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Many models of neural networks have been extended to complex-valued neural networks. A complex-valued Hopfield neural
network (CHNN) is a complex-valued version of a Hopfield neural network. Complex-valued neurons can represent multistates,
and CHNNs are available for the storage of multilevel data, such as gray-scale images. The CHNNs are often trapped into the
local minima, and their noise tolerance is low. Lee improved the noise tolerance of the CHNNs by detecting and exiting the local
minima. In the present work, we propose a new recall algorithm that eliminates the local minima.We show that our proposed recall
algorithm not only accelerated the recall but also improved the noise tolerance through computer simulations.

1. Introduction

In recent years, complex-valued neural networks have been
studied and have been applied to various areas [1–5]. A
complex-valued phasor neuron is a model of a complex-
valued neuron and can represent phase information. Com-
plex-valued self-organizing maps with phasor neurons have
been applied to the visualization of landmines and moving
targets [6–8]. Complex-valued Hopfield neural networks
(CHNNs) are one of the most successful models of complex-
valued neural networks [9]. Further extensions of CHNNs
have also been studied [10–14]. In most CHNNs, the quan-
tized version of phasor neurons, referred to as complex-
valued multistate neurons, has been utilized. In the present
paper, complex-valuedmultistate neurons are simply referred
to as complex-valued neurons. Complex-valued neurons
have often been utilized to represent multilevel information.
For example, CHNNs have been applied to the storage of
gray-scale images [15–17]. Given a stored pattern with noise,
the CHNN cancels the noise and outputs the original pattern.
In Hopfield neural networks, the storage capacity and noise
tolerance have been important issues. To improve the storage
capacity and noise tolerance, many learning algorithms for
CHNNs have been studied [18, 19]. One such algorithm is the
projection rule [20]. CHNNs have many local minima which
decrease the noise tolerance [21].

CHNNs have two update modes, the asynchronous and
synchronous modes. In the asynchronous mode, only one
neuron can update at a time. In the synchronousmode, all the
neurons simultaneously update and theCHNNs converge to a
fixed point or to a cycle of length 2 [22]. Hopfield neural
networks with the synchronous mode are also considered to
be two-layered recurrent neural networks. In the present
work, the synchronousmode is utilized. Lee proposed a recall
algorithm for detecting and exiting the local minima and the
cycles for the projection rule [23]. His recall algorithm
improved the noise tolerance of the CHNNs. Since the local
minima and the cycles are obviously the result of incorrect
recall, it surely improves the noise tolerance to exit them.

In the present work, we propose a recall algorithm to
accelerate the recall. Our proposed recall algorithm removes
the autoconnections for updating and uses only the autocon-
nections for detecting the local minima and the cycles. Our
proposed recall algorithm eliminates the local minima and
the cycles. We performed computer simulations for the recall
speed and the noise tolerance. As a result, we showed that our
proposed recall algorithm not only accelerated the recall but
also improved the noise tolerance.

The rest of this paper is organized as follows. Section 2
introduces CHNNs and proposes a new recall algorithm. We
show computer simulations in Section 3. Section 4 discusses
the simulation results, and Section 5 concludes this paper.

Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 4894278, 6 pages
https://doi.org/10.1155/2017/4894278

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192732916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/4894278


2 Computational Intelligence and Neuroscience

2. Complex-Valued Hopfield Neural Networks

2.1. Architecture of Complex-ValuedHopfield Neural Networks.
In the present section, we introduce the complex-valued
Hopfield neural networks (CHNNs). First, we describe the
architecture of the CHNNs. The CHNNs consist of the
complex-valued neurons and the connections between
complex-valued neurons. The states of the neurons and the
connection weights are represented by complex numbers.We
denote the state of neuron 𝑗 and the connection weight from
neuron 𝑘 to neuron 𝑗 as 𝑥𝑗 and𝑤𝑗𝑘, respectively. Let𝑊 be the
matrix whose (𝑗, 𝑘) component is 𝑤𝑗𝑘.𝑊 is referred to as the
connection matrix. The connection weights are required to
satisfy the stability condition 𝑤𝑗𝑘 = 𝑤𝑘𝑗, where 𝑤 is the
complex conjugate of𝑤. Therefore, the connection matrix𝑊
isHermitian.A complex-valuedneuron receives theweighted
sum input fromall the neurons andupdates the state using the
activation function. Let 𝐾 be an integer greater than 1. We
denote 𝜃𝐾 = 𝜋/𝐾. The activation function 𝑓(𝐼) is defined as
follows:

𝑓 (𝐼)

=
{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

1 0 ≤ arg (𝐼) < 𝜃𝐾𝑒2𝑖𝜃𝐾 𝜃𝐾 ≤ arg (𝐼) < 3𝜃𝐾𝑒4𝑖𝜃𝐾 3𝜃𝐾 ≤ arg (𝐼) < 5𝜃𝐾... ...𝑒2(𝐾−1)𝑖𝜃𝐾 (2𝐾 − 3) 𝜃𝐾 ≤ arg (𝐼) < (2𝐾 − 1) 𝜃𝐾1 (2𝐾 − 1) 𝜃𝐾 ≤ arg (𝐼) < 2𝜋.

(1)

𝐾 is the quantization level and 𝑖 is the imaginary unit. Let 𝑁
be the number of neurons. The weighted sum input 𝐼𝑗 to
neuron 𝑗 is given as follows:

𝐼𝑗 = 𝑁∑
𝑘=1

𝑤𝑗𝑘𝑥𝑘. (2)

Figure 1 shows the activation function in the case of𝐾 = 8.
Next, we describe the recall process. There exist two

updating modes, the synchronous and asynchronous modes.
In the asynchronous mode, only one neuron can update at a
time. If the connection weights satisfy the stability condition
and the autoconnection𝑤𝑗𝑗 of neuron 𝑗 is positive for all 𝑗, the
energy of the CHNN never increases and the CHNN always
converges to a fixed point. In the synchronous mode, all the
neurons update simultaneously and theCHNNs converge to a
fixed point or to a cycle of length 2. In both modes, updating
continues until the CHNNs converge to a fixed point or a
cycle. In this work, we utilize the synchronous mode. Fig-
ure 2(a) illustrates the network architecture of CHNN. In the
synchronous mode, a CHNN can be also represented by Fig-
ure 2(b).The current states of the neurons are in the left layer.
The weighted sum inputs are sent to the right layer, and the
neurons of the right layer update. Subsequently, the states of
neurons in the right layer are sent to the left layer.
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Figure 1:The activation function of complex-valued neurons in the
case of 𝐾 = 8. The dashed lines are decision boundaries.

2.2. Projection Rule. Learning is defined as determining the
connection weights that make the training patterns fixed.The
projection rule is one of the learning algorithms. We denote
the 𝑝th training pattern by x𝑝 = (𝑥𝑝1 , 𝑥𝑝2 , . . . , 𝑥𝑝𝑁)𝑇, where the
superscript 𝑇 refers to the transpose matrix. Let 𝑃 be the
number of training patterns. We define the training matrix𝑋 as follows:

𝑋 = (
(

𝑥11 𝑥21 ⋅ ⋅ ⋅ 𝑥𝑃1𝑥12 𝑥22 ⋅ ⋅ ⋅ 𝑥𝑃2... ... d
...𝑥1𝑁 𝑥2𝑁 ⋅ ⋅ ⋅ 𝑥𝑃𝑁
)
)

. (3)

By the projection rule, the connectionmatrix is determined as𝑊 = 𝑋(𝑋∗𝑋)−1𝑋∗, where the superscript ∗ denotes the
Hermitian conjugate matrix. This connection matrix is Her-
mitian and fixes the vector x𝑝. For any integer 𝑘, the vector𝑒2𝑘𝑖𝜃𝐾x𝑝 is referred to as the rotated pattern of x𝑝. The rotated
patterns of the training patterns are also fixed.

2.3. Recall Algorithm. Therecall algorithmproposed by Lee is
described. We utilize the synchronous mode for recall. A
CHNN converges to a fixed point or a cycle. Fixed points
are divided into two categories, local and global minima.
We can determine whether a fixed point is a local or global
minimum. In a fixed point, we calculate the weighted sum
inputs. If all the lengths of the weighted sum inputs are 1,
the fixed point is a global minimum. Otherwise, it is a local
minimum.

Lee proposed exiting a localminimumor a cycle by chang-
ing a neuron’s state. In this work, we added a small noise to a
fixed vector in order to exit a local minimum or a cycle.
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(a) (b)

Figure 2: (a) A CHNN. (b) A CHNN represented with two layers. After the right layer updates, the state of the right layer is transferred to
the left layer.

2.4. Fast Recall Algorithm. Weonlymodify the weighted sum
input for fast recall algorithm. The modified weighted sum
input 𝐼𝑗 is as follows:

𝐼𝑗 = ∑
𝑘 ̸=𝑗

𝑤𝑗𝑘𝑥𝑘. (4)

This modified weighted sum input has often been utilized in
the asynchronous mode. When the CHNN is trapped at a
fixed point, we can determine whether the fixed point is a
local or global minimum by checking 𝐼𝑗 = 𝐼𝑗 + 𝑤𝑗𝑗𝑥𝑗.
3. Computer Simulations

We performed computer simulations to compare two recall
algorithms. The number of neurons was 𝑁 = 100. After a
training pattern with noise was given to the CHNNs, the
retrieval of the original training pattern was attempted. The
noise was added by replacing each neuron’s state with a new
state at the rate of 𝑟, referred to as the Noise Rate. The new
state was randomly selected from𝐾 states. It was allowed for
the same state as the previous state to be selected.

Here we describe the recall process in the computer
simulation.

(1) A training pattern with noise was given to the CHNN.
(2) The CHNN continued to update in the synchronous

mode until it reached a fixed point or a cycle.
(3) If the CHNN was trapped at a local minimum or a

cycle, the noise was added at the rate 0.05 and the
procedure returned to 2. Otherwise, the recall process
was terminated.

After updating, if the pattern was identical to the pattern
that preceded the previous pattern, the CHNN was trapped
at a cycle. If the pattern is equal to the previous pattern, the
CHNN was trapped at a local or global minimum. If the
CHNNdidnot achieve a globalminimumbefore 10,000 itera-
tions, the recall process was terminated. We generated 100
training pattern sets randomly. For each training pattern,
we performed 100 trials. Therefore, the number of trials was
10,000 for each condition.

First, we performed computer simulations for the recall
speed.Thenumbers of training patterns usedwere𝑃 = 10, 20,
and 30. The quantization levels were 𝐾 = 16, 32, and 64. If
a trial achieved a global minimum, it was regarded as suc-
cessful. We randomly selected a training pattern and added
noise at the rate of 0.3 in each trial. Figures 3–5 show the rates
of trials that reached global minima by the indicated itera-
tions. The horizontal and vertical axes indicate the iterations
and the Success Rate, respectively.The ranges of iterations are
different in each figure. As𝐾 and𝑃 increased,more iterations
were required. In the case of 𝑃 = 30 and 𝐾 = 64, most
trials did not achieve global minima until 10,000 iterations.
In all the cases, our proposed recall algorithm was faster.
As 𝑃 and𝐾 increased, the differences became larger.

Next, we performed computer simulations for the noise
tolerance. The number of training patterns was 𝑃 = 30, and
the quantization levels were 𝐾 = 16 and 32. We carried out
the simulations using the training patterns with a Noise Rate
of 0.3. Figure 6 shows the results in the case of 𝐾 = 16. The
horizontal and vertical axes indicate the Noise Rate and
the Success Rate, respectively. The proposed recall algorithm
slightly outperformed the conventional algorithm. Figure 7
shows the result in the case of 𝐾 = 32. The noise tolerance
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Figure 3: Recall speed in the case of 𝑃 = 10.
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Figure 4: Recall speed in the case of 𝑃 = 20.

of the conventional algorithm was very low. That of our pro-
posed algorithmhighly exceeded the conventional algorithm.

4. Discussion

The computer simulations for the recall speed show that the
conventional algorithm tended to be trapped at the local
minima and the cycles. Autoconnections worked to sta-
bilize the states of the neurons. When 𝑤𝑗𝑗𝑥𝑗 is added to𝐼𝑗, the weighted sum input 𝐼𝑗 moves parallel to the line
through 0 and 𝑥𝑗 (Figure 8). Then, 𝐼𝑗 is located far from the
decision boundary. Some unfixed points would be stabilized

to become fixed points. Thus, the autoconnections generate
many fixed points and the CHNNs are easily trapped.

In the case of 𝑃 = 30 and 𝐾 = 32, most of the trials
achieved globalminima by 10,000 iterations.Therefore, many
trials were trapped at the rotated patterns in Figure 7. During
the repetition to exit the local minima and the cycles, the
states of the CHNN would be far from the training pattern
andwould finally reach a rotated pattern. In the case of𝑃 = 30
and 𝐾 = 64, most trials never achieved global minima until
10,000 iterations. With a too frequent addition of noise, the
searchingwould become almost a randomwalk, and the trials
could not achieve a global minimum.
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Figure 5: Recall speed in the case of 𝑃 = 30.
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Figure 6: Noise tolerance in the case of 𝑃 = 30 and 𝐾 = 16.

5. Conclusion

Lee improved the noise tolerance of CHNNs with the pro-
jection rule by detecting and exiting the local minima and
the cycles. We proposed a new recall algorithm to accelerate
the recall. Our proposed recall algorithm eliminates the local
minima and the cycles and accelerated the recall. In addition,
our proposed recall algorithm improved the noise tolerance.
On the other hand, the conventional recall algorithm hardly
completes the recall in cases in which 𝐾 and 𝑃 are large.
The local minima and the cycles are obviously the results of
incorrect recall. Getting out of them certainly improves the
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Figure 7: Noise tolerance in the case of 𝑃 = 30 and𝐾 = 32.
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noise tolerance, though it takes long time to complete the
recall.The recall algorithms should be studied so as to reduce
falling further into the local minima and the cycles.
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