
Scientific Programming 18 (2010) 139–151 139
DOI 10.3233/SPR-2010-0311
IOS Press

Overlapping communication with
computation using OpenMP tasks on the GTS
magnetic fusion code

Robert Preissl a,∗, Alice Koniges a, Stephan Ethier b, Weixing Wang b and Nathan Wichmann c

a Lawrence Berkeley National Laboratory, Berkeley, CA, USA
b Princeton Plasma Physics Laboratory, Princeton, NJ, USA
c Cray Inc., St. Paul, MN, USA

Abstract. Application codes in a variety of areas are being updated for performance on the latest architectures. In this paper we
examine an application, which comes from magnetic fusion for performance acceleration with a particular emphasis on methods
that are applicable for many/multicore and future architectural designs. We take an important magnetic fusion particle code
that already includes several levels of parallelism including hybrid MPI combined with OpenMP. We study how to include new
advanced hybrid models, which extend the applicability of OpenMP tasks and exploit multi-threaded MPI support to overlap
communication and computation. Experiments carried out on Cray XT4 and XT5 machines resulting in a speed-up of up to 35%
of the investigated GTS particle shifter kernel show the benefits and applicability of this approach.

Keywords: GTS, OpenMP task, communication overlap, hybrid MPI and OpenMP computing

1. Introduction – GTS, a massively parallel
magnetic fusion application

The application chosen for this study is the Gyroki-
netic Tokamak Simulation (GTS) code [13], which is a
global 3D Particle-In-Cell (PIC) code to study the mi-
croturbulence and associated transport in magnetically
confined fusion plasmas of tokamak toroidal devices.
Microturbulence is a very complex, nonlinear phenom-
enon that is generally believed to play a key role in
determining the efficiency and instabilities of mag-
netic confinement of fusion-grade plasmas [4]. GTS
has been developed in Fortran 90 (with a small fraction
coded in C) and parallelized using MPI and OpenMP
with highly optimized serial and parallel sections; i.e.,
SSE instructions or other forms of vectorization pro-
vided by modern processors. GTS simulation runs have
been conducted simulating a laboratory-size tokamak
of 0.932 m major radius and 0.334 m minor radius con-
fining a total of 2.1 billion particles using a domain de-

*Corresponding author: Robert Preissl, Lawrence Berkeley Na-
tional Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.
Tel.: +1 510 486 6421; Fax: +1 510 486 4316; E-mail: rpreissl@lbl.
gov.

composition of two million grid points on Cray’s XT4
and XT5 supercomputers.

In plasma physics applications, the PIC approach
amounts to following the trajectories of charged parti-
cles in self-consistent electromagnetic fields. The com-
putation of the charge density at each grid point arising
from neighboring particles is called the scatter phase.
Prior to the calculation of the forces on each particle
from the electric potential (gather phase) – we solve
Poisson’s equation for computing the field potential,
which only needs to be solved on a 2D poloidal plane.1

This information is then used for moving the parti-
cles in time according to the equations of motion (push
phase), which is the fourth step of the algorithm.

2. The GTS parallel model

The parallel model of GTS has three independent
levels: (1) GTS uses a one-dimensional (1D) domain
decomposition in the toroidal direction (the long way
around the torus). This is the original scheme of ex-
pressing parallelism using the Message Passing Inter-

1Fast particle motion along the magnetic field lines in the toroidal
direction leads to a quasi-2D structure in the electrostatic potential.

1058-9244/10/$27.50 © 2010 – IOS Press and the authors. All rights reserved

140 R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code

Fig. 1. GTS’ toroidal domain decomposition with magnetic field lines and density fluctuations.

face (MPI) to perform communication between the
toroidal domains. Particles can move from one domain
to another while they travel around the torus – which
adds another, a fifth, step to our PIC algorithm, the shift
phase. This phase is of major interest in the upcom-
ing sections. Only nearest-neighbor communication in
a circular fashion (using MPI_Sendrecv functionality)
is used to move the particles between the toroidal do-
mains. It is worth mentioning that the toroidal de-
composition is limited to 64 or 128 planes, which is
due to the long-wavelength physics that we are study-
ing. More toroidal domains would introduce waves of
shorter wavelengths in the system, which would be
dampened by a physical collisionless damping process
known as Landau damping; i.e., leaving the results un-
changed [4]. Using higher toroidal resolution only in-
troduces more communication with no added benefit.
(2) Within each toroidal domain, we divide the parti-
cles between several MPI processes, and each process
keeps a copy of the local grid,2 requiring the processes
within a domain to sum their contribution to the to-
tal charge density on the grid at the end of the charge
deposition or scatter step (using MPI_Allreduce func-
tionality). The grid work (for the most part, the field
solve) is performed redundantly on each of these MPI
processes in the domain and only the particle-related
work is fully divided between the processes. Conse-
quently, GTS uses two different MPI communicators;

2Recently, research has been carried out to investigate different
forms of grid decomposition schemes, ranging from the pure MPI
implementation to the purest shared memory implementation using
only one copy of the grid, and all threads must contend for exclusive
access [7].

i.e., an intradomain communicator, which links the
processes within a common toroidal domain of the
1D domain decomposition and a toroidal communica-
tor comprising all the MPI processes with the same
intradomain rank in a ringlike fashion. (3) Adding
OpenMP compiler directives to heavily used (nested)
loop regions in the code exploits the shared memory
capabilities of many of today’s HPC systems equipped
with multicore CPUs. Although of limited scalability
due to the single-threaded sections between OpenMP
parallel loops and also due to NUMA effects aris-
ing from the shared memory regions, this method al-
lows GTS to run in a hybrid MPI/OpenMP mode. Ad-
dressing the challenges and benefits involved with hy-
brid MPI/OpenMP computing – i.e., taking advantage
of the shared memory inside shared memory nodes,
while using message passing across nodes – and appli-
cations of new OpenMP functionality (OpenMP task-
ing in OpenMP 3.0 [1]), is described in the next sec-
tions. These advanced aspects of parallel computing
should be applicable to many massively parallel codes
intended to run on HPC systems with multicore de-
signs.

Figure 1 shows the grid of GTS following the mag-
netic field lines as they are twisting around the torus
as well as the toroidal domain decomposition of the
torus. The two cross sections demonstrate contour
plots of density fluctuations driven by Ion Temperature
Gradient-Driven Turbulence (ITGDT) [6], which is
supposed to cause the experimentally observed anom-
alous loss of particles and heat at the core of mag-
netic fusion devices such as tokamaks. Dark and bright
areas in the cross sections denote lower (negative)
and higher (positive) fluctuation densities, respectively.
These fluctuations attach to the magnetic field lines,

R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code 141

which is a typical characteristic of plasma turbulence
in tokamak reactors.

In the following, we focus on one particular step of
GTS – the shifting of particles between toroidal do-
mains – and discuss how to exploit new OpenMP func-
tionality, which will be substantiated with performance
results on our Cray XT machines at NERSC at the end.

3. The GTS particle shifter and how to fight
Amdahl’s law

The shift phase is an important step in the PIC simu-
lation. After the push phase, i.e., once the equations of
motion for the charged particles are computed, a sig-
nificant portion of the moved particles are likely to end
up in neighboring toroidal domains. (Ions and elec-
trons have a separate pusher and shift routines in GTS.)
This shift of particles can happen to the adjacent or
even to further toroidal domains of the tokamak and is
implemented with MPI_Sendrecv functions operating
in a ring-like fashion. The amount of shifted particles
as well as the number of traversed toroidal domains
depends on the toroidal domain decomposition coars-
ening (mzetamax), the time step resolution (tstep) and
the number of particles per cell (micell); all of which
can be modified in the input file processed by the GTS
loader.

The pseudo-code excerpt in Listing 1 highlights the
major steps in the original shifter routine. The most
important steps in the shifter are iteratively applied and
correspond to the following: (1) checking if particles
have to be shifted, which is communicated by the allre-
duce call – lines 3–10 in Listing 1; (2) reordering the
particles that keep staying on the domain – line 23 in
Listing 1; (3) packing and sending particles to left and
right by MPI_Sendrecv calls – lines 13–20 and lines
26–32 in Listing 1; and (4) incorporating shifted parti-
cles to the destination toroidal domain (the two loops
at the end of the shifter) – lines 35–43 in Listing 1.

The shifter routine involves heavy communication
due to the MPI_Allreduce and especially because of
the ring-like MPI_Sendrecv at every iteration step in
each shift phase, where several iterations per shift
phase are likely to occur. In addition, intense computa-
tion is involved mostly because of the particle reorder-
ing that occurs after particles have been shifted and in-
corporated into the new toroidal domain, respectively.
Note, that billions of charged particles are simulated
in the tokamak causing approximately to the order of
millions particles to be shifted at each shifter phase.

While most of the work on the particle arrays can be
straight forward parallelized with OpenMP workshar-

ing constructs on the loop level, a substantial amount
of time is still spent in non-parallelizable (single-
threaded) particle array work (sorting) and in the MPI
communication, which is processed sequentially by
the master thread in our hybrid parallel model. Fig-
ure 2(a) demonstrates in a high-level view the original
MPI/OpenMP hybrid approach with its serial and par-
allel work sections at each MPI process implemented
in GTS. Hence, the expected parallel speed-up for the
shift routine – as well as of any other parallel program
following this hybrid approach – is strictly limited by
the time needed for the sequential fraction of this sec-
tion the MPI task; a fact that is widely known as Am-
dahl’s law.

The goal is to reduce the overhead of the sequential
parts as much possible by overlapping MPI commu-
nication with computation using a new OpenMP fea-
ture. The notion of overlapping communication and
computation in various ways has been described be-
fore [10,11] but we present here a new way based
on the new functionality of the OpenMP tasking
model. OpenMP version 3.0 introduces the task di-
rective, which allows the programmer to specify a
unit of parallel work called an explicit task, which
express unstructured parallelism and defines dynami-
cally generated work units that will be processed by
the team [1]. In order to detect overlappable code re-
gions and for preserving the original semantic of the
code, we (manually) look for data dependencies on
MPI statements and surrounding computational state-
ments before code transformations are applied. Fig-
ure 2(b) gives an overview of the new hybrid approach
where MPI communication is executed while indepen-
dent computation is performed using OpenMP tasks.
It can be easily seen from Fig. 2 that the runtime
of our application following the new approach is re-
duced approximately (add OpenMP tasking overhead)
by the costs of the MPI communication represented by
the dashed arrow. Thus, the new runtime is denoted
by max(computation time, communication time). Be-
low we will present three optimizations to the GTS
shifter:

(1) We overlap the MPI_Allreduce call at line 9
from Listing 1 with the two loops from lines 14 and
18. We preserve the original semantics of the pro-
gram since the packing of particles is independent on
the output parameter of the MPI_Allreduce call. The
transformed code segments are shown in Listing 2,
where we used OpenMP tasks to overlap the MPI
function call. Note, that shifting the MPI_Allreduce
call below the two loops does not add extra over-
head. Note, the program leaves that function in case
of sum_shift_p == 0 and so, the packing statements

142 R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code

1do i t e r a t i o n s =1 ,N
! compute p a r t i c l e s t o be s h i f t e d

3! $omp p a r a l l e l do
s h i f t _ p = p a r t i c l e s _ t o _ s h i f t (p _ a r r a y) ;

5
! communicate amount o f s h i f t e d

7! p a r t i c l e s and r e t u r n i f e q u a l t o 0
s h i f t _ p =x+y

9MPI_ALLREDUCE(s h i f t _ p , s u m _ s h i f t _ p) ;
i f (s u m _ s h i f t _ p ==0) { re turn ; }

11
! pack p a r t i c l e t o move r i g h t and l e f t

13! $omp p a r a l l e l do
do m=1 , x

15s e n d r i g h t (m)= p _ a r r a y (f (m)) ;
enddo

17! $omp p a r a l l e l do
do n =1 , y

19s e n d l e f t (n)= p _ a r r a y (f (n)) ;
enddo

21
! r e o r d e r r e m a i n i n g p a r t i c l e s : f i l l h o l e s

23f i l l _ h o l e (p _ a r r a y) ;

25! send number o f p a r t i c l e s t o move r i g h t
MPI_SENDRECV(x , l e n g t h = 2 , . .) ;

27! send t o r i g h t and r e c e i v e from l e f t
MPI_SENDRECV(s e n d r i g h t , l e n g t h =g (x) , . .) ;

29! send number o f p a r t i c l e s t o move l e f t
MPI_SENDRECV(y , l e n g t h = 2 , . .) ;

31! send t o l e f t and r e c e i v e from r i g h t
MPI_SENDRECV(s e n d l e f t , l e n g t h =g (y) , . .) ;

33
! add ing s h i f t e d p a r t i c l e s from r i g h t

35! $omp p a r a l l e l do
do m=1 , x

37p _ a r r a y (h (m)) = s e n d r i g h t (m) ;
enddo

39! add ing s h i f t e d p a r t i c l e s from l e f t
! $omp p a r a l l e l do

41do n =1 , y
p _ a r r a y (h (n)) = s e n d l e f t (n) ;

43enddo
enddo

Listing 1. Original GTS shifter routine.

right after the MPI_Allreduce call in the original code
could be pointlessly executed. However, unnecessary
computation is not the case because of x == y == 0
for each MPI process in case of sum_shift_p == 0.

The master thread encounters (due to statement at
line 3 from Listing 2 only the thread with id 0 executes

the highlighted regions) the tasking statements and cre-
ates work for the thread team for deferred execution;
whereas the MPI_Allreduce call will be immediately
executed, which gives us the overlap. Note, that the un-
derlying MPI implementation has to support at least
MPI_THREAD_FUNNELED as threading level in or-

R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code 143

(a) (b)

Fig. 2. Two different hybrid models in GTS using standard OpenMP worksharing (a) or the newly introduced OpenMP tasks to execute MPI
communication while performing computation (b). (a) Original MPI/OpenMP hybrid model. (b) MPI/OpenMP hybrid model using OpenMP
tasks to overlap MPI.

s h i f t _ p =x+y
2! $omp p a r a l l e l

! $omp m as t e r
4! $omp t a s k

do m=1 , x
6s e n d r i g h t (m)= p _ a r r a y (f (m)) ;

enddo
8! $omp end t a s k

! $omp t a s k
10do n =1 , y

s e n d l e f t (n)= p _ a r r a y (f (n)) ;
12enddo

! $omp end t a s k
14

MPI_ALLREDUCE(s h i f t _ p , s u m _ s h i f t _ p) ;
16! $omp end m as t e r

! $omp end p a r a l l e l
18i f (s u m _ s h i f t _ p ==0) { re turn ; }

Listing 2. (1) Overlap MPI_Allreduce in the GTS shifter.

der to allow the master thread in the OpenMP model
performing MPI calls.3

However, the presented solution in Listing 2 is heav-
ily unbalanced (because of x �= y; and the costs for
the MPI_Allreduce call is usually lower than the time
needed for the loop computation) and does not provide
any work for more than three threads per MPI process.
For this we subdivided the tasks into smaller chunks to
allow better load balancing and scalability among the
threads. This is shown in Listing 3 where the master
thread generates multiple tasks with loops to the ex-

3To determine the level of thread support from the current MPI
library one can execute MPI_Init_thread instead of MPI_init.

tent of stride. Listing 3 has now four loops because of
the remaining computation in the two additional loops
to the extent of (x MOD stride) and (y MOD stride)
respectively.

(2) Applying similar tasking techniques enables us
to overlap the computation intense particle reordering
from line 23 of the original code in Listing 1 with com-
munication intense MPI_Sendrecv statements from
lines 26, 28 and 30 of Listing 1. Since the parti-
cle ordering of remaining particles and the sending
or receiving of shifted particles is independently exe-
cuted, the optimized code shown in Listing 4 does not
change the semantics of the original GTS shifter.

144 R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code

i n t e g e r s t r i d e =1000
2! $omp p a r a l l e l

! $omp m as t e r
4! pack p a r t i c l e t o move r i g h t

do m=1 , x− s t r i d e , s t r i d e
6! $omp t a s k

do mm=0 , s t r i d e −1 ,1
8s e n d r i g h t (m+mm)= p _ a r r a y (f (m+mm)) ;

enddo
10! $omp end t a s k

enddo
12! $omp t a s k

do m=m, x
14s e n d r i g h t (m)= p _ a r r a y (f (m)) ;

enddo
16! $omp end t a s k

! pack p a r t i c l e t o move l e f t
18do n =1 , y− s t r i d e , s t r i d e

! $omp t a s k
20do nn =0 , s t r i d e −1 ,1

s e n d l e f t (n+nn)= p _ a r r a y (f (n+nn)) ;
22enddo

! $omp end t a s k
24enddo

! $omp t a s k
26do n=n , y

s e n d l e f t (n)= p _ a r r a y (f (n)) ;
28enddo

! $omp end t a s k
30MPI_ALLREDUCE(s h i f t _ p , s u m _ s h i f t _ p) ;

! $omp end m as t e r
32! $omp end p a r a l l e l

i f (s u m _ s h i f t _ p ==0) { re turn ; }

Listing 3. (2) Overlap MPI_Allreduce in the GTS shifter.

In the new code from Listing 4 any thread in the
team does the reordering (alone!) while the master
thread takes care of the MPI statements (again, at
least MPI_THREAD_FUNNELED has to be supported
by the MPI library); which does not keep all the
threads per MPI process busy (in case OMP_NUM_
THREADS � 3), but still significantly speeds up the
sequential code as we will demonstrate at the end of
the section.

(3) The careful reader might have noticed that
the code excerpt from Listing 1 only shows three
MPI_Sendrecv while the original shift routine in List-
ing 1 depicts four of them. Since the three MPI_
Sendrecv statements from Listing 4 are potentially
more time consuming than the particle reordering (be-
cause of the middle MPI_Sendrecv of line 8 in List-

ing 4 sending a large array), we can overlap the fourth
original MPI_Sendrecv of line 32 in Listing 1 with
the data independent part of the remaining computa-
tion of the shifter, i.e., the loop from line 36 in List-
ing 1 by using, again, the newly introduced OpenMP
tasking functionality. This results into the code excerpt
from Listing 5, where the second last loop from line
36 in Listing 1 has been overlapped with the fourth
MPI_Sendrecv of line 32 in Listing 1. Similar to the
previous code optimization from Listing 3 the master
threads creates multiple tasks for the loop from line 36
in Listing 1 in order to keep all the threads in the team
busy while the master thread is responsible for sending
and receiving data from neighboring MPI processes.

To sum up, by applying those three code transfor-
mations we are able to overlap all (iteratively called)

R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code 145

1! $omp p a r a l l e l
! $omp m as t e r

3! $omp t a s k
f i l l _ h o l e (p _ a r r a y) ;

5! $omp end t a s k

7MPI_SENDRECV(x , l e n g t h = 2 , . .) ;
MPI_SENDRECV(s e n d r i g h t , l e n g t h =g (x) , . .) ;

9MPI_SENDRECV(y , l e n g t h = 2 , . .) ;
! $omp end m as t e r

11! $omp end p a r a l l e l
}

Listing 4. Overlap particle reordering in the GTS shifter.

! $omp p a r a l l e l
2! $omp m as t e r

! add ing s h i f t e d p a r t i c l e s from r i g h t
4do m=1 , x− s t r i d e , s t r i d e

! $omp t a s k
6do mm=0 , s t r i d e −1 ,1

p _ a r r a y (h (m)) = s e n d r i g h t (m) ;
8enddo

! $omp end t a s k
10enddo

! $omp t a s k
12do m=m, x

! add ing s h i f t e d p a r t i c l e s from r i g h t
14p _ a r r a y (h (m)) = s e n d r i g h t (m) ;

enddo
16! $omp end t a s k

18MPI_SENDRECV(s e n d l e f t , l e n g t h =g (y) , . .) ;
! $omp end m as t e r

20! $omp end p a r a l l e l

22! add ing s h i f t e d p a r t i c l e s from l e f t
! $omp p a r a l l e l do

24do n =1 , y
p _ a r r a y (h (n)) = s e n d l e f t (n) ;

26enddo

Listing 5. Overlap MPI_Sendrecv in the GTS shifter.

MPI functions from the original shifter routine of GTS
from Listing 1. We are aware of the fact that for dif-
ferent parts of GTS or other MPI parallel applications
such optimizations cannot always be applied due to
complicated data dependencies. However, the aim of
these code examples starting from Listing 3 to List-
ing 5 is to discuss these new optimization possibili-

ties provided by OpenMP tasks. The presented tech-
niques, i.e., overlapping (collective) MPI communica-
tion with computation, has not been the design incen-
tive in the first place of the new tasking model, but we
believe that it can play an important role in many of
future HPC systems based on the hybrid MPI/OpenMP
programming models. For the sake of completeness

146 R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code

s h i f t _ p =x+y
2! $omp p a r a l l e l

! $omp do o n t h r e a d s (1 : omp , g e t _ n u m _ t h r e a d s () − 1) {
4do m=1 , x

s e n d r i g h t (m)= p _ a r r a y (f (m)) ;
6enddo

do n =1 , y
8s e n d l e f t (n)= p _ a r r a y (f (n)) ;

enddo
10}

! $omp o n t h r e a d s (0) {
12MPI_ALLREDUCE(s h i f t _ p , s u m _ s h i f t _ p) ;

}
14! $omp end p a r a l l e l

i f (s u m _ s h i f t _ p ==0) { re turn ; }

Listing 6. Overlap MPI_Allreduce in the GTS shifter using OpenMP subteams.

we want to mention that non-blocking collective MPI
communication, e.g., non-blocking allreduce commu-
nication (MPI_Iallreduce) are in the process of being
standardized in the upcoming MPI 3.0 standard [8].
Nonblocking collective operations are already pro-
vided by libNBC [5], a portable implementation of
non-blocking collective communication on top of MPI-
1, which acts as the reference implementation for the
proposed MPI 3.0 functionality currently under con-
sideration by the MPI Forum. However, libNBC is re-
stricted to a few HPC platforms and also exhibits some
overhead as seen in previously performed research.
In addition, we also see a benefit in using OpenMP
tasking to overlap collective MPI communication re-
garding code portability since the optimized code will
run on any system with MPI even if OpenMP sup-
port is not given, whereas libNBC is likely to be hav-
ing made available on a new system, which might
be difficult in a lot of cases. Finally, it should be re-
marked that also OpenMP tasking involves some ex-
tra overhead. Which approach – using OpenMP task-
ing or new MPI non-blocking collectives – performs
best remains to be seen once the new MPI 3.0 version
is available. Rabenseifner and Wellein [11] point out
that the benefit is limited, mainly because the commu-
nication time can be hidden by parallelizing it to the
numerical threads (which reduces the available threads
for numerics by one). Therefore, without paralleliz-
ing communication with computation the maximum
benefit ratio is (2 − 1/n) on n threads. This maxi-
mum is achieved when the communication time and
the computation time of the parallel region is identi-
cal in the case of non-overlapping. Hence, we use the

concept of OpenMP work-sharing on all but 1 threads,
which is responsible for the MPI communication. Once
this thread doing MPI communication has finished it
will join the other threads in the particle computation
steps. We note that parallel to the development of the
OpenMP tasking concept by Intel, Chapman et al. [2]
have introduced another method to solve this prob-
lem, where the concept of OpenMP subteams has been
introduced to allow work-sharing (e.g., loop schedul-
ing) on a subset of threads. Listing 6 gives an exam-
ple of using the proposed subteam functionality on
the GTS particle shifter routine for overlapping the
MPI_Allreduce call at line 9 from the original code
shown in Listing 1. Here the master thread forms a sin-
gle threaded team to execute the MPI call (line 12 List-
ing 6) and the other threads form a team to pack the
particles into send buffers in parallel (line 3 Listing 6).

Using such OpenMP subteams facilitate another
way to overlap computations and communication.
However, this method lacks the flexibility provided
by the OpenMP tasking concept since OpenMP sub-
teams explicitly split up communication and compu-
tation between thread teams. As a result – in case the
MPI communication takes less time than the particle
work, which is mostly the case in GTS with its large
particle arrays – the communicating thread(-team) re-
mains idle while threads of the other team are per-
forming computation. This is circumvented using the
flexible OpenMP tasking approach, which causes the
communicating thread to pick up other work from the
task pool once finished with its MPI communication.
Overlapping communication with computation using
OpenMP subteams is appropriate for static code struc-

R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code 147

tures where the relative amount of data and compu-
tation does not vary and the number of participating
threads and their roles remain the same [2]. Another
benefit is the lower overhead implied as opposed to
the OpenMP tasking method. However, using OpenMP
subteams for computation/communication overlap is
not optimal for dynamic application such as GTS,
where the ratio of computation and communication can
vary from MPI process to MPI process and between
iteration steps, respectively.

In the next section we will present performance re-
sults of the above mentioned code transformations and
compare them to the results gathered when executing
the original code.

4. Performance results

The following experiments have been carried out at
NERSC’s Franklin – a Cray XT4 system having 9572
compute nodes with each node consists of a 2.3 GHz
single socket quad-core AMD Opteron processor (Bu-
dapest) – and Hopper – a Cray XT5, which in the
current phase I has 664 compute nodes each contain-
ing two 2.4 GHz AMD Opteron quad-core proces-
sors – machines. The second phase of Hopper, arriv-
ing in Fall 2010, will be combined with an upgraded
phase 1 to create NERSC’s first peta-flop system with
over 150,000 compute cores. On Franklin we use the
Cray Compiler Environment (CCE) version 7.2.1 and
the Cray supported MPI library version 4.0.3 based
MPICH2. On Hopper CCE version 7.1.4.111 and Cray
MPICH2 version 3.5.0 is used.

4.1. Benefits and limitations of hybrid computing

Before we present runtime numbers of the OpenMP
tasking optimizations, we want to address the benefits
and limitations of the hybrid approach on the Gyroki-
netic Toroidal Code (GTC) [3], another global gyroki-
netic PIC code, which shares the similar architecture
to the GTS code discussed in this paper, and uses the
same parallel model. Therefore, the following study
for GTC also applies to GTS. Figure 3 illustrates run-
time numbers of four GTC runs using the same in-
put parameters but varying the MPI/OpenMP ratio. All
four runs are using the same number of compute cores
on Hopper. Hence, the first group represents the run-
time of GTC using a total of 192 MPI processes where
each MPI process creates 8 OpenMP threads. Each
group has eight columns reflecting the overall wall-

Fig. 3. Evaluation of MPI/OpenMP hybrid model with GTC on
Hopper.

time, which is the aggregation of the remaining seven
columns, i.e., the PIC steps in GTC. The second group
depicts experiments with a total of 384 MPI processes
with 4 OpenMP threads per MPI process and so forth.
Figure 3 clearly demonstrates that the hybrid approach
outperforms the pure MPI approach (the fourth group
in Fig. 3) because of the less MPI communication over-
head involved and better usability of the shared mem-
ory cores on the Hopper compute node. However, this
picture also points out the limitations (using 8 OpenMP
threads per MPI process performs similar to the pure
MPI approach) to a certain number of OpenMP threads
per MPI process due to NUMA and cache effects on
the AMD Opteron system. In addition, Fig. 3 shows the
impact of the shift routine to the overall runtime, which
denotes in this experiment to an average of 47% –
therefore, a step in the PIC method that is worth opti-
mizing.

4.2. Performance evaluation of OpenMP tasking to
overlap communication with computation

The diagrams shown in Fig. 4 present four GTS
runs with different input files and domain decompo-
sition executed on the Franklin Cray XT 4 machine.
Figure 4(a) gives the breakdown of the runtime for the
GTS shift routine with the torus divided up into 128
domains, where each toroidal section is further parti-
tioned into 2 poloidal sections. The first two bars com-
pare the overall runtime of the shifter using the op-
timized version (shown in dark gray) with the origi-
nal one (light gray). The other three groups compare
the runtime of the three previously introduced code
pieces using OpenMP tasks with their original coun-
terparts from Listing 1: “Allreduce” reflects the tim-
ing for the code shown Listing 3, “FillingHole” corre-
sponds to the code from Listing 4 and “SendRecv” is

148 R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code

(a) (b)

(c) (d)

Fig. 4. Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI process with varying domain decomposition and
particles per cell on Franklin showing that MPI communication can be successfully overlapped with independent computation using OpenMP
tasks resulting in a maximum speed-up of the GTS shifter of 35% (c). (a) 128 toroidal domains, each having 2 poloidal domains. (b) 128 toroidal
domains, each having 4 poloidal domains. (c) 128 toroidal domains, each having 8 poloidal domains. (d) 128 toroidal domains, each having
16 poloidal domains.

the measurement for Listing 5. Those three parts to-
gether with other computation on the particle arrays (as
indicated at line 4 in the original code shown in List-
ing 1) add up to the numbers presented in the “Shifter”
group. Besides that different input settings (e.g., vary-
ing the number of particles per cell) have been used to
generate Fig. 4(a)–(d), the main difference is that the
number of poloidal domains (npartdom) goes from 2
to 16. As indicated in the introduction of the parallel
model of GTS in Section 2, all the MPI communication
in the shift phase uses a toroidal MPI communicator,
which is constant of size 128 in the four presented fig-
ures. However, as it can be seen from Fig. 4, it clearly
makes a difference if particles are shifted in the 128-
MPI-processes-toroidal-domain of a GTS run with an
overall usage of 256 MPI processes (Fig. 4(a)) than
in a 128-MPI-processes-toroidal-domain of a GTS run
with a total of 2048 MPI processes (Fig. 4(d)). This
is mainly because of the increasing latency for send-
ing messages within larger toroidal communicators in
a production run of GTS on the Cray XT4. The speed-

up, or to put it in other words, the difference between
the dark gray bar and the light gray bar, for each phase
in the shifter is the time consumed by the MPI com-
munication, which is overlapped in the newly intro-
duced shifter steps (to simplify matters, neglecting the
overhead involved with OpenMP tasking and assum-
ing that the costs of loops workshared with traditional
“omp parallel do” statements is the same as processing
those loops workshared with OpenMP tasks.). More-
over, we can observe that the benefit of the “SendRecv”
optimization (Listing 5) also depends on the num-
ber of MPI domains. While Fig. 4(a)–(c) show no
or only marginal performance benefits, the speed-up
due to the “SendRecv” optimization is about 18% in
Fig. 4(d), which represents a 2048 MPI processes run.
The tremendous speed-up due to the “Allreduce” opti-
mization from Listing 4 (more than 100%) in the 1024
MPI processes run is pleasant, but is likely to be just a
positive outlier and requires further investigation. The
final GTS shifter routine, which incorporates all the
previous discussed optimizations is shown in Listing 7.

R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code 149

do i t e r a t i o n s =1 ,N
2

! compute p a r t i c l e s t o be s h i f t e d
4! $omp p a r a l l e l do

s h i f t _ p = p a r t i c l e s _ t o _ s h i f t (p _ a r r a y) ;
6

! o v e r l a p a l l r e d u c e w i t h f i l l i n g o f send b u f f e r s
8LISTING 3

10! o v e r l a p f i l l i n g o f h o l e s w i t h t h r e e send −r e c v c a l l s
LISTING 4

12
! o v e r l a p add ing o f r e c e i v e d da ta from r i g h t w i t h t h e

14! f o u r t h send −r e c v c a l l f o r r e c e i v i n g da ta from t h e
! l e f t ; p l u s add da ta r e c e i v e d from l e f t t o a r r a y

16LISTING 5

18enddo

Listing 7. Final optimized GTS shifter routine.

(a) (b)

Fig. 5. Performance for overlapping execution of two consecutive MPI_Allreduce calls on Hopper. (a) Allreduce of 1 integer. (b) Allreduce of an
array of 100 integers.

Next, we want to conclude our experiments with a
discussion about the overlapping of MPI communica-
tion with consecutive, independent MPI communica-
tion.

4.3. Overlap communication with communication

Going one step further in reducing the time spent
in the sequentially4 executed MPI communication, we
want to show early results of experiments with over-
lapping of MPI communication with other MPI com-
munication succeeding in the control flow of the paral-

4In the hybrid MPI/OpenMP programming model the remaining
cores are idle when one core executes an MPI command.

lel program that is data independent on the preceding
one. Examples in GTS are the consecutive independent
MPI_Sendrecv statements in the shifter from above
and four consecutive independent MPI_Allreduce calls
in the ion pusher phase.

Figure 5 presents runtime comparisons of succeed-
ing and independent MPI_Allreduce calls with varying
messages sizes. Figure 5(a) and (b) show the time it
takes with 1024 MPI process (2 OpenMP threads per
MPI process), 512 MPI processes (4 OpenMP threads
per MPI process) and 256 MPI processes (8 OpenMP
threads per MPI process) to execute the code shown
in Listing 8, which is highlighted in dark gray bars
and compare it with the costs of processing the code
from Listing 8 without OpenMP compiler support,

150 R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code

1! $omp p a r a l l e l
! $omp m as t e r

3do i =1 ,N
! $omp t a s k

5MPI_Al l reduce (in1 , out1 , l e n g t h , MPI_INT ,
MPI_SUM,MPI_COMM_WORLD, i e r r o r) ;

7! $omp end t a s k
MPI_Al l reduce (in2 , out2 , l e n g t h , MPI_INT ,

9MPI_SUM,MPI_COMM_WORLD, i e r r o r) ;
enddo

11! $omp end m as t e r
! $omp end p a r a l l e l

Listing 8. Overlap MPI_Allreduce with MPI_Allreduce.

i.e., without the overlap. Consequently, the number of
used CPU cores is constant (==2048) in these experi-
ments. Figure 5(a) reflects a run with MPI_Allreduce
calls of just one integer variable whereas Fig. 5(b)
shows results for MPI_Allreduce calls of an integer
array of size 100. While no performance gain can be
observed in the experiment with allreduces of size 1
(Fig. 5(a)), we can see a slight overlap in Fig. 5(b)
for the 4- and 8-OpenMP-threads run. The run with
4 OpenMP threads is of major interest since it re-
flects the recommended MPI/OpenMP ratio for pro-
duction runs on Hopper. However, we also see that no
full overlap could be achieved, but we expect better
threading support from upcoming MPI libraries. We
are aware of the fact that 100% overlap is impossible to
achieve due to the sequential nature of communication
in a single network, but these early experimental data
has already demonstrated that some (to the program-
mer invisible) steps of the MPI_Allreduce call can
be successfully overlapped. Moreover, with optimal
support of the MPI_THREAD_MULTIPLE threading
level in MPI libraries such as already implemented in
MPICH2 – where any thread can call MPI functions at
any time – we expect a significant performance gain in
(partially) overlapping more consecutive independent
collective MPI function calls (e.g., the four consecu-
tive independent MPI_Allreduce calls occurring in the
ion pusher phase of GTS) in a hybrid programming
model since future systems will have hardware sup-
port for multiple, concurrent communication channels
per node [12]. Similar experiments to the one shown
in Listing 8 have been conducted on Hopper with con-
secutive MPI_Sendrecv calls achieving similar same
speed-ups.

5. Conclusion

Summing up, we have demonstrated that overlap-
ping MPI communication with independent computa-
tion by the newly introduced OpenMP tasking model
has a large potential, especially for massively parallel
applications such as GTS scaling up to several thou-
sands of compute cores. Consequently we believe that
similar strategies can be applied to other massively par-
allel codes running on cluster equipped with multicore
processors. As collective and/or point-to-point time in-
creasingly becomes a bottleneck on future HPC clus-
ters comprising thousands of multicore processors, us-
ing threading to keep the number of MPI processes
per node to a minimum and to overlap – if possible –
those MPI calls with independent surrounding state-
ments is a promising strategy. Furthermore, we showed
early experimental data of overlapping MPI commu-
nication with independent MPI communication, which
we believe to be another valuable feature for future
multicore HPC systems. Finally, we point out that the
presented code transformations and data dependence
analysis have been manually carried out and could be
performed by automated source-to-source translating
compilers such as the ROSE compiler framework [9]
using static analysis techniques to guide subsequent
code optimizations.

Acknowledgements

A majority of the work in this paper was supported
by the Petascale Initiative in Computational Science
at NERSC. Some additional research on this paper
was supported by the Cray Center of Excellence at
NERSC. Additionally, we are grateful for interactions

R. Preissl et al. / Overlapping communication with computation using OpenMP tasks on the GTS magnetic fusion code 151

with John Shalf and Nicholas Wright and for the ex-
tended computer time as well as the valuable support
from NERSC.

References

[1] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Mas-
saioli, X. Teruel, P. Unnikrishnan and G. Zhang, The design
of OpenMP tasks, IEEE Trans. Parallel Distrib. Syst. 20(3)
(2009), 404–418.

[2] B.M. Chapman, L. Huang, H. Jin, G. Jost and B.R. de Supin-
ski, Toward enhancing OpenMPs work-sharing directives, in:
Euro-Par, September 2006, pp. 645–654.

[3] S. Ethier, W.M. Tang and Z. Lin, Gyrokinetic particle-in-cell
simulations of plasma microturbulence on advanced comput-
ing platforms, J. Phys. Conf. Ser. 16(1) (2005), 1.

[4] S. Ethier, W.M. Tang, R. Walkup and L. Oliker, Large-scale
gyrokinetic particle simulation of microturbulence in magneti-
cally confined fusion plasmas, IBM J. Res. Dev. 52(1,2) (2008),
105–115.

[5] T. Hoefler, A. Lumsdaine and W. Rehm, Implementation and
performance analysis of non-blocking collective operations for
MPI, in: SC’07: Proceedings of the 2007 ACM/IEEE Confer-
ence on Supercomputing, New York, NY, USA, 2007, ACM,
pp. 1–10.

[6] J.N. Leboeuf, V.E. Lynch, B.A. Carreras, J.D. Alvarez and
L. Garcia, Full torus Landau fluid calculations of ion tempera-

ture gradient-driven turbulence in cylindrical geometry, Phys.
Plasmas 7(12) (2000), 5013–5022.

[7] K. Madduri, S. Williams, S. Ethier, L. Oliker, J. Shalf,
E. Strohmaier and K. Yelicky, Memory-efficient optimiza-
tion of Gyrokinetic particle-to-grid interpolation for multicore
processors, in: SC’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis,
New York, NY, USA, 2009, ACM, pp. 1–12.

[8] MPI-Forum, Collective communications and topologies work-
ing group, 2009, available at: https://svn.mpi-forum.org/trac/
mpi-forum-web/wiki/CollectivesWikiPage.

[9] D.J. Quinlan, ROSE: compiler support for object-oriented
frameworks, Parallel Proc. Lett. 10(2,3) (2000), 215–226.

[10] R. Rabenseifner and G. Wellein, Communication and op-
timization aspects of parallel programming models, in:
EWOMP, September 2002.

[11] R. Rabenseifner and G. Wellein, Communication and opti-
mization aspects of parallel programming models on hybrid ar-
chitectures, Int. J. High Perform. Comput. Appl. 17(1) (2003).

[12] M. Snir, A proposal for hybrid programming support on HPC
platforms, 2009, available at: https://svn.mpi-forum.org/trac/
mpi-forum-web/raw-attachment/wiki/MPI3Hybrid/MPI%2B
OpenMP.pdf.

[13] W.X. Wang, Z. Lin, W.M. Tang, W.W. Lee, S. Ethier, J.L.V.
Lewandowski, G. Rewoldt, T.S. Hahm and J. Manickam, Gy-
rokinetic simulation of global turbulent transport properties in
tokamak experiments, Phys. Plasmas 13 (2006).

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

