamic impact factors of typical design bridge
variables. In the literature, several works have been developed
with the analysis of bridges travelled by trains, mainly for
beam and girder bridges. In this framework, earlier studies
were devoted to investigate the vibrations of simply supported
beams travelled by moving load or mass at constant speed,
providing both analytical and numerical solutions [2–5].
However, advances in computer and computational technolo-
gies made it possible to develop more accurate models and,
at the same time, to extend investigations on the dynamic
behavior of complex structures, such as long-span bridges
[6–9]. Moreover, further issues such as track irregularities
and mechanical properties of vehicles were properly taken
into account in [10–13]. Recently, in order to assess the
safety of new bridges against human and nature hazards, the
moving load problem was examined introducing additional
complexities arising from damage phenomena involved in
the structural elements [14, 15] and, in this framework,
dynamic amplification factors were properly identified. At
the same time, new analyses, which combine refined models
and probabilistic methodologies, were developed to assess
the safety of existing bridges for high-speed traffic loads
[16, 17]. However, despite the great interest on the subject,
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there are comparatively few papers on the dynamic response
of arch structures under the action of moving loads. Among
these studies, Chatterjee and Datta [18] have investigated
the dynamic behavior of upper-deck arch bridges travelled
by a single moving load by means of a mixed approach
based on continuum and lumped mass descriptions. Wu
and Chiang [19] have used a numerical model developed
in the framework of the FE approach to analyze in-plane
bending vibrations of a uniform circular arch under the
action of a moving load. Huang [20] has performed dynamic
impact analyses of 3D half-through arch bridges with refined
schematization of both bridge and vehicle. Ju and Lin [21]
have presented an advanced numerical model to investigate
the vibration characteristics of steel tied-arch bridges tra-
versed by high-speed trains. In particular, they have pro-
posed two simple design criteria to predict the train-bridge
resonance effects, whose results were validated by means
of numerical analyses. Neglecting the elastic and inertial
interactions between the train and the bridge, Lacarbonara
and Colone [22] have developed a generalized numerical
model, suitable to predict the dynamic response of tied-arch
bridges, due to the passage of the three main European high-
speed trains involving resonance phenomena. Yang et al. in
[23] have analyzed the dynamic interaction between a short
tied-arch bridge and moving loads, identifying the dynamic
amplification factors for displacement and internal forces.
However, most of the exiting studies on tied-arch bridges
do not consider the influence of accurate discretization
of the inertial forces, which typically are able to produce
notable dynamic amplification effects on common design
bridge variables [9, 14, 15]. Moreover, analyses available from
the literature are focused on structures with relatively short
spans, namely, up to 120m, and, to the Author’s knowledge,
no works on long-span bridges were properly developed in
the literature.Therefore, the purpose of the present study is to
analyze the dynamic behavior of tied-arch bridges in the field
of medium and large span ranges, by evaluating the effects
produced by the moving system on the bridge vibrations. It is
worth noting that the present paper can be considered as an
extension of previous authors’ works [9, 14, 15] in which the
dynamic behavior was investigated in the framework of cable
supported bridges. However, the main aims of this paper are
to propose a parametric study in a dimensionless context
in the framework of tied-arch bridges, which describes the
relationship between dynamic amplification factors, moving
loads, and bridge characteristics. The outline of the paper is
as follows: in Section 2 a description of the tied-arch bridge
together with the formulation of the bridge modeling and
the evaluation of the initial configuration is presented. The
numerical implementation is reported in Section 3, whereas
in Section 4 numerical results are proposed.

2. Theoretical Formulation: Initial
Configuration and Equations of Motion

Tied-arch bridge scheme, considered in the present paper,
consists of two arch ribs whose extremities are rigidly con-
nected to longitudinal edge beams which support the girder
(Figure 1).Moreover, each arch rib carries tie beams bymeans

of several vertical hangers spaced at constant step along the
girder development.The whole system is simply supported at
its ends. In particular, one end is pinned, whereas the other
one is free to move longitudinally.

2.1. Initial Configuration of the Bridge. Since steel cables
require posttensioning forces, the initial configuration of
the bridge under the dead loading must be identified in
advance. In order to calculate the initial stress in each
cable, a numerical procedure developed, consistently with
the zero displacement method being developed [24, 25].
In particular, the geometric initial shape of the bridge and
the corresponding internal stresses of the cable system are
obtained enforcing the girder to remain under dead loads
in the undeformed design configuration. With reference to
Figure 2, the unknown variables are represented by the
posttensioning stresses in the cable:

𝑆
̃

𝐻
= (𝑆
𝐻

1
, 𝑆
𝐻

2
, . . . , 𝑆

𝐻

𝑚
) , (1)

where 𝑚 is the number of hangers of the cable arrangement.
The displacement conditions utilized to achieve zero dis-
placement variables at the girder anchorages are expressed as
follows:
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where 𝐿
̃

𝐻 is the constraint operator and 𝑈
̃

𝐻

3
is the vector

containing the vertical displacement of the cable at anchorage
points located on the girder. It is worth nothing that in (2)
the total initial stresses are expressed as a combination of
a constant quantity (𝑆

𝐻

𝑖
) and an incremental contribution

(Δ𝑆
𝐻

𝑖
). The former is a set of trial initial posttensioning cable

forces, which are estimated by means of simple design rules
commonly adopted in the context of bridge design [26–
28], whereas the latter is defined by an incremental value,
representing the unknown quantity to be identified in the
solving procedure.

2.2. Bridge Formulation and FE Implementation. The cable
formulation is consistent with a large deformation theory
based on the Green-Lagrange strain measure and the second
Piola-Kirchhoff stress [29], whereas the material behavior is
assumed to be linearly elastic. Nonlinearities in the cable
elements are introduced to reproduce the local vibration
effects, determined by themoving load application (Figure 3).
The formulations of the arch and the girder are consistent
with a geometric nonlinear model based on Euler-Bernoulli
theory, in which large displacement is considered by using
Green-Lagrange strain measure. Moreover, the torsional
behavior owing to eccentric loading is described by means
of the classical De Saint Venant theory. The external loads
are consistent with uniformly distributed vertical moving
forces and masses, travelling on the girder profile at constant
speed (𝑐) and at a fixed eccentricity (𝑒) with respect to the
geometrical axis of the girder. In particular, the definition of
the moving loads is consistent with previous author’s works,
in which a refined description of the moving loads in terms
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Figure 1: Structural scheme of the tied-arch bridge.
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Figure 2: Displacement and control variables for the evaluation of
the initial configuration.

of nonstandard terms in the acceleration functions as well
as the time dependent effects on the mass distribution is
considered. More details on the analytical expressions can be
recovered in [14, 15] or in the appendix, in which essential
equations concerning moving load description are briefly
reported. Finite element expressions are written, introducing
Hermit cubic interpolation functions for the girder and arch
flexures and Lagrange linear interpolation functions for the
cable system, girder, and arch displacement:
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where 𝑞
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𝐴 are the vectors collecting the nodal
degrees of freedom of the hanger cable, girder, and arch,
respectively,𝑁

̃

𝐻,𝑁
̃

𝐺, and𝑁
̃

𝐴 are thematrixes containing the
displacement interpolation function for hanger, girder, and
arch, and 𝑟

̃
is the local coordinate vector of the generic finite

element. The discrete equations in the local reference system
of the 𝑖th element lead to the following equations in matrix
notation:
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where (𝑀
̃

, 𝐶
̃

, 𝐾
̃

) are standard (𝑆) mass, damping, and stiff-
ness matrixes, 𝑃

̃
is the load vector produced by the dead and

live loading, and 𝑄

̃

is the unknown force vector collecting the
point sources. Moreover, the matrixes concerning nonstan-
dard terms denoted by the subscripts (⋅)

𝑁𝑆
and introduced

essentially by the presence of the moving loads are reported
in explicit form in the Appendix. In order to reproduce
the bridge kinematic correctly, additional relationships to
define the connections between girder, arch, and hangers
are necessary. In particular, hanger displacement should be
equal to that of the girder and the arch at the corresponding
intersection points; thus, the bridge kinematic is restricted by
means of the following constrain equations:
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the intersection positions at the 𝑖th anchorage point of
the hanger, girder, and arch, respectively. Finally, starting
from (4)–(6), taking into account (7) as well as the balance
of secondary variables at the interelement boundaries, the
resulting equations of the finite element model are:
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vector containing the kinematic variables associated with the
hanger, the girder, and the arch, 𝑀

̃
, 𝐶
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, and 𝐾

̃
are the global

mass, stiffness, and damping matrixes, and 𝑅
̃
is the loading

vector. Since the structural behavior of each element depends
on the deformation state of themembers, the governing equa-
tions defined by (8) will change continuously as the structure
deforms. Moreover, the external loads owing to the presence
of its own moving mass determine a time dependent mass
distribution function on the girder profile. Consequently,
the discrete equations are affected by nonlinearities in the
stiffness matrix and time dependence in the mass matrix.
The governing equations are solved numerically, using a
user customized finite element program, that is, COMSOL
Multiphysics™ version 4.4 [30]. The analysis is performed by
means of two different stages. Initially, a preliminary analysis
is devoted to calculating the initial stress distribution in the
cable system, that is, “zero configurations.” In this context,
the shape optimization procedure is developed, consistently

with a Newton-Raphson iteration scheme. Since the loading
condition refers to the application of dead loading only, the
analysis is developed in the framework of a static analysis.
The algebraic equations concerning themoving load problem
are solved by a direct integration method, which is based
on an implicit time integration scheme. In particular the
generalized-𝛼 method, which is an implicit, second-order
accurate algorithm, was employed and the value of alpha
was fixed to 0.25. Moreover, a Newton-Raphson scheme in
the time step increment based on the secant formulation
is utilized for the nonlinearities involved in the governing
equations [30].

3. Results

A parametric study is proposed, with purpose to identify
the DAFs of typical bridge design variables. In particular,
the investigation is performed in terms of dimensionless
variables, strictly related to both moving loads and bridge
characteristics. In order to quantify the amplification effects
produced by the moving loads over the static solution
(ST), numerical results are presented in terms of dynamic
amplification factors, defined as follows:

Φ
𝑋

=
max (𝑋, 𝑡 = 0, . . . , 𝑇)

𝑋ST
, (9)
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where 𝑋 is the generic variable under investigation, 𝑇 is
the observation period, and the subscript (⋅)ST refers to the
static value of the variable. The bridge and moving load
characteristics are selected consistently with values utilized
in practical applications [31], which are in agreement with
common code prescriptions on bridge engineering [32, 33].
The following parameters related to aspect ratio, stiffness,
cable system properties, and dead and live loads involved in
the structure are adopted:
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where 𝐿 is the bridge length, 𝑓 is the arch rise, 𝐵 is the girder
width, 𝜀

𝐹
and 𝜀
𝐴
are the relative bending and axial stiffness,

𝐸
𝐻 is the cable elasticity modulus, 𝑆

𝐻

𝑎
is the cable allowable

stress, and 𝑚 is the number of hangers which are uniformly
distributed along the girder at constant step Δ.

Moreover, 𝑔
𝐺

tie and 𝑔
𝐺

nnstr represent the loads per unit
length of tie and utilities of the girder, respectively, whereas
𝑔
𝐴 is the load per unit length of the arch. It is worth nothing

that the parameter 𝑅 defines the dead load ratio between the
weight involved in both girder and arch and the one of the
whole structure; such value is assumed to be consistent with
comparative studies developed in the framework of tied-arch
bridges [31].The entity of the moving system (𝑝) is consistent
with LM-71 train model, whose characteristics are reported
in [32]. The cross section area of the 𝑖th hanger, namely, 𝐴

𝐻

𝑖
,

is designed in such a way that the dead loads of the girder
(𝑔
𝐺

= 𝑔
𝐺
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𝐺

nnstr) produce constant stresses over all the
distributed elements, which are assumed to be equal to a fixed
design value, namely, 𝑆

𝐻

𝑔
. Such design stress is defined on

the basis of the ratio between live (𝑝) and self-weight loads
(𝑔
𝐺

) and allowable cable stress (𝑆
𝐻

𝑎
) by mean of the following

relationship:
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Therefore, the geometric measurement for the cables system
can be expressed by the following expression [26, 27]:

𝐴
𝐻

=
𝑔
𝐺

Δ

𝑆𝐻
𝑔

. (12)

At first, the behavior of the bridge is analyzed to investi-
gate the relationship between dynamic amplification factors
(DAFs) and normalized speed of the moving system, which
is defined by means of the following expression:

𝜗 = 𝑐 (
𝑆
𝐻

𝑎
𝜇
𝐺

𝐸𝐻𝑔𝐺𝐵
)

1/2

, (13)

where 𝜇
𝐺 is the mass per unit length of the girder and

𝐸
𝐻 is the elasticity modulus of hangers. In particular, in

order to point out the influence of the moving mass on the
bridge dynamic behavior, analyses are developed by using the
following three different models for the inertial description:

(a) External mass of the moving system completely
neglected, known as Moving Force Model (MFM).

(b) Inertial description of the moving system neglected
with respect to nonstandard inertial forces (Coriolis
acceleration and centripetal acceleration in (A.5) are
not considered), namely, Standard Analysis (SA).

(c) Inertial description of the moving system according
to (A.5), namely, Nonstandard Analysis (NSA).

The investigated structure is consistent with a steel tied-
arch bridge of 300m (L) whose values of relative stiffness,
number of hangers, and live-to-dead load ratio are assumed
to be equal to 𝜀

𝐹
= 0.1, 𝜀

𝐴
= 1, 𝑚 = 15, and 𝑝/𝑔

𝐺
=

0.67, respectively. At first, natural frequencies and the mode
shapes of the bridge are obtained by means of prestressed
modal analysis, in which the initial configuration concerning
the distribution of stresses and deformations is considered.
Such analysis, whose results for the six mode shapes are
reported in Figure 4, is developed to determine a suitable
time step size for the transient analysis and to investigate
resonance phenomena due to the application of the external
loads. In particular, since a reasonable approximation of the
dynamic solution may be obtained involving the first six
mode shapes of the arch bridge, the time integration step is
assumed to be equal to 1/20 of the period associated with
the sixth mode of vibration. Moreover, Rayleigh damping
model is used; that is, 𝐶

̃
= 𝑎𝑀

̃
+ 𝑏𝐾

̃
, where 𝑎 and 𝑏 are

two constants of the damping model, whose values, equal to
0.1393 L/s and 0.0155 s, respectively, are determined on the
basis of two vertical modes and taking a modal damping
ratio equal to ] = 0.05. The moving system is assumed to
proceed at constant speed 𝑐 from left to right along the
bridge development. In Figure 5 results concerning the DAFs
for vertical displacement (Φ𝑈

𝐺

3 ) at 1/2 and 3/4 girder cross-
sections, that is, 𝑋

1
/𝐿 = 0.50 and 𝑋

1
/𝐿 = 0.75, respectively,

are presented.TheDAFevolution curves denote a tendency to
increase with the speeds of the moving system. In particular,
the DAFs at 𝑋

1
/𝐿 = 0.75 are generally larger than the
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corresponding ones observed for the midspan cross section
for each value of the normalized speed. The mass of the
moving system affects the dynamic behavior of the bridge
mainly at high range of speed, that is, for 1.60 ≤ 𝜗 ≤

2.60, where nonstandard terms in the acceleration function
provide the largest amplification. In this context, considerable
underestimations in the DAF predictions are noted if the
travelling mass is not properly evaluated. In particular, for
the midspan cross section, the increments of the maximum
value of the DAFs are from 1.12 to 1.83 and from 1.27 to
1.93 for MFM and SA formulation, respectively, and from
1.53 to 2.89 for the NSA formulation. Similarly, at 𝑋

1
/𝐿 =

0.75, the DAFs increase in the ranges of [1.20–2.18], [1.24–
2.39], and [1.69–2.86] for MFM, SA, and NSA formulations,
respectively. Contrarily, for reduced values of moving system
speeds, results arising from dynamic and static solutions are
practically coincident and, consequently, the influence of the
external mass becomes negligible. It is worth nothing that
the bridge is affected by notable dynamic amplification also
for medium speeds, since large peaks of values in the DAF
curves, that is, close to 1.75, are observed, especially for the
analysis at 𝑋

1
/𝐿 = 3/4. This behavior can be explained

by resonance issues, which occur when the moving system
excitation frequencies are close to ones involved in the bridge
structure. In order to verify such aspect and the differences in
the dynamic behavior of the bridge for variousmoving system
speeds, vertical acceleration at 𝑋

1
/𝐿 = 3/4 is analyzed in the

frequency domain, by means of the Fast Fourier Transform
(FFT) analysis. In particular, comparisons in terms of mass
description, that is, between NSA and MFM, are proposed
by means of time histories of displacement and acceleration
functions and force magnitude of the FFT (Figure 6):

(i) Dynamic response of the bridge for a relatively low
speed of the moving system, that is, 𝜗 = 0.76

(Figure 6(a)).
(ii) Results for normalized speed values equal to 𝜗 =

1.102 and 𝜗 = 1.235, which represent the resonance
speeds in the case of NSA and MFM formulations
(Figure 6(b)).

(iii) Dynamic response for moving system speeds which
involve themaximumDAFs for vertical displacement
of the girder in the case of NSA andMFM at 𝜗 = 2.28

and 𝜗 = 2.66 (Figure 6(c)).

From the results, it transpires that both NSA and MFM lead
to comparable predictions in terms of vertical displacement
and acceleration for low values of speeds since the effects of
the external mass of the moving system are quite reduced.
The FFT analysis denotes that, in the range of the investigated
moving system speed, the dynamic response of the bridge is
dominated mainly by its fundamental mode (Figure 4(a)),
since peaks of values in the FFT diagram at a value of
frequency close to the fundamental one of the bridge, namely
0.325Hz, are observed. However, for high-speed values, that
is, 𝜗 = 2.28 or 𝜗 = 2.66, the results show that contributions
arising from high frequencies start to affect the dynamic
behavior of the structure. Such influence is much marked
for the analysis developed in the case of NSA model, in

which a refined description of the inertial forces including
nonstandard acceleration terms in the inertial forces is
considered. This aspect can be well appreciated by means
of the FFT diagram reported in Figure 6(c), which presents
several peaks of values close to the natural frequencies of
the bridge, that is, 0.325Hz, 0.701Hz, 1.012Hz, and 1.207Hz
(Figures 4(a), 4(b), and 4(c)). Moreover, in the range of
low or medium speeds, NSA and MFM formulations lead
basically to the same predictions, since the contributions
of nonstandard acceleration become quite negligible. The
influence of the external mass on the internal stress resultants
variables of the bridge in terms of moving mass descrip-
tion is also examined in Figures 7 and 8, in which the
distributions of DAFs for bending moment and axial force
in the girder and arch profiles, respectively, for increasing
values of normalized speeds are depicted. For the sake of
brevity, only results at high speeds of the moving system are
reported, in which typically the major dynamic amplification
is observed. Similar results are presented in Figure 9, in which
the distributions of the DAFs for the maximum axial force
in hangers are illustrated. The results indicate that at high
speeds relevant DAFs are observed with values much larger
than those determined for the kinematic quantities in the
arch and girder. Moreover, underestimations in the DAFs
prediction are noted, if nonstandard inertial forces arising
from Coriolis acceleration and centripetal acceleration are
neglected. In particular, for the girder or the arch, the
maximum values of DAFs for bending moment achieved
by NSA are larger than those predicted by other moving
system models and the corresponding percentage errors are
between [28.69/27.5] or [24.21/22.88] for the MFM and SA,
respectively. Moreover, the differences between the NSA and
other moving systemmodels in terms of themaximumDAFs
of the axial force are equal to 11.22% and 8.42%, for the girder,
and 21.33% and 16.66%, for the arch, respectively. For the
hangers, the maximum value of DAFs obtained by the NSA
differs with errors equal to 6.75% and 8.10% for MFM and
SA formulations, respectively. Moreover, the maximum DAF
observed for hangers is equal to 1.49, which is smaller than
the failure stress typically observed in cable elements; that is,
𝑆/𝑆
𝑎

= 2.25. It is worth nothing that the DAFs of the bending
moment in the girder aremuch larger than those observed for
the arch with percentage errors equal to 44%, 45%, and 47%
for MFM, SA, and NSA, respectively.

Additional analyses, reported in Figures 10(a) and 10(b),
are developed with the purpose to investigate the influence
of the loading strip length ratio (𝐿

𝑝
/𝐿) and the normalized

speed (𝜗) of the moving system on the DAFs of the vertical
displacement at 𝑋

1
/𝐿 = 0.75 and 𝑋

1
/𝐿 = 0.5 girder cross

sections. For the sake of brevity, only results achieved by
NSA model are presented. However, for completeness, the
percentage errors in terms of the DAFs between NSA and
other moving system models are reported in Tables 1 and
2. From the analyses, it transpires that the dynamic bridge
behavior appears to be quite dependent from the loading
strip length. As a matter of fact, results at 𝑋

1
/𝐿 = 0.75

girder cross section reported in Figure 10(a) show that the
dynamic amplification generally grows with the loading the
strip length and strongly depends on the moving system
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Figure 6: Time histories of vertical displacement and acceleration for girder cross section at 𝑋
1
/𝐿 = 0.75 and analysis in frequency domains

of vertical acceleration.
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Figure 9: DAFs curves for the maximum axial force in hangers.

speeds. In particular, for short loading strip length, the bridge
achieves the maximum amplification in the medium range
of speeds, that is, for 1.5 ≤ 𝜗 ≤ 1.7. Contrarily, for large
loading strip lengths, the inertial forces of moving system
greatly affect the dynamic behavior of the bridge, especially

with the contributions arising from Coriolis acceleration
and centripetal acceleration (Table 1); as a consequence, the
maximum amplification is observed in the high range of
speeds. On the other hand, results concerning DAFs at the
midspan cross section (Figure 10(b)) are quite unaffected
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Figure 10: Influence of moving system length [𝐿
𝑝
]: DAFs for vertical displacement [Φ

𝑈
𝐺

3 ] versus normalized speed parameter [𝜗] at 3/4 (a)
and 1/2 (b) girder cross sections.

Table 1: Percentage errors of vertical displacement dynamic amplification factors (Φ𝑈
𝐺

3 ) at 𝑋
1
/𝐿 = 0.75 between the Moving Force Model

(MFM), Standard Analysis (SA), and Nonstandard Analysis (NSA) for different normalized speed parameters (𝜗).

𝜗

𝐿
𝑝
/𝐿 = 0.25 𝐿

𝑝
/𝐿 = 0.50 𝐿

𝑝
/𝐿 = 0.75 𝐿

𝑝
/𝐿 = 1.00

Error (%) Error (%) Error (%) Error (%)
MFM SA MFM SA MFM SA MFM SA

0.38 0.08 0.11 1.50 0.08 1.12 1.44 1.82 1.47
0.57 4.82 2.47 5.21 0.44 1.79 0.78 6.43 1.99
0.76 1.27 1.28 2.32 0.19 7.50 1.03 1.89 4.49
0.95 7.31 2.97 16.23 4.73 8.54 1.24 17.54 3.52
1.14 7.26 2.01 18.12 6.75 35.21 20.94 5.21 4.16
1.33 7.37 4.75 16.50 8.90 35.57 18.39 40.37 8.62
1.52 7.60 9.27 14.49 9.98 35.98 20.63 29.01 26.61
1.71 5.22 3.69 12.45 9.87 29.35 17.85 41.33 33.23
1.9 2.19 1.74 7.15 6.48 25.34 16.98 46.05 31.59
2.09 6.42 2.19 3.19 4.00 20.09 14.74 46.44 31.97
2.28 8.66 9.28 5.09 3.47 10.72 6.23 40.53 28.28
2.47 0.33 0.49 9.48 6.74 1.29 1.45 31.88 22.93
2.66 7.32 8.01 14.04 13.05 2.68 3.43 23.50 16.28

by the loading strip length, since comparable predictions
are obtained from each of the investigated moving system
lengths.

The dynamic behavior of the bridge is investigated with
respect to the relative dimensionless arch/girder stiffness
ratio (𝜀

𝐹
). Such quantity is able to identify the interaction

between arch and girder in terms of relative and global
stiffness of the bridge. For conciseness, since nonstandard

inertial forces in the moving system description involve the
largest dynamic amplification effects, only results arising
from the NSA model are proposed. In particular, Figures
11(a) and 11(b) depict the variability of the DAFs for vertical
displacement at the center of the arch and at 𝑋

1
/𝐿 =

0.75 girder cross section, respectively, as a function of the
normalized speed and for several values of the relative
bending stiffness ratio; namely, 𝜀

𝐹
= [0.05, 0.10, 0.15, 0.20].
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Figure 11: Influence of relative bending stiffness [𝜀
𝐹

]: variability of DAFs for vertical displacement at 3/4 girder cross section [Φ
𝑈
𝐺

3 ] (a) and
at the center of the arch [Φ

𝑈
𝐴

3 ] (b) as a function of the normalized speed [𝜗].

Moreover, in Figures 12(a) and 12(b), DAFs curves of bending
moment and axial stress of the girder and the arch profile
are reported, respectively. Results indicate that, for low values
of bending stiffness ratio (𝜀

𝐹
), the dynamic amplification

of both kinematic and stress variables is strongly reduced.
This happens because the arch bridge tends toward a girder-
dominated scheme, involving deep beams for the girder and
a very shallow member for the arch. On the other hand, for
increasing values of 𝜀

𝐹
, a prevailing arch dominated bridge

scheme is achieved, in which the girder is basically lighter
and more flexible. In such case, the arch bridge is affected
by notable dynamic amplification in the medium range of
speeds, namely, for 0.6 ≤ 𝜗 ≤ 1.1, because of resonance issues,
as well as in the high range of speeds, in which the effect
of nonstandard forces of the moving system arising from
Coriolis acceleration and centripetal acceleration becomes
quite relevant.

Finally, results are proposed to evaluate the influence of
the number of hangers (m) on the dynamic behavior of the
bridge. Figures 13 and 14 show the distribution ofDAFs for the
maximum axial force in hangers and the bending moments
along the girder, respectively. The dynamic behavior of the
bridge appears to be quite affected by the total number of
hangers of the structure.

In particular, the results show that, as far as the total
number of hangers increases, the DAFs for both axial force
and bending moment tend to be reduced. Such prediction
can be explained by the fact that, in the case of a bridge
structure with a high number of hangers, the stiffening girder

is supported by closely spaced intermediate support, which
limits the deformability and, consequently, the internal stress
distribution in the structural elements. Moreover, the results
denote that, for low range of transit speed of the moving
system, the DAFs are quite unaffected by the number of
elements in the cable system.As far as the speed of themoving
system increases, the influence of the hanger spacing step
becomes important, leading to strong amplification in the
stresses variables.

4. Conclusions

The main aim of the present analysis is to evaluate the
dynamic amplification effects on tied-arch bridges produced
by moving loads. To this end, a parametric study in terms
of dimensionless variables, strictly related to both bridge and
moving system characteristics, is developed emphasizing the
effects produced by the external mass of the moving system
on the dynamic bridge behavior. In particular, the analysis
focuses attention on the influence of nonstandard inertial
forces involved in themoving systemmass description arising
from Coriolis acceleration and centripetal acceleration. In
order to quantify the amplification effects produced by the
moving loads over the static solution, numerical results are
proposed in terms of dynamic amplification factors (DAFs).
From the analyses, the following conclusions can be drawn:

(i) Extended analyses on DAFs of typical design variable
have shown that relevant amplification is observed for
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Figure 12: Influence of relative bending stiffness [𝜀
𝐹

]: DAFs curves for bending moment and axial force of the girder (a) and the arch (b).

Table 2: Percentage errors of midspan vertical displacement dynamic amplification factors (Φ𝑈
𝐺

3 ) between the Moving Force Model (MFM),
Standard Analysis (SA), and Nonstandard Analysis (NSA) for different normalized speed parameters (𝜗).

𝜗

𝐿
𝑝
/𝐿 = 0.25 𝐿

𝑝
/𝐿 = 0.50 𝐿

𝑝
/𝐿 = 0.75 𝐿

𝑝
/𝐿 = 1.00

Error (%) Error (%) Error (%) Error (%)
MFM SA MFM SA MFM SA MFM SA

0.38 0.68 0.67 1.21 1.44 0.78 0.56 0.48 0.91
0.57 2.03 1.18 1.84 3.23 1.36 1.78 2.14 3.53
0.76 10.36 8.30 4.29 6.50 3.88 5.26 2.43 3.67
0.95 1.30 5.13 19.84 22.04 7.86 7.60 7.72 4.26
1.14 15.25 6.28 26.24 26.53 3.86 3.17 17.53 13.46
1.33 15.73 7.83 1.42 6.07 20.39 11.83 11.58 10.32
1.52 17.80 10.57 18.19 7.63 24.23 15.31 29.17 20.05
1.71 17.15 12.97 23.97 14.07 31.85 23.08 29.81 20.82
1.9 20.23 17.80 25.81 17.50 32.42 25.55 31.33 18.16
2.09 17.00 15.54 28.41 21.31 34.48 27.89 29.80 23.10
2.28 17.36 16.20 28.77 23.69 34.49 28.48 30.05 28.94
2.47 17.93 15.84 30.46 25.10 35.55 29.95 34.13 31.09
2.66 16.74 16.71 30.15 26.43 35.56 30.45 36.63 33.16
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Figure 13: Influence of the number of hangers [𝑚]: DAFs for the maximum axial stress in hangers [Φ
𝑆
𝐻

].

kinematic and stress variables, which are much larger
than the ones obtained from generalized formula
existing in common bridge codes.

(ii) The dynamic behavior of tied-arch bridges appears to
be quite dependent from the effect of the travelling
mass and large underestimations in dynamic amplifi-
cation factors are noted if the inertial forces ofmoving
system are not properly evaluated; in particular, the

analyses denote that nonstandard inertial forces aris-
ing from Coriolis acceleration and centripetal accel-
eration determine the largest dynamic amplification
in both kinematic and stress variables, mainly at high
speeds of the moving system.

(iii) Parametric studies in terms of bridge characteristics
have shown that that for low values of bending
stiffness ratio, that is, in the framework of girder-
dominated bridge schemes, dynamic amplification
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of both kinematic and stress variables is strongly
reduced; contrarily, in the case of arch dominated
bridge schemes, that is, for large values of relative
bridge stiffness, notable dynamic amplification is
observed also in medium range of speeds.

(iv) The analyses in terms of hanger discretization have
shown that a large number of hangers in the cable
system lead to a considerably reduction of the DAFs
involved in the bridge especially in the high range
of moving system speeds. In this context, several

configurations and scenarios have been investigated,
emphasizing the influence of DAFs of typical design
variables on the number of hangers adopted in the
definition of the cable system.

Appendix

The analytic description of the moving mass function 𝜆,
acting on the girder profile, is defined as

𝜆 = 𝜆 (𝑋
1
, 𝑡) = 𝜆ML𝐻 (𝑋

1
+ 𝐿
𝑝

− 𝑐𝑡) 𝐻 (𝑐𝑡 − 𝑋
1
) , (A.1)
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where 𝐻(⋅) is the Heaviside step function, 𝐿
𝑝
is the length

of the moving loads, and 𝜆ML is the mass linear density of
the moving system. Moreover, the expression of the moving
loads, for a fixed inertial reference frame (0, 𝑛

̃
1
, 𝑛
̃
2
, 𝑛
̃
3
), is

defined by the weight and the inertial forces produced by the
inertial characteristics and the unsteady mass distribution of
the moving loads, as follows:

𝑝
𝑋𝑖

= 𝜆𝑔𝑛
̃
𝑖

× 𝑛
̃
3

+
𝑑

𝑑𝑡
[𝜆

𝑑𝑈
𝑚

𝑖

𝑑𝑡
]

= 𝜆𝑔𝑛
̃
𝑖

× 𝑛
̃
3

+
𝑑𝜆

𝑑𝑡

𝑑𝑈
𝑚

𝑖

𝑑𝑡
+ 𝜆

𝑑
2
𝑈
𝑚

𝑖

𝑑𝑡2
,

(A.2)

where 𝑈
̃

𝑚 is the moving load kinematic which can be
expressed as a function of the displacement and rotation fields
of the centroid axis of the girder, that is, (𝑈

𝐺

1
, 𝑈
𝐺

2
, 𝑈
𝐺

3
) and

(Ψ
𝐺

1
, Ψ
𝐺

2
, Ψ
𝐺

3
):

𝑈
𝑚

1
(𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑡) = 𝑈

𝐺

1
(𝑋
1
, 𝑡) − Ψ

𝐺

3
(𝑋
1
, 𝑡) 𝑒,

𝑈
𝑚

2
(𝑋
1
, 𝑡) = 𝑈

𝐺

2
(𝑋
1
, 𝑡) ,

𝑈
𝑚

3
(𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑡) = 𝑈

𝐺

3
(𝑋
1
, 𝑡) + Ψ

𝐺

1
(𝑋
1
, 𝑡) 𝑒.

(A.3)

Since the external forces, defined by (A.2), are described in
terms of a moving coordinate, the time dependent descrip-
tion introduces the following expressions for the velocity and
the acceleration functions:

𝑑𝑈
𝑚

𝑖

𝑑𝑡
=

𝜕𝑈
𝑚

𝑖

𝜕𝑡
+

𝜕𝑈
𝑚

𝑖

𝜕𝑋
1

𝜕𝑋
𝑙 (𝑡)

𝜕𝑡
,

𝑑
2
𝑈
𝑚

𝑖

𝑑𝑡2
=

𝜕
2
𝑈
𝑚

𝑖

𝜕𝑡2
+ 2𝑐

𝜕
2
𝑈
𝑚

𝑖

𝜕𝑡𝜕𝑋
1

+ 𝑐
2

𝜕
2
𝑈
𝑚

𝑖

𝜕𝑋
2

1

,

(A.4)

where the second and the third terms on right hand side
in the acceleration function are known in the literature
as the Coriolis acceleration and centripetal acceleration,
respectively [34]. Finally, on the basis of (A.1)–(A.4) assuming
that the mass does not separate from the beam during its
horizontal and vertical vibrations, the external load functions
are defined by the following relationships:

𝑝
𝑋1

= 𝜆
𝜕
2
𝑈
𝐺

1

𝜕𝑡2
+

𝑑𝜆
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1

𝜕𝑡
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𝑝
𝑋2
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𝜕
2
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2
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+
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𝑑𝑡
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𝐺
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𝜕𝑡
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𝑝
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(A.5)

Moreover, the derivation of the explicit expressions of the
finite element matrixes reported in (4) can be obtained by
using the discrete approximation defined by (3) as follows:

[𝑀
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ment of a short span railway bridge for high-speed traffic using
simulation techniques,” Engineering Structures, vol. 40, pp. 141–
154, 2012.

[17] J. M. Rocha, A. A. Henriques, and R. Calçada, “Probabilistic
safety assessment of a short span high-speed railway bridge,”
Engineering Structures, vol. 71, pp. 99–111, 2014.

[18] P. K. Chatterjee and T. K. Datta, “Dynamic analysis of arch
bridges under travelling loads,” International Journal of Solids
and Structures, vol. 32, no. 11, pp. 1585–1594, 1995.

[19] J.-S. Wu and L.-K. Chiang, “Dynamic analysis of an arch due to
amoving load,” Journal of Sound andVibration, vol. 269, no. 3-5,
pp. 511–534, 2004.

[20] D. Huang, “Dynamic and impact behavior of half-through arch
bridges,” Journal of Bridge Engineering, vol. 10, no. 2, pp. 133–141,
2005.

[21] S.-H. Ju and H.-T. Lin, “Numerical investigation of a steel
arch bridge and interactionwith high-speed trains,” Engineering
Structures, vol. 25, no. 2, pp. 241–250, 2003.

[22] W. Lacarbonara and V. Colone, “Dynamic response of arch
bridges traversed by high-speed trains,” Journal of Sound and
Vibration, vol. 304, no. 1-2, pp. 72–90, 2007.

[23] J.-R. Yang, J.-Z. Li, and Y.-H. Chen, “Vibration analysis of
CFST tied-arch bridge due to moving vehicles,” Interaction and
Multiscale Mechanics, vol. 3, no. 4, pp. 389–403, 2010.

[24] P. H. Wang, T. C. Tseng, and C. G. Yang, “Initial shape of cable-
stayed bridges,” Computers and Structures, vol. 46, no. 6, pp.
1095–1106, 1993.

[25] P.-H. Wang, T.-Y. Tang, and H.-N. Zheng, “Analysis of cable-
stayed bridges during construction by cantilever methods,”
Computers and Structures, vol. 82, no. 4-5, pp. 329–346, 2004.

[26] N. J. Gimsing and C. T. Georgakis, Cable Supported Bridges.
Concept and Design, John Wiley & Sons, 3rd edition, 2012.

[27] P. Lonetti and A. Pascuzzo, “Design analysis of the opti-
mum configuration of self-anchored cable-stayed suspension
bridges,” Structural Engineering andMechanics, vol. 51, no. 5, pp.
847–866, 2014.

[28] D. Bruno, P. Lonetti, and A. Pascuzzo, “An optimization model
for the design of network arch bridges,”Computers & Structures,
vol. 170, pp. 13–25, 2016.

[29] P. Wriggers, Nichtlineare Finite-Element-Methoden, Springer,
Hanover, Germany, 1st edition, 2001.

[30] COMSOL, Comsol Multiphysics Reference Manual, COMSOL,
Burlington, Mass, USA, 2010.

[31] A. W. Hedgren, R. Brockenbrough, and F. S. Merritt, “Arch
bridges,” in Structural Steel Designer’s Handbook, Access Engi-
neering, McGraw Hill, New York, NY, USA, 5th edition, 2011.

[32] European Committee for Standardization, Eurocode 1: Actions
on Structures. Part 3: Traffic Loads on Bridges, 2002.

[33] European Committee for Standardisation, Eurocode 3: Design of
Steel Structures. Part 2: Steel Bridges, 2006.

[34] L. Kwasniewski, H. Li, J. Wekezer, and J. Malachowski, “Finite
element analysis of vehicle-bridge interaction,” Finite Elements
in Analysis and Design, vol. 42, no. 11, pp. 950–959, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


