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 The aim of this research is to provide a high performance vector control of 
single-phase Induction Motor (IM) drives. It is shown that in the rotating 
reference frame, the single-phase IM equations can be separated into forward 
and backward equations with the balanced structure. Based on this, a method 
for vector control of the single-phase IM, using two modified Rotor Field-
Oriented Control (RFOC) algorithms is presented. In order to accommodate 
forward and backward rotor fluxes in the presented controller, an Extended 
Kalman Filter (EKF) with two different forward and backward currents that 
are switched interchangeably (switching forward and backward EKF), is 
proposed. Simulation results illustrate the effectiveness of the proposed 
algorithm. 
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1. INTRODUCTION 

Variable Frequency Drives (VFDs) applications are applied in many industries to control a wide 
range of speed and torque for electrical machines. The aim of using VFDs in these applications can be 
summarized as follows: energy saving, torques maximization, torque pulsation minimization, power factor 
improvement, Total Harmonic Distortion (THD) reduction and etc [1].  

In particular, the use of VFDs for single-phase Induction Motors (IMs) is recommended in some 
applications such as blowers, washing machines, mixers, air conditioner, pumps, fans and etc [2]. Besides 
VFDs for single-phase IMs, drivers control strategies such as scalar-based control and vector-based control 
have been also proposed to drive the single-phase IMs speed [3]-[21]. Recently, Field-Oriented Control 
(FOC) of single-phase IMs is extensively adopted to obtain high dynamic performance in drive systems.  

Some of the control strategies such as Indirect Rotor Field-Oriented Control (IRFOC) method needs 
specific knowledge of the rotor flux. A most common technique to obtain the information of rotor flux in 
IRFOC strategy is using a pure integration. However, using a pure integration to obtain the rotor flux is 
sensitive to different type of problems such as DC-offset problem. To solve this problem, many efforts based 
on Artificial Neural Network (ANN), Model Reference Adaptive System (MRAS), Extended Kalman Filter 
(EKF), Luenberger Observer (LO), Sliding Mode Observer (SMO) and etc are made to improve on the 
estimation of rotor flux in the IM drives [22]-[33]. Most of these techniques are only applicable to vector 
controlled 3-phase motor drive systems.  

The main focus of the research presented in this paper is to propose a novel method to estimate rotor 
flux for the case of high performance IRFOC of single-phase IM drives. In order to estimate forward and 
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backward rotor fluxes in the presented IRFOC strategy, an EKF with two different forward and backward 
currents that are switched interchangeably (switching forward and backward EKF) is utilized. In spite of 
computational complexity of the EKF, this method has been recognized as an appropriate method to estimate 
state variables in vector controlled IM drive systems because of simultaneous identification of parameters 
and taking system/process and measurement noises. Mathematical analysis and Matlab simulations have been 
performed to demonstrate the performance of the proposed method. 

 
 

2. SINGLE-PHASE IM MODEL 
The (d-q) model of a single-phase IM with two different windings can be described by the following 

equations [7] (in this paper superscript “s” and “e” indicate that the variables are in the stationary and rotating 
reference frames respectively): 
Stator (d-q) voltage equations: 
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Rotor (d-q) voltage equations: 
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Stator (d-q) flux equations: 
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Rotor (d-q) flux equations: 
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Mechanical and torque equations: 
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In (1)-(5), vs

ds, v
s
qs are the stator (d-q) axes voltages, is

ds, i
s
qs denote the stator (d-q) axes currents, is

dr, 
is

qr are the rotor (d-q) axes currents, λs
ds, λ

s
qs are the stator (d-q) axes fluxes and λs

dr and λs
qr indicate the rotor 

(d-q) axes fluxes. rds, rqs and rr are the stator and rotor (d-q) axes resistances. Lds, Lqs, Lr, Md and Mq denote 
the stator and rotor (d-q) axes self and mutual inductances. r is the motor speed. Te and Tl are 
electromagnetic torque and load torque. J and B are the moment of inertia and viscous friction coefficient 
respectively.  

 
 

3. ROTOR FIELD-ORIENTED CONTROL STRATEGY OF A SINGLE-PHASE IM 
It can be shown that using conventional (balanced) transformation matrix, the single-phase IM 

(unbalanced 2-phase IM) equations in the rotating reference frame can be obtained as following equations 
[34]: 



IJPEDS  ISSN: 2088-8694  

High Performance Speed Control of Single-Phase Induction Motors Using Switching … (M. Jannati) 

19

 (6) 

 
where, 
 

      (7) 

 
In (7), “θe” is the angle between the stationary reference frame and rotating reference frame. As can 

be seen from (6), using conventional (balanced) transformation matrix, the single-phase IM equations can be 
divided into two forward (superscript “+e”) and backward (superscript “-e”) equations. It can be also seen 
that, the structure of the forward and backward equations is similar to the RFOC equations of a 3-phase IM. 
As a result, vector control of the single-phase IM using two independent RFOC algorithms (one of them to 
compensate forward equations and one of them to compensate backward equations) is possible. The block 
diagram of the proposed RFOC method for a single-phase IM is shown in Figure 1. In this paper, as shown in 
Figure 1, the single-phase IM is fed from a Sine Pulse Width Modulation (SPWM) two-leg voltage source 
inverter. In Figure 1, the conventional (balanced) transformation matrix ([Ts

e]) is as follows: 
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Figure 1. Block diagram of RFOC method for a single-phase IM 
 
 

4. SWITCHING FORWARD AND BACKWARD EKF STRATEGY OF A SINGLE-PHASE IM  
As mentioned before, some of the control techniques such as RFOC strategy require particular 

knowledge of the rotor flux. The most popular method to obtain the rotor flux information in indirect RFOC 
method is using integration. However, using an integration to obtain the rotor flux is sensitive to the different 
type of problems such as DC-offset problem.  

As shown in Figure 1, to control a single-phase IM, two modified RFOC algorithms (forward and 
backward FOCs) need to be used. In order to accommodate forward and backward rotor fluxes (|λrf| and |λrb|) in 
Figure 1, in this paper an EKF with two different forward and backward currents that are switched 
interchangeably (switching forward and backward EKF), is proposed. To estimate the forward and backward 
rotor fluxes, the stator currents and rotor fluxes of the single-phase IM are chosen as the state variables. The 
state space model of a single-phase IM can be shown as equations (9) and (10): 
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where,  
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In (9) and (10),  A, B and C are the system matrix, input matrix and output matrix. Moreover, x, u and 

y are the system state matrix, system input matrix and system output matrix. Based on equations of the single-
phase IM in the rotating reference frame (equation (6)), the matrices of Af, Bf, Cf, Ab, Bb and Cb in equations (9) 
and (10) are obtained as follows: 

 Tqrdrqsds iix 

 Tqsds iiy 
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Based on (14)-(21c), two EKF algorithms with the forward and backward currents can be used to 

estimate forward and backward rotor fluxes in the FOC (Forward) and FOC (Backward) of Figure 1. As an 
alternative method, to simplify the proposed scheme, single EKF algorithm with only changes in the motor 
parameters can be used for estimation of rotor fluxes. In this method, the forward and backward currents to 
obtain the rotor fluxes are switched interchangeably for every sampling time.  

It can be mentioned that the structure of proposed scheme during forward and backward conditions 
is the same as a conventional EKF algorithm (the conventional EKF algorithm is given as (22a)-(22c)). The 
only difference between proposed estimator during forward and backward conditions with the conventional 
EKF algorithm is in the motor parameters.  

As can be seen from equation (6), the single-phase IM voltage equations have extra terms due to the 
backward components (superscript “-e”). Since the backward terms are proportional to the difference of the 
resistances, mutual and self inductances, it is possible to neglect them (In this paper it is assumed that there is 
not the backward terms).  

This EKF algorithm is computed into three main steps as follows [22]:  
1. Prediction: 
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(22a)   

 
2. Computation of Kalman Filter Gain: 
 

 (22b)   
 
3. Update: 

 
(22c)   

 
where, R  and Q are the covariance matrices of the noises.  
 
 
5. SIMULATION RESULTS 

To verify the performance of the proposed drive system, different cases using Matlab/Simulink 
software for a single-phase IM with two different windings based on Figure 1 are simulated:  
(1) Figure 2: vector control of a single-phase IM using proposed controller under load 
(2) Figure 3: vector control of a single-phase IM using proposed controller at different speed  

In the simulations as shown in this Figure 1 the single-phase IM is fed from a 2-leg voltage source 
inverter. An EKF with the forward and backward currents is also used to estimate forward and backward 
rotor fluxes in the FOC (Forward) and FOC (Backward) of Figure 1. The Ratings and parameters of the 
simulated single-phase IM are as follows:  
Voltage: 110V, f=60Hz, No. of poles=4, rds=7.14, rqs=2.02, rr=4.12, Lds=0.1885H, Lqs=0.1844H, 
Lr=0.1826H, Mq=0.1772H, J=0.0146kg.m2 

Figure 2 shows the simulation results of the proposed method for vector control of a single-phase IM 
under load. Figure 2 (a) shows the reference speed, Figure 2 (b) shows the motor speed, Figure 2 (c) shows the 
speed error, Figure 2 (d) shows the estimated rotor flux (forward flux) and Figure 2 (e) shows the motor 
torque. In Figure 2, the reference rotor flux is set to 1.1wb. Moreover, in this figure, the value of load is 
changed from zero to -0.4 at t=15s and removed at t=17s. It can be seen that the proposed controller can 
maintain the good performance during zero reference speed, ramp reference speed and load condition. It can 
be seen that the motor speed closely follows the reference speed before and after the load disturbance. In this 
test the maximum error between reference and real motor speed is about 1.5rpm (see Figure 2 (c)). It is evident 
from Figure 2 (d) that the estimated rotor flux can follow the reference rotor flux during different conditions. 
As can be seen from Figure 2 (e), the torque of single-phase IM changes accordingly to applied load 
disturbance.  

 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

                                                                                                                               

 
(e) 

 
Figure 2. Simulation results of the RFOC of a single-phase IM under load; (a) reference speed, (b) motor 

speed, (c) speed error, (d) estimated flux and (e) torque 
 

 
Figure 3 shows simulation results of the proposed method for vector control of a single-phase IM at 

the different values of reference speed. It is evident from Figure 3 that using proposed technique the single-
phase IM can follow the reference speed without any overshoot and steady-state error (see Figure 3 (c)). 
Figure 3 (d) illustrates the sinusudal form of the currents of main and auxiliary windings during different 
values of reference speed. As shown from Figure 3 (e), the single-phase IM torque has a quick response with 
no pulsations. It can be seen from the presented simulation results (Figures 2 and 3) that the performance of 
the presented control technique and proposed estimator for the single-phase IM drive is acceptable. 

 
 

 
(a) 

 
(b) 



IJPEDS  ISSN: 2088-8694  

High Performance Speed Control of Single-Phase Induction Motors Using Switching … (M. Jannati) 

25

 
(c) 

 
(d) 

     

 
(e) 

 
Figure 3. Simulation results of the RFOC of a single-phase IM at different speed; (a) reference speed, (b) 

motor speed, (c) speed error, (d) motor currents and (e) torque 
 

 
6. CONCLUSION 

This paper showed that the equations of a single-phase IM with two different windings in the 
rotating reference frame can be separated into two set of equations with the balanced structure. Based on this, 
a vector control method using two developed RFOC algorithms was proposed. In order to accommodate 
forward and backward rotor fluxes in the presented RFO controller, an Extended Kalman Filter (EKF) with 
two different forward and backward currents that are switched interchangeably was proposed. Simulation 
results showed that the proposed scheme for vector control of single-phase IMs works well over most speed 
ranges.  
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