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In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo
type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the
Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing
iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using
a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of
the new approach and comparison with the Adomian decomposition method is performed.

1. Introduction

Fractional differential equations (FDEs) are generalization to
differential equations (DEs) for noninteger orders. In recent
years, FDEs caught the attention of many researchers because
of their appearance in modeling several phenomenon in
the physical sciences. As many FDEs do not possess exact
solutions on closed forms, analytical and numerical tech-
niques have been implemented to study these equations.
Iterative methods, such as the variational iteration method
(VIM) in [1], the homotopy analysis method (HAM) in [2, 3],
the Adomian decomposition method (ADM) in [4–9], and
the fractional differential transform method in [10], have
been implemented to solve various types of FDEs. These
methods produce a solution in a series form whose terms
are determined sequentially. We refer the reader to [11, 12]
for a comprehensive study of series solutions of fractional
differential equations. Recently, we have introduced a new
series solution for single fractional differential equations [13].
The new approach is a modified form of the well-known
Taylor series expansion, where we overcome the difficulty
of computing iterative fractional derivatives. The efficiency
of the new approach has been illustrated through several
examples. In this paper we extend the idea to multiterm

fractional differential equations. The presented work is a
part of the Master thesis [14]. We consider the left Caputo
fractional derivative𝐷𝛼0+ , defined by [15, 16]

𝐷𝛼0+𝑓 (𝑡)
= {{{{{

1Γ (𝑛 − 𝛼) ∫
𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝑓(𝑛) (𝜏) 𝑑𝜏, if 𝑛 − 1 < 𝛼 < 𝑛,

𝑓(𝑛) (𝑡) , if 𝛼 = 𝑛 ∈ N

(1)

provided the integral exists, where Γ is the well-known
Gamma function.The left Riemann-Liouville fractional inte-
gral, 𝐼𝛼0+ , of order 𝛼 ∈ R+, is defined by

𝐼𝛼0+𝑓 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, 𝛼 > 0. (2)

The left Caputo derivative is related to the left Riemann-
Liouville fractional integral by

𝐷𝛼0+𝑓 (𝑡) = 𝐼𝑛−𝛼0+ 𝑓(𝑛) (𝑡) , 𝑛 − 1 < 𝛼 < 𝑛. (3)
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It is known that

((𝐼𝛼0+𝐷𝛼0+) 𝑓) (𝑡) = 𝑓 (𝑡) − 𝑚−1∑
𝑘=0

𝑓(𝑘) (0)𝑘! 𝑡𝑘,
((𝐷𝛼0+𝐼𝛼0+) 𝑓) (𝑡) = 𝑓 (𝑡) .

(4)

Also, for 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N, 𝑡 > 0, it holds that
𝐷𝛼0+ (𝑡𝜇)
= {{{{{

Γ (𝜇 + 1)Γ (𝜇 − 𝛼 + 1) 𝑡𝜇−𝛼, if 𝜇 > 𝑛 − 1,
0, if 𝜇 ∈ {0, 1, . . . , 𝑛 − 1} .

(5)

This paper is organized as follows. In Section 2, we present
the series solution of nonlinear two-term fractional differen-
tial equations. We illustrate the efficiency of the presented
technique through several examples. We also compare our
results with the ones obtained by the Adomian decompo-
sition method. In Section 3, we present and illustrate the
efficiency of the new series solution for three-term fractional
differential equations of several types. Finally, we conclude
with some remarks in Section 4.

2. Two-Term Fractional Differential Equations

We start with the nonlinear two-term fractional initial value
problems of the form

𝑐1𝐷𝛼10+𝑢 (𝑡) + 𝑐2𝐷𝛼20+𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 > 0 (6)

with

𝑢 (0) = 𝑏, (7)

where 0 < 𝛼2 ≤ 𝛼1 < 1, and 𝑐1 and 𝑐2 are nonzero constants.
We assume that 𝑓(𝑡, 𝑢(𝑡)) is continuous and smooth with
respect to 𝑢(𝑡). We also assume that 𝛼1 and 𝛼2 are rational
numbers with 𝛼1 = 𝑝1/𝑞1 and 𝛼2 = 𝑝2/𝑞2, 𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ N.

2.1. The Expansion Procedure. Let 𝑞 = lcm(𝑞1, 𝑞2); we have𝑞 = 𝑠𝑞1 = 𝑟𝑞2 for some 𝑠, 𝑟 ∈ N.
In the following we expand the solution of problem (6)-

(7) in an infinite series of the form

𝑢 (𝑡) = ∞∑
𝑛=0

𝑎𝑛𝑡𝑛/𝑞, (8)

where the coefficients 𝑎𝑛: 𝑛 ⩾ 0 have to be determined
sequentially in the following manner: From the initial con-
dition (7) we have 𝑢(0) = 𝑏 = 𝑎0. Since 𝐷𝛼0+(𝑐) = 0, for 𝑐
being constant, we have

𝐷𝛼1
0+
𝑢 (𝑡) = ∞∑

𝑛=1

𝑎𝑛𝑠𝑛𝑡𝑛/𝑞−𝑝1/𝑞1 = ∞∑
𝑛=1

𝑎𝑛𝑠𝑛𝑡(𝑛−𝑠𝑝1)/𝑞,
𝐷𝛼2
0+
𝑢 (𝑡) = ∞∑

𝑛=1

𝑎𝑛𝑟𝑛𝑡𝑛/𝑞−𝑝2/𝑞2 = ∞∑
𝑛=1

𝑎𝑛𝑟𝑛𝑡(𝑛−𝑟𝑝2)/𝑞,
(9)

where

𝑠𝑛 = Γ (𝑛/𝑞 + 1)Γ (𝑛/𝑞 − 𝛼1 + 1) ,
𝑟𝑛 = Γ (𝑛/𝑞 + 1)Γ (𝑛/𝑞 − 𝛼2 + 1) .

(10)

By substituting (9) in (6) we have

𝑐1 ∞∑
𝑛=1

𝑎𝑛𝑠𝑛𝑡(𝑛−𝑠𝑝1)/𝑞 + 𝑐2 ∞∑
𝑛=1

𝑎𝑛𝑟𝑛𝑡(𝑛−𝑟𝑝2)/𝑞

= 𝑓(𝑡, ∞∑
𝑛=0

𝑎𝑛𝑡𝑛/𝑞) .
(11)

Applying the well-known Taylor series method to compute
the coefficients {𝑎𝑛; 𝑛 ≥ 1} will lead to computing iterated
fractional derivatives, which are not easily computed in
general. To avoid this difficulty, let 𝑡 = 𝑤𝑞; we have

𝑐1 ∞∑
𝑛=1

𝑎𝑛𝑠𝑛𝑤𝑛−𝑠𝑝1 + 𝑐2 ∞∑
𝑛=1

𝑎𝑛𝑟𝑛𝑤𝑛−𝑟𝑝2

= 𝑓(𝑤𝑞, ∞∑
𝑛=0

𝑎𝑛𝑤𝑛) .
(12)

Shifting the index to zero yields

𝑐1 ∞∑
𝑛=0

𝑎𝑛+1𝑠𝑛+1𝑤𝑛−𝑠𝑝1+1 + 𝑐2 ∞∑
𝑛=0

𝑎𝑛+1𝑟𝑛+1𝑤𝑛−𝑟𝑝2+1

= 𝑓(𝑤𝑞, ∞∑
𝑛=0

𝑎𝑛𝑤𝑛) .
(13)

To avoid the singularity at 𝑤 = 0, we multiply (13) by 𝑤𝑠𝑝1−1;
we have

𝑐1 ∞∑
𝑛=0

𝑎𝑛+1𝑠𝑛+1𝑤𝑛 + 𝑐2 ∞∑
𝑛=0

𝑎𝑛+1𝑟𝑛+1𝑤𝑛−𝑟𝑝2+𝑠𝑝1

= 𝑤𝑠𝑝1−1𝑓(𝑤𝑞, ∞∑
𝑛=0

𝑎𝑛𝑤𝑛) .
(14)

Now, since 𝛼1 = 𝑝1/𝑞1 = 𝑠𝑝1/𝑞 > 𝑟𝑝2/𝑞 = 𝑝2/𝑞2 = 𝛼2, thus𝑠𝑝1 − 𝑟𝑝2 > 0, and (14) has no singularity at 𝑤 = 0.
Let 𝑘 = 𝑠𝑝1 − 𝑟𝑝2 − 1 ≥ 0, and 𝑔(𝑤) = 𝑓(𝑤𝑞, ∑∞𝑛=0 𝑎𝑛𝑤𝑛);

then (14) can be written as

𝑐1 𝑘∑
𝑛=0

𝑎𝑛+1𝑠𝑛+1𝑤𝑛 + ∞∑
𝑛=𝑘+1

(𝑐1𝑎𝑛+1𝑠𝑛+1 + 𝑐2𝑎𝑛−𝑘𝑟𝑛−𝑘) 𝑤𝑛
= 𝑤𝑘+𝑟𝑝2𝑔 (𝑤) .

(15)

We first determine the coefficients 𝑎𝑛 for 𝑛 ≤ 𝑘. By
performing the 𝑛th derivativeof (15) with respect to 𝑤 and
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substituting 𝑤 = 0, we have
𝑐1𝑛!𝑎𝑛+1𝑠𝑛+1 = d𝑛

d𝑤𝑛 (𝑤𝑘+𝑟𝑝2𝑔 (𝑤))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 (16)

which yields

𝑎𝑛+1 = 1𝑐1𝑛!𝑠𝑛+1
d𝑛

d𝑤𝑛 (𝑤𝑘+𝑟𝑝2𝑓(𝑤𝑞,
∞∑
𝑛=0

𝑎𝑛𝑤𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 . (17)

Since 𝑘 + 𝑟𝑝2 ≥ 𝑛 + 1, and 𝑓 is smooth, then for 𝑛 ≤ 𝑘, we
have

d𝑛

d𝑤𝑛 (𝑤𝑘+𝑟𝑝2𝑓(𝑤𝑞,
∞∑
𝑛=0

𝑎𝑛𝑤𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 = 0, (18)

and hence 𝑎𝑛+1 = 0, for 𝑛 ≤ 𝑘.
We nowdetermine 𝑎𝑛, for 𝑛 ≥ 𝑘+1. By performing the 𝑛th

derivative of (15) with respect to𝑤 and substituting𝑤 = 0, we
have

𝑛! (𝑐1𝑎𝑛+1𝑠𝑛+1 + 𝑐2𝑎𝑛−𝑘𝑟𝑛−𝑘) = d𝑛

d𝑤𝑛 (𝑤𝑘+𝑟𝑝2𝑔 (𝑤))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0

= d𝑛

d𝑤𝑛 (𝑤𝑘+𝑟𝑝2𝑓(𝑤𝑞,
∞∑
𝑛=0

𝑎𝑛𝑤𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 .

(19)

Using the well-known Leibniz rule for differentiating the
products, we have

d𝑛

d𝑤𝑛 (𝑤𝑘+𝑟𝑝2𝑔 (𝑤))
= 𝑛∑
𝑗=0

(𝑛𝑗) d𝑗

d𝑤𝑗 (𝑤𝑘+𝑟𝑝2) d𝑛−𝑗

d𝑤𝑛−𝑗 (𝑔 (𝑤)) .
(20)

Since

d𝑗

d𝑤𝑗 (𝑤𝑘+𝑟𝑝2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 =

{{{
0 if 𝑗 ̸= 𝑘 + 𝑟𝑝2,
𝑗! if 𝑗 = 𝑘 + 𝑟𝑝2, (21)

we have

𝑐1𝑎𝑛+1𝑠𝑛+1 + 𝑐2𝑎𝑛−𝑘𝑟𝑛−𝑘
= 1(𝑛 − 𝑗)! ( d𝑛−𝑗

d𝑤𝑛−𝑗 𝑔 (𝑤))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 ,

where 𝑗 = 𝑘 + 𝑟𝑝2.
(22)

From the last equation we determine 𝑎𝑛 : 𝑛 ≥ 𝑘 + 1 and thus
the solution

𝑢 (𝑡) = ∞∑
𝑛=0

𝑎𝑛𝑡𝑛/𝑞 = 𝑎0 + ∞∑
𝑛=𝑘+1

𝑎𝑛𝑡𝑛/𝑞 (23)

is obtained.

Remark 1. In (6), assuming 𝛼1 = 𝛼2 = 1, then 𝑠𝑛 = 𝑟𝑛 = 𝑛, 𝑘 =−1 and 𝑘 + 𝑟𝑝2 = 0.Thus (17) is reduced to

𝑎𝑛+1 = 1𝑐1 (𝑛 + 1)!
d𝑛

d𝑤𝑛 [𝑓(𝑤,
∞∑
𝑛=0

𝑎𝑛𝑤𝑛)]
𝑤=0

, (24)

which coincides with the coefficients obtained by the Taylor
series expansion method. Same comment applies for the
coefficient 𝑎𝑛+1 in (22).

Remark 2. Thealgorithm can be generalized for the two-term
fractional differential equation (6) with 0 < 𝛼2 ≤ 𝛼1 < 𝑁, for
arbitrary integer𝑁. But we have to take care of the existence
of the fractional derivative𝐷𝛼1

0+
(𝑡𝑛/𝑞) (see Eq. (5)), by choosing

the coefficient 𝑎𝑛 = 0, for 𝑛 = 1, . . . , 𝑞𝑁 − 1. This case is
discussed in Section 3.

2.2. Numerical Results

Example 3. Consider the nonlinear two-term fractional ini-
tial value problem

2𝐷1/2
0+
𝑢 (𝑡) + 2Γ (1310)𝐷1/50+ 𝑢 (𝑡)

= Γ (12) (𝑢2 + 𝑡3/10 − 𝑡 + 1) , 𝑡 > 0, (25)

with

𝑢 (0) = 0. (26)

The exact solution of the problem is 𝑢(𝑡) = 𝑡1/2.
Applying the current algorithm, we have 𝛼1 = 1/2 =𝑝1/𝑞1, 𝛼2 = 1/5 = 𝑝2/𝑞2, 𝑞 = l.c.m(𝑞1, 𝑞2) = 10, 𝑠 = 5,

and 𝑟 = 2. We expand the solution in an infinite series of the
form

𝑢 (𝑡) = ∞∑
𝑛=0

𝑎𝑛𝑡𝑛/10. (27)

The initial condition in (26) yields 𝑎0 = 0. We have 𝑡 = 𝑤𝑞 =𝑤10 and
𝑔 (𝑤) = 𝑓 (𝑤10, 𝑢 (𝑤))

= Γ (12)((
∞∑
𝑛=0

𝑎𝑛𝑤𝑛)2 + 𝑤3 − 𝑤10 + 1) . (28)

Since 𝑔(𝑤) is continuous and smooth with respect to 𝑤, we
have

𝑎𝑛+1 = 0, for 𝑛 ≤ 𝑘 = 𝑠𝑝1 − 𝑟𝑝2 − 1 = 2. (29)

Thus 𝑎1 = 𝑎2 = 𝑎3 = 0. The function 𝑔(𝑤) satisfies the
assumption of the proposed algorithm, and it holds that
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d𝑚

d𝑤𝑚 (𝑔 (𝑤))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 = Γ (12)

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

1 𝑚 = 0
3! 𝑚 = 3
6!𝑎23 𝑚 = 6
2 × 7!𝑎3𝑎4 𝑚 = 7
8!𝑎24 + 2 × 8!𝑎3𝑎5 𝑚 = 8
2! (𝑎4𝑎5 + 𝑎3𝑎3) 𝑚 = 9
−10! + 10!𝑎25 + 2 × 10! (𝑎4𝑎6 + 𝑎3𝑎7) 𝑚 = 10
... ...

(30)

The computation above is made using the software Mathe-
matica version 9. For 𝑛 ≥ 3; substituting (30) in (22) yields

2𝑎𝑛+1𝑠𝑛+1 + 2Γ (1310) 𝑎𝑛−2𝑟𝑛−2
= 1(𝑛 − 4)! d𝑛−4

d𝑤𝑛−4 (𝑔 (𝑤))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 ,

(31)

where

𝑠𝑛+1 = Γ ((𝑛 + 1) /10 + 1)Γ ((𝑛 + 1) /10 + 1/2) ,
𝑟𝑛−2 = Γ ((𝑛 − 2) /10 + 1)Γ ((𝑛 − 2) /10 + 4/5) .

(32)

Applying (31) together with 𝑎1 = 𝑎2 = 𝑎3 = 0, we have
𝑎4 = 0,
𝑎5 = 1,
𝑎𝑛 = 0,
𝑛 ≥ 6.

(33)

Thus,

𝑢 (𝑡) = 𝑎5𝑡5/10 = 𝑡1/2, (34)

and the exact solution of problem (25)-(26) is obtained.

In the following we compare our results with the Ado-
mian decomposition method (ADM). Assume that the non-
linear function 𝑓(𝑢) = 𝑢2 and the solution 𝑢(𝑡) can be
expressed in the following series form:

𝑢 (𝑡) = ∞∑
𝑛=0

𝑢𝑛 (𝑡) ,
𝑓 (𝑢) = ∞∑

𝑛=0

𝐴𝑛,
(35)

where 𝐴𝑛, 𝑛 = 0, 1, 2, . . . are the well-known Adomian
polynomials that can be derived from [17]

𝐴𝑛 = 1𝑛! d𝑛

d𝛽𝑛 [[𝑓(
∞∑
𝑗=0

𝛽𝑗𝑢𝑗)]]𝛽=0 , 𝑗 ≥ 0. (36)

For recent advances in the Adomian decomposition method
we refer the reader to [18, 19]. For 𝑓(𝑢) = 𝑢2, we have

𝐴0 = 𝑢20,
𝐴1 = 2𝑢0𝑢1,

𝐴2 = 2𝑢0𝑢2 + 𝑢21,
𝐴3 = 2𝑢0𝑢3 + 2𝑢1𝑢2,

𝐴4 = 2𝑢0𝑢4 + 2𝑢1𝑢3 + 𝑢22,
...

(37)

Applying the Riemann-Liouville fractional integral operator𝐼1/2
0+

to (25) and substituting

𝐼1/2
0+
𝐷1/5
0+
𝑢 (𝑡) = 𝐼3/10

0+
𝑢 (𝑡) , (38)

we have

𝑢 (𝑡) = Γ (1/2)2 𝐼1/2
0+
(1 + 𝑡3/10 − 𝑡) − Γ (1310) 𝐼3/100+ 𝑢 (𝑡)

+ Γ (1/2)2 𝐼1/2
0+
(𝑢2 (𝑡))

= 𝑡1/2 + 0.853958𝑡4/5 − 0.666667𝑡3/2
− Γ (1310) 𝐼3/100+ (∞∑

𝑛=0

𝑢𝑛 (𝑡))
+ Γ (1/2)2 𝐼1/2

0+
(∞∑
𝑛=0

𝐴𝑛) = ∞∑
𝑛=0

𝑢𝑛 (𝑡) .

(39)
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Set

𝑢0 = 𝑡1/2 + 0.853958𝑡4/5 − 0.666667𝑡3/2 (40)

and balancing (39) yields

𝑢𝑛+1 = −Γ (1310) 𝐼3/100+ (𝑢𝑛) + Γ (1/2)2 𝐼1/2
0+
(𝐴𝑛) ,
𝑛 = 0, 1, 2, . . . (41)

Evaluating the first 5 term of the power series solution, we
obtain the approximate solution 𝑢(4)(𝑡) = ∑4𝑛=0 𝑢𝑛(𝑡), where
𝑢(4) (𝑡) = 𝑡0.5 + 0.257998𝑡2 − 2.798359𝑡2.7

− 1.454522𝑡3 + 8.855605𝑡3.4 + 9.799202𝑡3.7
+ 2.317936𝑡4 − 11.599906𝑡4.1
− 22.429449𝑡4.4 − 11.273123𝑡4.7
+ 6.685081𝑡4.8 − 1.388180𝑡5
+ 23.109057𝑡5.1 + 20.278401𝑡5.4
− 1.404129𝑡5.5 + 5.305238𝑡5.7
− 11.070905𝑡5.8 + 0.278605𝑡6
− 17.334122𝑡6.1 − 7.918245𝑡6.4
+ 2.012699𝑡6.5 − 0.885674𝑡6.7
+ 7.156236𝑡6.8 + 5.827855𝑡7.1
+ 1.140180𝑡7.4 − 1.153180𝑡7.5
− 2.127835𝑡7.8 − 0.742611𝑡8.1
+ 0.309488𝑡8.5 + 0.244589𝑡8.8
− 0.032578𝑡9.5,

(42)

which is not the exact solution. Solving the problem by the
ADM with 𝑢0 = 𝑡0.5 yields 𝑈(4)(𝑡) = ∑4𝑛=0𝑈𝑛(𝑡), where
𝑈(4) (𝑡) = 𝑡0.5 − 0.853958𝑡0.8 + 0.682106𝑡1.1

− 0.515733𝑡1.4 + 0.666667𝑡1.5
+ 0.0372208𝑡1.7 − 1.527774𝑡1.8
+ 2.25291𝑡2.1 − 2.68363𝑡2.4 + 0.711111𝑡2.5
− 2.576649𝑡2.8 + 5.473545𝑡3.1
+ 0.8533333𝑡3.5 − 4.19714𝑡3.8
+ 1.078789𝑡4.5,

(43)

which is again not the exact solution. Figure 1 depicts the
exact solution 𝑢(𝑡) obtained by the current algorithm and
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Figure 1: Comparison between the exact and approximate solutions
obtained by the ADM for problem ((25)-(26)).

the approximate solutions 𝑢(4)(𝑡) and 𝑈(4)(𝑡) obtained by the
Adomian decomposition method.

Example 4. Consider the nonlinear two-term fractional ini-
tial value problem

𝐷4/5
0+
𝑢 (𝑡) + 𝐷1/2

0+
𝑢 (𝑡) = 𝑢 (𝑡) sin (𝑡)𝑢2 (𝑡) + 1 , 𝑡 > 0, (44)

with

𝑢 (0) = 1. (45)

This example has been discussed in [20], where the problem
is transformed to a fractional integral equation, and then the
Adams-Bashforth-Moultonmethod is used with step size ℎ =1/50 to approximate the solution.

Applying the current algorithm, we have 𝑝1 = 4, 𝑞1 =5, 𝑝2 = 1, 𝑞2 = 2, 𝑞 = l.c.m(5, 2) = 10, 𝑠 = 2, 𝑟 = 5, 𝑘 = 2,
and

𝑎𝑛+1𝑠𝑛+1 + 𝑎𝑛−2𝑟𝑛−2
= 1(𝑛 − 7)! ( d𝑛−7

d𝑤𝑛−7𝑓(𝑤10,
∞∑
𝑛=0

𝑎𝑛𝑤𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 ,

(46)

where

𝑓(𝑤10, ∞∑
𝑛=0

𝑎𝑛𝑤𝑛) = sin (𝑤10)∑∞𝑛=0 𝑎𝑛𝑤𝑛(∑∞𝑛=0 𝑎𝑛𝑤𝑛)2 + 1 . (47)



6 Discrete Dynamics in Nature and Society

Table 1: The error of Example 4 for𝑁 = 35 and different values of𝑡.
𝑡𝑖 𝐸35(𝑡𝑖)
0.1 1.16844 × 10−10
0.2 8.36081 × 10−9
0.3 9.93967 × 10−8
0.4 5.28261 × 10−7
0.5 1.93074 × 10−6
0.6 5.47664 × 10−6
0.7 0.0000130833
0.8 0.0000276624
0.9 0.0000534896
1.0 0.0000967893
The initial condition 𝑢(0) = 1 yields 𝑎0 = 1. We apply (46) to
compute the first 13 nonzero terms of 𝑎𝑛, and we have

𝑢 (𝑡) = 1 + 0.298242𝑡1.8 − 0.227519𝑡2.1
+ 0.167717𝑡2.4 − 0.119885𝑡2.7 + 0.0833333𝑡3
− 0.0564631𝑡3.3 + 0.0373656𝑡3.6
− 0.0280303𝑡3.8 − 0.0241927𝑡3.9
+ 0.0179008𝑡4.1 + 0.0153477𝑡4.2
− 0.0112111𝑡4.4.

(48)

Since the exact solution of problem (44)-(45) is not available
in a closed form, we define the error 𝐸𝑁(𝑡) by

𝐸𝑁 (𝑡𝑖) = ∫𝑡𝑖
0
(P𝑢𝑁 (𝑡))2 d𝑡, 𝑡 ∈ [0, 𝑡𝑖] , (49)

where

P𝑢 (𝑡) = 𝐷4/5
0+
𝑢 (𝑡) + 𝐷1/2

0+
𝑢 (𝑡) − 𝑢 (𝑡) sin (𝑡)𝑢2 (𝑡) + 1 ,

𝑢𝑁 (𝑡) = 𝑁∑
𝑘=0

𝑎𝑘𝑡𝑘/10.
(50)

Tables 1 and 2 present the error 𝐸𝑁 for different values of𝑁. One can see that the error decreases with 𝑁 and more
accuracy can be achieved by considering more terms. Also,
the error increases with 𝑡, as any other series solutions.
3. Three-Term Fractional Differential
Equations

We consider the nonlinear three-term fractional initial value
problem of the form

𝑐1𝐷𝛼10+𝑢 (𝑡) + 𝑐2𝐷𝛼20+𝑢 (𝑡) + 𝑐3𝐷𝛼30+𝑢 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,
𝑡 > 0, (51)

Table 2: The error of Example 4 at 𝑡 = 1 and for different values of𝑁.
𝑁 𝐸𝑁(1)
5 0.0681689
10 0.0681689
15 0.0681689
20 0.067155
25 0.0248829
30 0.00882027
35 0.0000967893

with

𝑢(𝑖) (0) = 𝑏𝑖, 𝑖 = 0, 1, . . . , 𝑁1 − 1, (52)

where

0 < 𝛼3 ≤ 𝛼2 ≤ 𝛼1 < 𝑁1,
𝑁1 − 1 < 𝛼1 < 𝑁1,
𝑁2 − 1 < 𝛼2 ≤ 𝑁2 ≤ 𝑁1,

0 < 𝑁3 − 1 < 𝛼3 ≤ 𝑁3 ≤ 𝑁2,
(53)

and 𝑐1, 𝑐2, and 𝑐3 are nonzero constants. We assume that𝑓(𝑡, 𝑦(𝑡)) is continuous and smooth with respect to 𝑢(𝑡).
We also assume that 𝛼1, 𝛼2, and 𝛼3 are rational numbers
with 𝛼1 = 𝑝1/𝑞1, 𝛼2 = 𝑝2/𝑞2, and 𝛼3 = 𝑝3/𝑞3, where𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, 𝑞3 ∈ N. Let 𝑞 = lcm(𝑞1, 𝑞2, 𝑞3); we have𝑞 = 𝑠𝑞1 = 𝑟𝑞2 = V𝑞3 for 𝑠, 𝑟 and V ∈ N.

Applying analogous steps for the case of the two-term
fractional equations, we seek a solution of the form

𝑢 (𝑡) = ∞∑
𝑛=0

𝑎𝑛𝑡𝑛/𝑞 = (𝑁1−1)𝑞∑
𝑛=0

𝑎𝑛𝑡𝑛/𝑞 + ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛𝑡𝑛/𝑞

= 𝑁1−1∑
𝑛=0

𝑎𝑛𝑞𝑡𝑛 + ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛𝑡𝑛/𝑞.
(54)

From the initial condition (52) we have 𝑢(𝑖)(0) = 𝑏𝑖 = 𝑖!𝑎𝑖𝑞,
and thus, 𝑎𝑖𝑞 = 𝑏𝑖/𝑖!, 𝑖 = 0, 1, . . . , 𝑁1 − 1.

Using the fact that𝐷𝛼0+(𝑡𝑛) = 0, for 𝛼 > 𝑛 ∈ N, we have

𝐷𝛼1
0+
𝑢 (𝑡) = ∞∑

𝑛=(𝑁1−1)𝑞+1

𝑎𝑛𝑠𝑛𝑡(𝑛−𝑠𝑝1)/𝑞,

𝐷𝛼2
0+
𝑢 (𝑡) = 𝑁1−1∑

𝑛=𝑁2

𝑎𝑛𝑞𝜌𝑛𝑞𝑡𝑛−𝛼2 + ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛𝑟𝑛𝑡(𝑛−𝑟𝑝2)/𝑞,

𝐷𝛼3
0+
𝑢 (𝑡) = 𝑁1−1∑

𝑛=𝑁3

𝑎𝑛𝑞]𝑛𝑞𝑡𝑛−𝛼3 + ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛V𝑛𝑡(𝑛−V𝑝3)/𝑞,

(55)

where 𝑠𝑛 = Γ(𝑛/𝑞+1)/Γ(𝑛/𝑞−𝛼1+1), 𝑟𝑛 = Γ(𝑛/𝑞+1)/Γ(𝑛/𝑞−𝛼2 + 1), 𝜌𝑛 = Γ(𝑛 + 1)/Γ(𝑛 + 1 − 𝛼2), V𝑛 = Γ(𝑛/𝑞 + 1)/Γ(𝑛/𝑞 −𝛼3 + 1), and ]𝑛 = Γ(𝑛 + 1)/Γ(𝑛 + 1 − 𝛼3).
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Substituting (55) in (51), we have

𝑐1 ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛𝑠𝑛𝑡(𝑛−𝑠𝑝1)/𝑞 + 𝑐2𝑁1−1∑
𝑛=𝑁2

𝑎𝑛𝑞𝜌𝑛𝑞𝑡𝑛−𝛼2

+ 𝑐2 ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛𝑟𝑛𝑡(𝑛−𝑟𝑝2)/𝑞 + 𝑐3𝑁1−1∑
𝑛=𝑁3

𝑎𝑛𝑞]𝑛𝑞𝑡𝑛−𝛼3

+ 𝑐3 ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛V𝑛𝑡(𝑛−V𝑝3)/𝑞 = 𝑓(𝑡, ∞∑
𝑛=0

𝑎𝑛𝑡𝑛/𝑞) .

(56)

Since the coefficients 𝑎𝑛𝑞, 𝑛 = 0, . . . , 𝑁1 − 1, are known, we
write the last equation in the form

𝑐1 ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛𝑠𝑛𝑡(𝑛−𝑠𝑝1)/𝑞 + 𝑐2 ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛𝑟𝑛𝑡(𝑛−𝑟𝑝2)/𝑞

+ 𝑐3 ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑎𝑛V𝑛𝑡(𝑛−V𝑝3)/𝑞

= 𝑓(𝑡, ∞∑
𝑛=0

𝑎𝑛𝑡𝑛/𝑞) − 𝑐2𝑁1−1∑
𝑛=𝑁2

𝑎𝑛𝑞𝜌𝑛𝑞𝑡𝑛−𝛼2

− 𝑐3𝑁1−1∑
𝑛=𝑁3

𝑎𝑛𝑞]𝑛𝑞𝑡𝑛−𝛼3 .

(57)

Let 𝑤 = 𝑡1/𝑞; then (57) reduces to
∞∑

𝑛=(𝑁1−1)𝑞+1

𝑐1𝑎𝑛𝑠𝑛𝑤𝑛−𝑠𝑝1 + ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑐2𝑎𝑛𝑟𝑛𝑤𝑛−𝑟𝑝2

+ ∞∑
𝑛=(𝑁1−1)𝑞+1

𝑐3𝑎𝑛V𝑛𝑤𝑛−V𝑝3

= 𝑓(𝑤𝑞, ∞∑
𝑛=0

𝑎𝑛𝑤𝑛) − 𝑁1−1∑
𝑛=𝑁2

𝑐2𝑎𝑛𝑞𝜌𝑛𝑞𝑤𝑞(𝑛−𝛼2)

− 𝑁1−1∑
𝑛=𝑁3

𝑐3𝑎𝑛𝑞]𝑛𝑞𝑤𝑞(𝑛−𝛼3).

(58)

Substituting 𝑧 = (𝑁1 − 1)𝑞 + 1 and
𝑔 (𝑤) = 𝑓(𝑤𝑞, ∞∑

𝑛=0

𝑎𝑛𝑤𝑛) − 𝑁1−1∑
𝑛=𝑁2

𝑐2𝑎𝑛𝑞𝜌𝑛𝑞𝑤𝑞(𝑛−𝛼2)

− 𝑁1−1∑
𝑛=𝑁3

𝑐3𝑎𝑛𝑞]𝑛𝑞𝑤𝑞(𝑛−𝛼3)
(59)

and shifting the indices to zero, we have
∞∑
𝑛=0

𝑐1𝑎𝑛+𝑧𝑠𝑛+𝑧𝑤𝑛−𝑠𝑝1+𝑧 + ∞∑
𝑛=0

𝑐2𝑎𝑛+𝑧𝑟𝑛+𝑧𝑤𝑛−𝑟𝑝2+𝑧

+ ∞∑
𝑛=0

𝑐3𝑎𝑛+𝑧V𝑛+𝑧𝑤𝑛−V𝑝3+𝑧 = 𝑔 (𝑤) .
(60)

To avoid singularity we multiply both sides in (60) by 𝑤𝑠𝑝1−𝑧;
we have

∞∑
𝑛=0

𝑐1𝑎𝑛+𝑧𝑠𝑛+𝑧𝑤𝑛 + ∞∑
𝑛=0

𝑐2𝑎𝑛+𝑧𝑟𝑛+𝑧𝑤𝑛−𝑟𝑝2+𝑠𝑝1

+ ∞∑
𝑛=0

𝑐3𝑎𝑛+𝑧V𝑛+𝑧𝑤𝑛−V𝑝3+𝑠𝑝1 = 𝑤𝑠𝑝1−𝑧𝑔 (𝑤) .
(61)

Equation (61) can be written as

𝑘1−1∑
𝑛=0

𝑐1𝑎𝑛+𝑧𝑠𝑛+𝑧𝑤𝑛 + 𝑘2−1∑
𝑛=𝑘1

(𝑐1𝑎𝑛+𝑧𝑠𝑛+𝑧 + 𝑐2𝑎𝑛+𝑧−𝑘1𝑟𝑛+𝑧−𝑘1)
⋅ 𝑤𝑛 + ∞∑

𝑛=𝑘2

(𝑐1𝑎𝑛+𝑧𝑠𝑛+𝑧 + 𝑐2𝑎𝑛+𝑧−𝑘1𝑟𝑛+𝑧−𝑘1
+ 𝑐3𝑎𝑛+𝑧−𝑘2V𝑛+𝑧−𝑘2)𝑤𝑛 = 𝑤𝑠𝑝1−𝑧𝑔 (𝑤) ,

(62)

where 𝑘1 = 𝑠𝑝1 − 𝑟𝑝2 and 𝑘2 = 𝑠𝑝1 − V𝑝3.
Applying analogs steps for deriving (22), we have

𝑐1𝑎𝑛+𝑧𝑠𝑛+𝑧 + 𝑐2𝑎𝑛+𝑧−𝑘1𝑟𝑛+𝑧−𝑘1 + 𝑐3𝑎𝑛+𝑧−𝑘2V𝑛+𝑧−𝑘2
= 1(𝑛 − 𝑗)! [ d𝑛−𝑗

d𝑤𝑛−𝑗𝑔 (𝑤)]
𝑤=0

for 𝑛 ≥ 𝑘2, (63)

where 𝑗 = 𝑠𝑝1 − 𝑧. From the last recursion we determine𝑎𝑛+𝑧, 𝑛 ≥ 𝑘2.
Remark 5. Our derivation is based on the facts that the
nonlinear function is smooth and the fractional differential
equations is of constant coefficients. In case if one of these
conditions does not hold, a modified treatment will be
considered as we will see in Example 7.

3.1. Numerical Results

Example 6. Consider the Bagely-Torvik initial value problem

𝐷5/2
0+
𝑢 (𝑡) + 𝐷20+𝑢 (𝑡) − 2√𝜋𝐷1/20+ 𝑢 (𝑡) + 4𝑢 (𝑡) = 𝑔 (𝑡) ,

𝑡 ∈ [0, 1] , (64)

𝑢 (0) = 𝑢󸀠 (0) = 𝑢󸀠󸀠 (0) = 0, (65)

where

𝑔 (𝑡) = 4𝑡9 − 13107212155 𝑡17/2 + 72𝑡7 + 49152143√𝜋𝑡13/2. (66)

This example has been discussed in [21] using a Cheby-
shev spectral method, where the solution has been approx-
imated by the shifted Chebyshev polynomials with different
degrees. Then the exact solution 𝑢(𝑡) = 𝑡9 was obtained by
considering the shifted Chebyshev polynomial of degree 9.
We mention here that there are simple typos in presenting
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the example in (64) and in (66) and we correct them here.
Applying the current algorithm we have

𝑝1 = 5,
𝑝2 = 4,
𝑝3 = 1,
𝑞1 = 𝑞2 = 𝑞3 = 2,
𝑞 = lcm (𝑞1, 𝑞2, 𝑞3) = 2,
𝑠 = 1,
𝑟 = 1,
V = 1,
𝑘1 = 1,
𝑘2 = 4.

(67)

We expand the solution in infinite series of the form 𝑢(𝑡) =∑∞𝑛=0 𝑎𝑛𝑡𝑛/2.The initial condition in (65) yields 𝑎0 = 𝑎2 = 𝑎4 =0. Let 𝑡 = 𝑤2; applying (59) we have
𝑔 (𝑤) = 4𝑤18 − 13107212155 𝑤17 + 72𝑤14 + 49152143√𝜋𝑤13

− 4(∞∑
𝑛=0

𝑎𝑛𝑤𝑛) ,
(68)

and it holds that
d𝑚

d𝑤𝑚𝑔 (𝑤)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

−4𝑎1 if 𝑚 = 1
−4 × 2!𝑎2 if 𝑚 = 2
... ...
13! ( 49152143√𝜋 − 4𝑎13) if 𝑚 = 13
14! (72 − 4𝑎14) if 𝑚 = 14
−4 × 15!𝑎15 if 𝑚 = 15
−4 × 16!𝑎16 if 𝑚 = 16
17! (−13107212155 − 4𝑎17) if 𝑚 = 17
18! (4 − 4𝑎18) if 𝑚 = 18
−4!𝑎19 if 𝑚 = 19
... ...

(69)

Using (63) and (69), we have

𝑎𝑛+5𝑠𝑛+5 + 𝑎𝑛+4𝑟𝑛+4 − 2√𝜋𝑎𝑛+1V𝑛+1
= 1𝑛! ( d𝑛

d𝑤𝑛𝑔 (𝑤))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=0 , 𝑛 ≥ 4, (70)

where

𝑠𝑛+5 = Γ ((𝑛 + 5) /2 + 1)Γ ((𝑛 + 5) /2 − 3/2) ,
𝑟𝑛+4 = (𝑛 + 4) (𝑛 + 2)4 ,
V𝑛+1 = Γ ((𝑛 + 1) /2 + 1)Γ ((𝑛 + 1) /2 + 1/2) .

(71)

Since 𝑔(𝑤) is smooth, then 𝑎𝑛+5 = 0, for 𝑛 < 4.We now apply
the last recursion together with 𝑎0 = ⋅ ⋅ ⋅ = 𝑎8 = 0, to compute𝑎𝑛+5, for 𝑛 ≥ 4. For 𝑛 = 4, we have

𝑎9𝑠9 + 𝑎8𝑟8 − 2√𝜋𝑎5V5 = 𝑔(4) (0) = 0, (72)

and thus 𝑎9 = 0.
Applying analogous arguments yields 𝑎10 = ⋅ ⋅ ⋅ = 𝑎17 = 0.

For 𝑛 = 13, we have
𝑎18𝑠18 + 𝑎17𝑟17 − 2√𝜋𝑎14V14 = 49152143√𝜋 − 4𝑎13, (73)

which, together with 𝑎17 = 𝑎14 = 𝑎13 = 0, implies that 𝑎18 = 1.
For 𝑛 = 14, we have

𝑎19𝑠19 + 𝑎18𝑟18 − 2√𝜋𝑎15V15 = 72 − 4𝑎14, (74)

but 𝑎18 = 1 and 𝑎15 = 𝑎14 = 0; thus 𝑎19 = 0. Applying the
same steps yields 𝑎20 = 𝑎21 = 0. For 𝑛 = 17, we have

𝑎22𝑠22 + 𝑎21𝑟21 − 2√𝜋𝑎18V18 = −13107212155 − 4𝑎17, (75)

and thus 𝑎22 = 0.
Proceeding in the same manner, we have 𝑎𝑛+1 = 0 for 𝑛 ≥18. Thus,

𝑢 (𝑡) = 𝑎18𝑡18/2 = 𝑡9, (76)

and the exact solution of problem (64)-(65) is obtained.

In the following example we show that the current algo-
rithm can be applied to more general multiterm fractional
differential equations which are not necessary of the form in
(51).

Example 7. Consider the nonlinear three-term fractional
initial value problem

𝑡𝐷4/3
0+
𝑢 (𝑡) + 𝐷1/3

0+
𝑢 (𝑡) + 𝑡19/6𝐷1/6

0+
𝑢 (𝑡)

= 334Γ (8/3) 𝑡8/3 + 1296935Γ (5/6)𝑢2 (𝑡) ,
(77)

with

𝑢 (0) = 𝑢󸀠 (0) = 0. (78)

The exact solution for this problem is 𝑢(𝑡) = 𝑡3.
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Applying the current algorithm we have 𝑞 = 6. We then
expand the solution in an infinite series of the form 𝑢(𝑡) =∑∞𝑛=0 𝑎𝑛𝑡𝑛/6. From the initial condition (78), we have 𝑎0 =𝑎6 = 0. To guarantee the existence of the fractional derivative𝐷4/3
0+
𝑢(𝑡) we choose 𝑎1 = ⋅ ⋅ ⋅ = 𝑎5 = 0. Let 𝑤 = 𝑡1/6; then (77)

reduces to

𝑎1𝑟1 + 18∑
𝑛=0

(𝑎𝑛+2𝑠𝑛+2 + 𝑎𝑛+2𝑟𝑛+2) 𝑤𝑛

+ ∞∑
𝑛=19

(𝑎𝑛+2𝑠𝑛+2 + 𝑎𝑛+2𝑟𝑛+2 + 𝑎𝑛−18V𝑛−18) 𝑤𝑛

= 33𝑤164Γ (8/3) + 1296935Γ (5/6) (
∞∑
𝑛=0

𝑎𝑛𝑤𝑛)
2 ,

(79)

where 𝑠𝑛 = Γ(𝑛/6 + 1)/Γ(𝑛/6 − 1/3), 𝑟𝑛 = Γ(𝑛/6 + 1)/Γ(𝑛/6 +2/3), and V𝑛 = Γ(𝑛/6 + 1)/Γ(𝑛/6 + 5/6).
Performing the 𝑛th derivatives one can see that 𝑎𝑛 = 0 for𝑛 < 16. For 𝑛 = 16, we have

𝑎18𝑠18 + 𝑎18𝑟18 = 334Γ (8/3) , (80)

which yields 𝑎18 = 1.
Also, 𝑎19 = ⋅ ⋅ ⋅ = 𝑎35 = 0.
For 𝑛 = 36, we have

𝑎38𝑠38 + 𝑎38𝑟38 + 𝑎18V18 = 1296935Γ (5/6) , (81)

which yields 𝑎38 = 0.
Following analogous steps, we have 𝑎𝑛 = 0 for 𝑛 > 36.

Thus

𝑢 (𝑡) = 𝑎18𝑡18/6 = 𝑡3, (82)

which is the exact solution.

4. Conclusion

For fractional differential equations of order 𝑛 − 1 < 𝛼 <𝑛, it is common to obtain a series solution in the form∑∞𝑛=0 𝑎𝑛𝑡𝛼(𝑛). The question is how to obtain the coefficients𝑎𝑛, 𝑛 = 0, 1, . . .. Naturally, if the problem is of fractional order,
the differentiation is also of fractional order. In this paper,
we presented a new algorithm for obtaining a series solution
for nonlinear multiterm fractional differential equations of
Caputo type, where we overcome the use of fractional differ-
entiation.We employed a transformation that allows us to use
ordinary differentiation rather than fractional differentiation
to recursively compute the coefficient of the series expansion.
Then the terms of the series, 𝑎𝑛, are computed sequentially
using a closed form formula. We applied the new algorithm
to several types of multiterm fractional differential equations,
where accurate solutions as well as exact solutions in closed
forms have been obtained. For one example it is noted that
the current algorithm is more efficient than the ADM as it is
more easier to apply and it produces the exact solution while

the ADMdoes not.We have developed the new algorithm for
two- and three-term fractional equations, while the idea can
be extended to multiterm fractional equations of arbitrary
order; obtaining a general formula in this case is not an easy
task. The current algorithm can be modified to deal with the
fractional multiterm time-diffusion equations.
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