
Research Article
A Tool to Simulate the Transmission, Reception, and Execution
of Interactive TV Applications

Manoel Carvalho Marques Neto,1 Raoni Kulesza,2 Thiago Rodrigues,1

Felipe A. L. Machado,1 and Celso A. S. Santos3

1Computer Science Department, Instituto Federal da Bahia (IFBA), Emidio dos Santos St., S/N, Barbalho,
40301-015 Salvador, BA, Brazil
2Informatic Center, R. dos Escoteiros, Universidade Federal da Paraı́ba (UFPB), s/n, Mangabeira,
58055-000 João Pessoa, PB, Brazil
3Computer Science Department, Universidade Federal do Espı́rito Santo (UFES), Fernando Ferrari Av. 514,
Goiabeiras, 29075-910 Vitória, ES, Brazil

Correspondence should be addressed to Manoel Carvalho Marques Neto; manoelnetom@gmail.com

Received 29 September 2016; Accepted 24 November 2016; Published 18 January 2017

Academic Editor: Spyridon Nikolaidis

Copyright © 2017 Manoel Carvalho Marques Neto et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The emergence of Interactive Digital Television (iDTV) opened a set of technological possibilities that go beyond those offered
by conventional TV. Among these opportunities we can highlight interactive contents that run together with linear TV program
(television service where the viewer has to watch a scheduled TV program at the particular time it is offered and on the particular
channel it is presented on). However, developing interactive contents for this new platform is not as straightforward as, for example,
developing Internet applications. One of the options to make this development process easier and safer is to use an iDTV simulator.
However, after having investigated some of the existing iDTV simulation environments, we have found a limitation: these simulators
mainly present solutions focused on the TV receiver, whose interactive content must be loaded in advance by the programmer
to a local repository (e.g., Hard Drive, USB). Therefore, in this paper, we propose a tool, named BiS (Broadcast iDTV content
Simulator), whichmakes possible a broader solution for the simulation of interactive contents. It allows simulating the transmission
of interactive content along with the linear TV program (simulating the transmission of content over the air and in broadcast to
the receivers). To enable this, we defined a generic and easy-to-customize communication protocol that was implemented in the
tool. The proposed environment differs from others because it allows simulating reception of both linear content and interactive
content while running Java applications to allow such a content presentation.

1. Introduction

Digital technologies dissemination in many knowledge areas
led to changes in implementation of most modern society
activities such as work, education, health, and entertainment.
A vehicle that has potential to play an important role in
the use of these technologies is Digital TV. Among the
main benefits offered by Digital TV, we can highlight audio
and video quality improvement and the inclusion of new
services such as interactive TV (iDTV). The main feature of
these systems is the capability of running applications that
have been downloaded as part of the broadcast stream and

synchronized with linear TV program: this is indeed what
makes the distinction between an interactive TV system and
other TV systems (basic digital or Smart TV) [1–3].

One of the key points for developing iDTV software is
the existence of an environment to simulate the transmission,
reception, and execution of such software prior to their
deployment in a real environment. This paper relies on the
definition of such environments as simulators: “a device that
enables the operator to reproduce or represent, under test
conditions, a phenomenon or process in the same way as
(or as closely as possible) it occurs in the real world” [4, 5].
Themajor reasons for the use of simulation environments are

Hindawi
International Scholarly Research Notices
Volume 2017, Article ID 1834907, 16 pages
https://doi.org/10.1155/2017/1834907

https://doi.org/10.1155/2017/1834907


2 International Scholarly Research Notices

cost reduction to purchase real environments, increasing the
speed of development, and security (once an application is
under test could only cause harm to a virtual environment).

Commonly, the simulators available for developing iDTV
software allow running such artifacts on computers to
simulate only the TV receiver side [7–9]. They do not
allow simulating a TV station, responsible for broadcast
audio and video content and also the iDTV software and
data, sometimes named Extra Content. This limitation is an
obstacle to simulate “interactive TV applications” (iTVA)
whose simulation has as main requirement the dynamics for
transmission, reception, and reproduction of content.

To fill this gap, the main objective of this paper is to
present a tool, named BiS (Broadcast iDTV content Simula-
tor), that allows the transmission, reception, and execution of
iTVA.The transmission and reception of iTVA are performed
through a TCP/IP network using a broadcast method based
on data carousel (in the same way as real in the world). In
BiS tool, the receiver module is also responsible for running
an iTVA implemented in JavaDTV [10]. Importantly, this
tool does not include the content production phase and also
does not consider performance issues in content transmission
(time delay, bandwidth, content quality, etc.). These issues
are difficult to assess since the communication network in a
real TV environment has very different aspects of a TCP/IP
network used by the simulator. For example, the TCP/IP
network uses a shared link while the TV network uses a
dedicated link. Therefore, the focus of the BiS tool is only
to simulate the environment dynamics for transmission,
reception, and execution of interactive TV applications.

To validate and demonstrate the main features of the
tool, we have developed, transmitted, received, and ran
three Java applications (named Xlets [10]). They present
during the transmission of a linear TV program (i) replays
sent by a broadcaster, (ii) weather forecast obtained both
from a broadcaster and from an Internet Service Provider
(ISP), and (iii) photos of fighters during a Mixed Martial
Arts (MMA) fight transmission. The simulated applications
can be viewed on YouTube (http://youtu.be/lJ6ZPxgf-CI)
(http://youtu.be/VRg6149XesU). Moreover, the source code
of the BiS tool is available for download on the web
(https://github.com/manoelnetom/IDTVSimulator).

The next section of this article presents some concepts
and definitions of iDTV and the related work to this paper.
The third section presents the BiS tool and themain function-
alities.The fourth section presents its architecture. In the fifth
section, the experiments used to validate and demonstrate the
main features of the simulation environment are presented.
The sixth section presents the conclusions and the possible
evolution of this work.

2. iDTV Basic Definitions

Some iDTV previous definitions are important to improve
the comprehension of this paper. This section aims to fulfill
this role.

In computer science world, “program” is synonymous
with “software.” However, in TV world, the most appropriate
meaning for this word is “linear program.” This paper relies

on the definition provided by [2], where such programs are
defined as multimedia applications through which a viewer
can interact via remote control. It means that, in addition
to audio/video main streams (linear program), the viewers
can receive (from broadcaster) or download (from web)
software that allow then interacting with the delivered and
displayed content on aTV screen or on a seconddevice screen
[11]. These software are defined as “applications” designed to
execute on a TV receiver and to manipulate/consume some
data (e.g., video, audio, text, and XML). Such applications
and the data manipulated/consumed by them are defined as
“interactive content.”

Commonly, the basic activities related to interactive con-
tent are grouped into 4 phases [6]: production, transmission,
reception, and reproduction (see Figure 1).

The production phase may include (i) media creation
activities (e.g., creating images with different available con-
figuration settings, use of television screen area, and sound
quality adjustment), (ii) application development activities,
and (iii) the integration between a linear TV program and an
application.

Some remarks should be highlighted on the production
phase. First of all, the media creation activities generate a set
of artifacts that can be stored and reused many times in a
recorded linear TV program or can be generated and used in
a live linear TV program. Furthermore, the application devel-
opment activities consist in building a set of synchronized
compositions of nodes. These compositions may represent
media (such as video, audio, text, and images), data, and
programming language objects to be presented/executed dur-
ing a linear TV program. These synchronized compositions
may be specified using a programming language such as Lua
[12], JavaTV [13], JavaDTV [10], Broadcast Markup Language
(BML) [14], andNested Context Language (NCL) [15]. In this
context, the use of authoring tools is useful to abstract the
complexity of such languages.

The transmission and reception phases are executed
through MPEG-2 transport stream and data carousel
(defined by DSM-CC: Digital Storage Media-Command and
Control) [16]. The DSM-CC is an ISO/IEC standard [17]
(included onMPEG-2) used by digital terrestrial TV systems
(the focus of this work) and developed for the delivery of
multimedia broadband services.

The DSM-CC is an important mechanism for interactive
content generated in a broadcaster. It is responsible for send-
ing the interactive content in a cyclic way (data carousel).This
content is multiplexed together with a linear TV program in a
MPEG-2 transport stream. It also works as a virtual disk that
stores interactive content to be delivered to viewers. Through
the DSM-CC we can set on the receiver the same directory
structure used in the content generator. With the cyclic
sending, the interactive content can be correctly transmitted
to the receiver even if the channel is tuned long after the
beginning of a linear TV program.

Another way to transmit interactive content data to a
TV receiver is through the return channel. This mechanism
should be used for two-way communication with the broad-
caster and thus potentially with other content providers (e.g.,
ISP). Interactive TV standards theoretically support loading

http://youtu.be/lJ6ZPxgf-CI
http://youtu.be/VRg6149XesU
https://github.com/manoelnetom/IDTVSimulator


International Scholarly Research Notices 3

Production

ReceptionTransmission

Reproduction

Storage

Communication 
Channel

Figure 1: Basic phases involved in the creation, transmission, and presentation of interactive content [6].

applications from return channel. We say “theoretically”
because they do rely on a broadband return channel and
advanced receiver implementation, and so this is not likely to
be widely adopted in practice. However, many broadcasters
send some additional data for the interactive application
through the return channel. Sync events with media content,
files (e.g., the main class manifest) and events related to
signaling and application security are usually sent by the
broadcast channel. In this paper we use this approach.

If an interactive content with a specific TV program, it is
frequently helpful to be able to synchronize the behaviour of
application to the events on scenes. In numerous multimedia
authoring systems, this is implemented based on the concept
of a timeline where these changes in execution take place at
a specific time.The problem with interactive TV applications
is that there is no real concept of media time when dealing
with a broadcast MPEG-2 stream. As we can join the stream
at any point, we have no method of knowing how long it is
since the stream started (or even what the idea of “starting”
means in a broadcast sense).Thismeans thatwe cannot utilize
media time as a method for synchronizing applications to
their related media.

AlthoughDSM-CC is often used as a broadcast file system
protocol, there is more than that. We use some extra capa-
bilities outlined by DSM-CC to support the synchronization,
especially for stream events. These are markers that are
inserted in a transport stream by way of MPEG-2 private
sections, with each event consisting of an identifier and a time
reference. Stream events will be detailed in Section 4.1.1.

The reproduction phase includes the presentation of
interactive content with linear content. This task means
running a multimedia presentation (with time and space
synchronization constraints) or run software written in a
procedural language (which also implements synchroniza-
tion constraints). Usually, in terrestrial Digital TV Systems,
this is implemented on the middleware installed in the
DTV receivers or set-top-boxes. Examples of middleware for
Digital TV include Ginga [18], Multimedia Home Platform
(MHP) [19, 20], and DASE-ATSC [21].

Another important definition to this paper is how to
classify interactive content. According to [22], the interactive
content may be divided into three groups.

The first group includes the interactive content that has
no relation with the linear content presented on TV (e.g., E-
mail or TV-banking presented during a film). In this group,
the interactive content could be sent by the broadcaster
(using the DSM-CC) or downloaded from any other content
provider (through the interactive channel). The only differ-
ence between iDTV applications (included in this interactive
content) and, for example, PC applications is to how to fulfill
nonfunctional requisites such as “execution platform” (TV)
and “input and output mechanisms” (remote control). To
simulate this environment, we can use a player that present
the interactive content loaded from a local repository (e.g.,
USB stick).Therefore, the transmission and reception aspects
are not fundamental for this group.

The second group includes the interactive content that
have a relation with a recorded linear TV program (whose
content is known in advance) and with strong time synchro-
nization constraints, for example, interactive advertising of
products presented in specific moments of a movie. In this
group, the interactive content related to the movie is usually
sent by the broadcaster using the DSM-CC. However, as in
the first group, we can also simulate this environment by
using a player that present the interactive content loaded
from a local repository and not considering the transmit-
ting/receiving aspects, since both the linear TV program (or
content) and the data (including synchronization constraints)
are known in advance.

The third group includes a live generated interactive
content that has a relation with a live linear TV program
content and with time synchronization constraints that need
to be accomplished during the presentation. In this group,
the interactive content is also sent by the broadcaster using
the DSM-CC. Due to the synchronization constraints built
at runtime, we must consider aspects that directly influence
the process of transmitting, receiving, and running such
interactive content to simulate this environment.



4 International Scholarly Research Notices

This paper relies on the classification of such interactive
content (2nd and 3rd groups) as interactive TV Applications
(iTVA). The main contribution of this paper is to fill the gap
by creating a “complete” simulation environment that allows
transmitting, receiving, and presenting/running the interac-
tive content included in the previously mentioned groups.

2.1. Simulation Environments Related to iDTV. The Set-Top-
Box Virtual Ginga-NCL is a virtual machine, built over
VMware [23], aimed to facilitate the distribution and deploy-
ment of the Ginga-NCL player. This player version was writ-
ten in C ++ and has the most advanced presentation features
for declarative interactive content, better performance, and
implementation similar to those that are embedded in real
set-top-boxes [7, 24].

To present an interactive content on Virtual Set-Top-Box,
the option is to use a remote file transfer application like
SFTP (SSH file transfer protocol) [25]. As a matter of fact, all
control commands that are supported by this environment
are performed through SSH remote console application. The
installation of interactive content, for example, is made using
this interface.The treatment of interactive events triggered by
users is done through the PC keyboard. The keyboard keys
are mapped to specific functions of an interactive content
simulating the buttons of a remote control.

The simulator is able to run any interactive content
written in NCL and faithfully reproduce a real execution
environment for such content. It allows the presentation
of contents but does not explore the aspects related to its
transmission. Therefore, the interactive content should be
available before presentation in this simulation environment.

TheXleTView is considered one of themost popular tools
to simulate Digital TV on a PC platform. It includes the
execution of Java applications (named Xlets) and implements
the MHP APIs [19] and the API JavaTV [13]. To simulate
the presentation of the linear TV program, the XleTView
allows a user to select a video file whose content is displayed
in a rectangular and central part of the simulator window.
Likewise, the user can select interactive content written in
JavaTV that will run over an invisible panel located on the
MainContent screen.The simulator provides a virtual remote
control that allows handling interactive events located on the
right side of the window. The XleTView is focused only on
running interactive content. In this tool a major limitation
is the inability to simulate the transmission/reception of
content sent by a broadcaster. It does not implement the
DSM-CC or any other similar mechanism.

The OpenMHP is a simulator whose purpose is to run
Xlets on a PC (very similar to the XleTView). It is also based
on MHP specification and uses JavaTV and JMF (Java Media
Framework) APIs implementation [8, 26]. The OpenMHP
offers a textual output with debug information that is respon-
sible for presenting all events and messages for the simulated
applications at runtime. This debugging functionality offers
a better view of test applications developed. Thereby, when
compared to XleTView, the OpenMHP can be considered
a more complete simulation tool. However, the lack of
functions to transmit/receive interactive content [17, 27–29]

and the complexity of its installation and configuration are
the two major limitations of OpenMHP.

The Ginga-J Emulator is an open source project devel-
oped in Java whose architecture is also based on XleTView
[9]. One of the main innovations of Ginga-J Emulator was
conducting the reference implementation in accordance with
the newAPI JavaDTV [10] adopted by themiddlewareGinga.
Despite being based on a particular platform, this tool not
only works as a proof of concept, as it also allowed identifying
limitations of the existing XleTView software architectures.
Some of these difficulties must be considered in order to
simplify the process of porting and extend the platform.

This emulator provides an execution environment easy to
install and use on a PC. However, the tool has limitations to
represent the features available in a real set-top-box.Themain
restriction is related to the use of network protocols such
as signaling applications, broadcast file system, media and
interactive content synchronization, selection of elementary
streams, and access to service information and data carousel,
since the application execution is performed locally. In other
words, the Ginga-J Emulator does not allow simulating
neither the transmission nor the reception of interactive TV
applications.

The FrameIDTV [30] is a framework used to implement
interactive content (or portion thereof). It was included in the
list of related works of this paper because it provides a set of
objects that allow building interactive content (in Java) that
use communication over a computer network. To support
this feature, this framework specifies a generic and easy-to-
customize application layer protocol. Thus, if a developer
wants to use the FrameIDTV communication services, he
should include in an interactive content the FrameIDTV
objects that are responsible for such communication.

2.2. Remarks and Discussions. As is shown in Table 1, none
of the tools described in this section cover all the basic
activities related to interactive content: production, transmis-
sion, reception, and reproduction. None of them covers the
production phase. Most of them cover the reproduction of
interactive content on computers to simulate the TV receiver.
Only one of presented tools (FrameIDTV) covers aspects of
transmission/reception but still without following the DSM-
CC dynamics. Finally, none of the work allows simulating the
interactive content presentation included in the third group.

One of the reasons for the lack of simulators that include
the production phase may be the chain of available tools.
Currently, the tool chain for the production phase is quite
mature. Some examples of these tools include NEXT [31],
Composer [32], T-MAESTRO [33], iTV Project [34], Athen-
aTV [35], and Cacuria [36]. Thus, we decided in the same
way to not include the production phase in the proposed
simulator.However, including this phase is one of the possible
future works of this project.

The fact that most simulators presented here allow the
reproduction of interactive content, combinedwith the desire
to produce a tool aligned with the standard adopted in
Brazil (ISDB-Tb: Integrated Services Digital Broadcasting,
Terrestrial, Brazilian version) [6, 37], led us to reuse and
extend the Ginga-J Emulator tomeet the reproduction phase.



International Scholarly Research Notices 5

Table 1: Tools versus phases involved in the creation, transmission, and presentation of iDTV content.

Tool/phase Production Transmission Reception Reproduction Groups
Set-Top-Box Virtual Ginga-NCL No No No Yes 1 and 2
XleTView No No No Yes 1 and 2
OpenMHP No No No Yes 1 and 2
Ginga-J Emulator No No No Yes 1 and 2
FrameIDTV No No No No —

The Ginga-J Emulator does not address the synchroniza-
tion aspects between linear and interactive content (see
Section 2.1) conformance with ISDB-Tb. Its limitation is
exactly the aspects of transmission and reception.

Another important discussion for this work is to highlight
some aspects of FrameIDTV. First, the FrameIDTV does not
provide a reproduction environment. It focuses on design
and implementation details of interactive content. Another
aspect is the communication protocol defined in the FrameI-
DTVcomponents.These components follow the client-server
paradigm with transport over TCP. This approach assumes
that there is always a bidirectional communication flow
between a client and a server. The communication model
used by FrameIDTV (push/pull) is the same used on the
Internet. In fact, this aspect is a limitation of FrameIDTV
framework. In a conventional TV environment (without
interactive channel), the transmission of the content is always
done by the TV station in broadcast mode. The TV station
uses the pull communication model [38], where content is
transmitted simultaneously to all receivers tuned in a specific
channel.

3. BiS: Broadcast iDTV Content Simulator

This section presents the implementation details of the tool
named BiS: Broadcast iDTV content Simulator. The focus of
the BiS tool is the transmission, reception, and reproduction
phases. It was created from the source code of the Ginga-J
Emulator and this allowed reusing the functions to present
interactive content written in JavaDTV. It allows presenting
interactive content from any of the three groups defined in
Section 2.

The major differential of the BiS tool is exactly the
main limitation of most of the related works: the use of
broadcast protocols (applications signaling) and DSM-CC
(broadcast file system andmedia and interactive content syn-
chronization). Therefore, the BiS tool includes functions for
transmission and reception of contents and uses a broadcast
method through a data carousel to simulate the transmission
of both linear TVcontent and interactive content. In addition,
the BiS tool allows users to tune a channel and consume
contents sent by this channel or other content providers.

Importantly, despite being a simple solution, it has never
been implemented and made available to a simulator. The
importance of simulating the environment which enables
the transmission, reception, and execution of interactive
TV applications are (i) evaluating the synchronism between
linear TV content and interactive content sent to the receivers
and (ii) the possibility of simulating the sending of content

generated live during the presentation of a linear TV pro-
gram. In other words, it is not necessary to know the entire
linear TV program content in advance and, still, you can
simulate the live broadcast of interactive content related to
the linear TV program being presented.

During the design phase of this project, the list of
functional requirements was mapped in the following use
cases. They have two main actors: the Broadcaster (Director,
Editor, etc.) and the Viewer and will be presented in the
following two groups:

(1) Actor: Broadcaster

(a) Configure Network Information. Before any
action, an Actor must provide the settings nec-
essary to send contents. Through a configura-
tion dialog which should be displayed when
starting the simulator, the Actor should be able
to enter the following data:
(i) broadcast IP;
(ii) network port to send linear TV content;
(iii) network port to send interactive content;
(iv) channel name.
The other features of the simulator should only
be released after defining these settings.

(b) Transmit Linear TV Content. An Actor must
select a video file to be transmitted. This video
will be used as linear TV content. For this func-
tionality, the simulator must use the VLCj API
that must be configured to transmit over UDP
on network ports and IPs previously defined.

(c) Start Data Carousel. An Actor must be able
to initiate the data carousel at any time even
though he has not added any content yet. This
option must be disabled when the carousel is
running.

(d) Stop Data Carousel. When stopping the data
carousel, all contents added to it must be
removed. This feature represents the inclusion
of the use case below:
(i) Restart Data Carousel. An Actor must be

able to reset the carousel at any time. To
reset the carousel, a user has to stop it, so
that all contents will be removed, and then
the BiS tool automatically restarts it again.

(e) Pause Data Carousel. Once the carousel is
started, an Actor can pause it at any time. In this



6 International Scholarly Research Notices

case, the contents are not removed, and when
the carousel is restarted, the transmission must
go back to the point where it stopped.

(f) Update Contents List. The functions for inser-
tion, removal, and replacement of contentsmust
automatically update the simulator window that
displays the contents.This feature represents the
inclusion of the three use cases below:
(i) Add Contents to Data Carousel. An Actor

must be able to add contents to the carousel,
at any time and even if the carousel has not
been started, displaying these contents in a
list to the Actor with the following data:
(A) content name;
(B) version;
(C) content type (Automatic, Notify or

List).
This function can be used even with the
object carousel started.

(ii) Remove Contents from Data Carousel. An
Actormust be able to remove contents from
the carousel at any time. This action must
update the graphic component which lists
all the contents in carousel.

(iii) Replace Contents from Data Carousel.
An Actor will be able to replace, at any
moment, contents previously added to the
carousel. This action must update the ver-
sion information of these contents in the
window where they are displayed.

(2) Actor: Viewer

(a) Tune a TV Channel. This use case represents
the simulation of “to tune a channel in a con-
ventional television.” In the BiS tool, this feature
is mapped to the action of choosing a pair of
network ports for receiving data through the
network. In this context, one port is used for
receiving linear content and the other for receiv-
ing interactive content. This use case includes
the following.
(i) Receive LinearContent.This use case allows

simulating the reception of linear TV con-
tent. An Actor has no control over this
content. As in a conventional broadcast
television, a viewer can only tune a channel
and watch the content. In this context, he
cannot forward, pause, or rewind a video
stream.

(ii) Receive Interactive Content. This use case
allows simulating the reception of inter-
active content. This content is classified
into three distinct types that must undergo
special treatment:
(A) File. Digital files with any type of con-

tent should be stored in the receiver’s
Hard Drive.

(B) Directory. For directories, the pro-
cess comprises receiving the entire tree
of files (directory, subdirectories, and
files) and stores it on disk respecting
the original hierarchy sent.

(C) Application. For applications, the pro-
cess comprises receiving and storing
the entire file structure and meta-
data of the application.Thesemetadata
includes (a) application name and (b)
application startup class. These meta-
data are also kept in memory for later
execution.

(b) Run JavaDTV Applications. This use case
includes the Receive Interactive Content use
case. It defines the fact that if the interactive
content is an application, it must be executed.

4. Architecture

Figure 2 shows the simulator architecture. It divides the
simulation into three major modules: (1) Broadcaster, which
is the transmitter side of the simulation environment, (2) Sub-
scriber, which represents the receiver side, and (3) Provider,
which represents other content sources than broadcaster, for
example, a video portal on the Internet, and news feed. The
following topics detail each of these modules.

The Broadcaster module is associated with the Transmis-
sion phase (see Section 2) and it covers functions defined in
the first group of use cases in Section 3. It was divided into
two other modules: (i) Main Content provider and (ii) Extra
Content provider.

Likewise, the Subscriber module is associated with the
reception/reproduction phases (see Section 2) and it covers
functions defined in the second group of use cases in
Section 3. It was divided into threemodules: (i) ExtraContent
Subscriber, (ii) Main Content Subscriber, and (iii) Presenta-
tion. The following topics detail each of these modules.

4.1. Broadcaster. Figure 3 shows theBroadcaster architecture.
This architecture can be represented by two modules called
“Main Content generator” and “Extra Content generator.”

The Main Content generator module is responsible for
transmitting audio and video which may represent the linear
TV content.Thus, thismodule uses the library libvlc, included
in Video LAN media player (VLC) project. This library was
used to implement the functions that allow transmission,
reception, and visualization of such content.TheVLC project
also offers the VLCj API which allows using code written in
Java to handle transmission, reception, and media encoding
functionalities [39]. The module uses an exclusive network
stream (through a UDP service and using broadcast method)
in order to simulate a real environment of Digital TV. Once
loaded, the module is able to transmit linear TV content,
using a video file selected by a user.

The Extra Content generator module is responsible for
transmitting interactive content that includes applications
and data (e.g., text, XML, image, audio, and video consumed



International Scholarly Research Notices 7

Broadcaster Network hub Subscriber Internet Provider

Figure 2: Architecture of the simulator.

libvlc + VLCj

Generator of
Objects

Carousel of
Objects Protocol

Main Content generator

Extra Content generator

Broadcaster

Figure 3: Broadcaster architecture.

Application

Directory

File 
(audio, video, 
image, XML, 

etc.)

Binded file

Binder application

Binder directory

Single file

Content type Mapped objects

Binded file

Figure 4:The list of content types and their respective mappings on
the carousel of objects.

by such applications). The interactive content is transmitted
cyclically, in another network stream (other than linear
content), but still uses broadcast method. The transmission
dynamics of interactive content was inspired on DSM-CC
used by terrestrial Digital TV systems. The carousel imple-
mented in this work aims to control the data flow delivery for
different types of interactive content. For this purpose, first,
each content is mapped into a carousel object and, then, each
object is stored in a circular queue. After that, the carousel
transmits pieces of each object (packets) using a time interval
size proportional to the number of objects in the queue. The

Extra Content generator module was subdivided into three
submodules: Generator of Objects, Carousel of Objects, and
Protocol. These submodules will be detailed below.

4.1.1. Generator of Objects. This submodule is responsible for
identifying the type of content transmitted and also trigger
events that can be used to synchronize the linear TV program
and interactive content. For this, it implements functions that
allow recursively browsing directories with contents, allow
classifying files found on such directories, allow mapping
them into carousel objects, and allow stream events to be
inserted into linear TV program easily.

Figure 4 shows the list of content types and their respec-
tive mappings on the carousel of objects. A selected content
should be identified as “Application,” “File,” or “Directory.” If
a selected content is a Java file, this module will identify it as
anApplication, if the content is a folder, it will be identified as
a Directory and if the content is anything different from a file
or a folder, it will be identified as a File.

The contents identified as Directory can be mapped into
objects “Binded File” and “Binder Directory.” The contents
identified as Application can be mapped into objects “Binded
File” and “Binder Application.” Simple file (identified as File)
can be mapped only as “Single File” objects. The objects
defined in this work are similar to those defined on the DSM-
CC real implementation.

A “Single File” object is equivalent to a File object
on DSM-CC real implementation. It represents a data file
without any connection with other files to be transmitted.
The “Binded File” object represents a file that is semantically
linked to other files. This indicates that access to this file
should only occur when all linked files have been received.
A “Binder Directory” object has the same functionality as
the Directory object on DSM-CC. It represents a directory
that should be created in a receiver and saves the list of files
that are stored in such a directory. The “Binder Application”
and “Binder Directory” are similar to each other. It (“Binder
Application”) represents a directory that contains an appli-
cation and was created only to facilitate identification of the
transmitted applications. Besides containing all the data of a
“Binder Directory” object, the “Binder Application” contains
the application name, starter class name (main class), and the
type of execution. The types of execution supported by the
BiS tool include the following.

(1) Automatic. An application should start automatically
as soon as it is received by a receiver.

(2) Notify. An application should not be started automat-
ically at a receiver. However, a user should be notified



8 International Scholarly Research Notices

about each new content. To access it, a user must start
the application froma list of applications on a receiver.

(3) List. An application should only be added to the list of
applications on receiver.

Stream events, as we saw in previous section, are markers
consisting of an identifier and a time reference.The identifier
allows each stream event to be unambiguously identified,
while the time reference indicates at what point in the stream
the event should trigger. The transport stream might contain
a data carousel which includes a set of stream event objects.
These identify each event by a textual name and allow the
mapping of this name to the numeric identifier contained
in the event itself. This lets an application programmer to
know what events can get generated previously and helps it
to verify that an application is registering itself as a listener
for broadcaster events. The submodule is responsible for
managing CRUD operations (add, remove, edit, and query
stream events by id or name) of stream events that will be
sent in the broadcast stream.

4.1.2. Carousel of Objects. After mapping objects (in the pre-
vious submodule), the Carousel of Objects module receives
the set of objects (that represents the contents) and stream
events and adds it to the carousel and transport stream on
the simulator, respectively. Each object and stream events that
will be broadcasted will be added individually and each will
have its own time frame to be transmitted.

The implementation of carousel performed in this work
was based on Java libraries for data transmission through
network (e.g., Socket, DatagramSocket). In order to maintain
similarity with DSM-CC and enable reliable delivery (not
using TCP), a protocol that enables integrity checking and
object type checking was defined and implemented. This
protocol will be detailed below.

4.1.3. Protocol. This section describes the protocol defined
and implemented in this work. The Protocol submodule
defines the format of messages exchanged between the
Broadcaster and the Subscriber modules. It contains the
representation structures (e.g., protocol headers) and the
conversion functions required to execute the transmission
(and also reception) of contents. The Protocol submodule is
located at Broadcaster module, but it is important to note
that the Subscriber module also uses the services offered
by this submodule. Initially, it uses functions that receive
the selected objects as parameters and transform them into
an array of bytes. After that, the “Carousel of Objects”
submodule performs the data transmission through network.
The receiver (Subscriber module) must perform the reverse
process, transforming the bytes received in objects again.

The first message format defined by this protocol is the
data packets header used on the streaming of contents. This
header is detailed in Table 2.

(1) “ID” is an 8-byte size field that is used to provide
a unique identifier for each object added to the
carousel. For example, if an application is composed
by a file whose extension is “.class” and two more

Table 2: Protocol data packets header.

Field Size
ID 8 bytes
Type 2 bytes
Version 2 bytes
Number of packets 8 bytes
Packet sequence 8 bytes
Data length 4 bytes
Data 30720 bytes

XML files, all three files are mapped as carousel
objects and receive unique identifiers. Thus the
receiver can treat each element individually and check
their consistency.

(2) “Type” is a 2-byte-size field that is used to identify
contents and to map them as carousel objects. As
described in Section 4.1.1, there are five possible
values for the “Type” field: “Binded File,” “Binder
Directory,” “Binder Application,” “Single File,” and
“Stream Events.” The latter two represent stream
event objects.

(3) “Version” is a 2-byte-size field that is used to define
the version number of an object. In some cases a
substitution of a transmitted contentmay be required.
In this context, new objects should replace old ones
keeping the same ID (only updating their version
numbers).

(4) “Number of Packets” is an 8-byte-size field that
stores information about the total number of packets
that compose an object. This information is used to
determine whether an object has been completely
transmitted.

(5) “Packet Sequence” is an 8-byte-size field that stores a
number used to identify and sort each of the packets.

(6) “Data Length” is a 4-byte-size field that is used to store
the content size indeed loaded in each packet.

(7) The last packet field is named “Data.” It is a 30720-
byte-size field that is used to store the content loaded
by a packet.

Particularly for “Binder Application” objects, “Data” field
defines a structure to facilitate the execution of applica-
tions. This data structure is shown in Table 3. It shows the
information that is transmitted in the Data field for “Binder
Application” objects. The first byte indicates the type of
execution. The second byte is related to the amount of bytes
used to the name of the main class. This name can use up to
250 bytes (3rd at 252).The 253 bytes represents the amount of
bytes used to the application name. To this, it is possible to use
up to 32 bytes (from 254 to 285). After that, there are 4 bytes
to represent the amount of identifiers. The area reserved for
the transmission of identifiers have size equal to 30430 bytes
(from 290 to 30720) which can represent up to approximately
3803 identifiers (“Binded File” objects).



International Scholarly Research Notices 9

Table 3: Data field structure for Binder Application objects.

Bytes Description

1 Type of execution (Automatic,
Notify, List)

2 Size in bytes for the path to
start class

3 to 252 Path to start class

253 Size in bytes for the
application name

254 to 285 Application name
286 to 289 Number of objects
290 to 30720 Object IDs

From a protocol implementation perspective, stream
events are split into two parts: “stream event” and “stream
event descriptors.” “Stream events” are stored in an object
carousel and are just like any other objects. The “stream
event descriptors” are inserted in the broadcast stream as
markers and tell the receiver that an event has actually been
embedded. A “stream event descriptor” contains three main
attributes: the ID of the object, an NPT (Normal Play Time)
value at which the event should be triggered, and several
application data. The ID allows resolving which stream event
object is related to this descriptor in receiver side. Since
a transmitter cannot be sure just where a stream event
descriptor is added to a stream, each descriptor transports
an NPT value that says when the event should be notified.
This enables the application programmer to know in advance
that it should generate an event when a specific NPT value is
touched, giving a further predictability. The iDTV standards
specifications state that every stream event must be signaled
at least once every second for a minimum of five seconds
earlier than the time they should trigger. In this case, these
repeated objects must have the same values.

In addition, a “stream event descriptor” can also be
configured to start immediately—these are called “do it now”
events. This allows stream events to be inserted into a live
content much more easily. In this case, events are only
broadcast once per time, and so some precautions should
be taken by the application programmer to ensure that it
receives them rightly. This “Carousel of Objects” submodule
configures the stream event descriptors of the registered
streams events objects in “Generator of Objects” submodule.

4.2. Subscriber. The Subscriber architecture is divided into
three modules called Extra Content Subscriber, Main Con-
tent Subscriber, and Presentation as illustrated in Figure 5.
The following topics detail each of these modules.

4.2.1. Extra Content Subscriber. This submodule aims to
receive interactive content, to verify its integrity, to persist
it on receivers, and to notify other submodules about the
availability of a new content and stream events. For this
reason, such a module is divided into four parts: Carrousel
Subscriber, Consistency Checker, Persistence Service, and
Receipt of Contents Notifier.

Main content
presentation

Ginga-J
execution

engine

Carrossel
Subscriber

Consistency
Checker

Persistence
Service

Receipt of
Contents
Notifier

Receiver VLCj

Container
VLCj

Extra Content
Subscriber

Main Content
Subscriber

Subscriber

Presentation

Figure 5: Subscriber architecture.

The Carrousel Subscriber aims to allow the reception
of data obtained from a Broadcaster. For this, it uses Java
libraries for data transmission over network (e.g., Socket,
DatagramSocket) and processes packets (messages) whose
format was specified in the protocol defined in this work (see
Section 4.1.3). Each packet received by this carousel is sent to
the Consistency Checker.

The Consistency Checker is an integrity check protocol
that aims to maintain similarity with the DSM-CC and to
ensure reliable delivery of packets (without using TCP). This
means that it checks the integrity of packets received from
Carrousel Subscriber avoiding the receipt of duplicate packets
and, as a consequence, the consumption of incomplete
objects.

The entire process executed by the Consistency Checker
submodule can be viewed in Figure 6. To check the con-
sistency of received packets, the Consistency Checker has a
list of identifiers that represents each object whose receiving
process has already started. Each object of this list contains a
sublist with a tuple: packet identifier and a Boolean variable
that identifies whether the packet was received (true) or not
(false). Thus, the process to check the consistency implies in
browsing the list of objects and, for each of these objects,
performing the reading of the received packet header. In this
phase only the following fields are evaluated: ID, number
of packets, and packet sequence. From this point, three
situations may occur:

(1) If the list contains no object whose identifier is equal
to the received packet header’s ID field:



10 International Scholarly Research Notices

(1) Add a new object.
(2) Create a new sublist of packets.
(3) Marks the packet “T.”
(4) Sends it to output.

(1) Marks the packet “T.”
(2) Sends it to output.

(1) Drop packet.

Is there any
ID?

No

Yes
Packet

sequence is
“F”?

YesNo

01001010101000000111001010

Header: ID, number of packets,
Packet

Packets

List of objects (ID)
1 2 3 4

Each object has a sublist
of packets

1 T 2 F 3 T

Consistency checker

packet sequence. . .

· · ·

· · ·

111111101010110101001· · ·

Figure 6: Consistency Checker.

(a) The Consistency Checker adds a representation
of the new object to the object list.

(b) The Consistency Checker adds the newly cre-
ated object to the list of packets that goes from 1
to the value of Number of packets contained in
the received packet header field. All positions on
the list aremarked as packet not received (false).

(c) The Consistency Checker marks the newly cre-
ated packet, whose identifier is equal to the
received packet Sequence field, as “received”
(true).

(d) The Consistency Checker sends the packet to
the output.

(2) If the object list contains an object whose identifier is
equal to the received packet header’s ID field:

(a) The Consistency Checker marks it as “received”
(true).

(b) The Consistency Checker sends the packet to
the output.

(3) If the object list contains an object whose identifier
is equal to the received packet header’s ID field and
the representation of the packet (in the packet list) is
marked as received (true), then this packet is dropped.

Create a new
one

Save the packet as file
with “.pkt” extension

Is there any
directory? No

Yes

Object is
complete?

(1) Use all “.pkt” to create the complete file.
(2) Remove all “.pkt.”
(3) Send the file to output.

Yes

Packet

Wait for a new
packet

No

Persistence Service

Header: ID, packet, sequence, data length. . .
010010101010000001110010101111· · ·

Figure 7: Persistence Service.

An output of the Consistency Checker is an input for
the Persistence Service. This service aims to persist the data
and notify stream events received from the Consistency
Checker. For each received packet, the Persistence Service
reads the header of the received packet. For this phase only
the following fields are evaluated: ID, number of packets,
packet sequence, and data length. To implement the Persis-
tence Service some Java libraries were used for manipulating
files. Among these libraries deserve mention File, FileWriter,
BufferedWriter, BufferedReader, and FileReader. The entire
process executed by the Persistence Service can be viewed in
Figure 7.

The process of persistence starts by checking if there is
a directory created to store the packets of an object. This is
done through the ID field of the packet. If the directory does
not already exist, a new one is created with the name of the
object identifier. Then, in this directory, the data portion of
the packet is persisted in a file whose name is the Packet
Sequence field value and whose extension is “.pkt”. After
that, the Persistence Service checks whether the object is
complete (if the amount of files with the extension “.pkt” in
the directory is equal to the Number of Packets field value). If
the object is complete, files with the extension “.pkt” are read
sequentially and their contents are persisted in a single file. At
the end of this reading process, files with the extension “.pkt”
are excluded and an object instance is sent to the output of
the Persistence Service.



International Scholarly Research Notices 11

Whenever a stream event object is received, its descriptor
is extracted and the Persistence Service takes the following
steps:

(1) It checks to tell that an event object with the equal
event ID is present in the current object carousel. If
an event with that event ID is not existent, then the
descriptor is skipped.

(2) If the data of the descriptor indicates that the event is
a “do it now” event, subsequently the event is notified
instantly;

(3) If the event is not a “do it now” event, the Persistence
Service verifies the NPT value at which the event
should be notified. If an event with the same event ID
is already scheduled to be notified at the same NPT
value, or if the NPT value has already passed, then the
event descriptor is skipped.

(4) Once the NPT value reaches the value specified for a
scheduled event, the event is notified.

One essential aspect that is offered by this division of
stream event and stream event descriptors is that events
can be reused. Some stream event descriptors can include
the equal event ID, even if they are notified at different
times and contain other private data. This lets an application
programmer to use the event ID to define “classes” of events.
Hence, an interactive TV application can start handling an
event just by knowing the event ID. In several cases, no other
data is needed to application

An output of the Persistence Service is used as input to the
Receipt of Contents Notifier. It aims to inform the Presenta-
tion module that a particular object (interactive content) or
stream eventwas received.This notificationwas implemented
according to the observer design pattern [40] and use classes
from “com.sun.dtv.broadcast.event” JavaDTV [10] package.

4.2.2. Main Content Subscriber. This module aims to receive,
encapsulate, and deliver the linear content to the presentation
module. The implementation of this module used the same
libvlc library included in the project Video LANmedia player
(VLC), whichwas presented in Section 4.1.TheMainContent
Subscriber was implemented into two submodules: Receiver
VLCj and Container VLCj.

The Receiver VLCj aims to receive the linear content. For
this, a user must define the communication protocol and the
listening network ports. In the simulator, the protocol used
for receiving audio/video streams is UDP and the listening
port is an integer number that represents a TV channel.

Once the linear content is received, it serves as an input
to the Container VLCj submodule. This submodule aims to
integrate all the contents previously received in a container.
After that, this container will be delivered to the Presentation
module.

4.2.3. Presentation. The Presentation module is responsible
for providing an interface between the simulator and a user.
In this module, the linear content and interactive content are
presented together to the viewer. For this, the module was

Figure 8: Broadcaster simulator window.

divided into two submodules: Main Content Presentation
and Ginga-J Execution Engine.

The Execution Engine Ginga-J aims to present the
JavaDTV applications. These applications are presented on a
Java container (called Overlay) which is also used to present
linear content. The remaining types of interactive content
(videos, audio, images, text, etc.) will be consumed by these
applications. The implementation of this module was based
on the use and adaptation of the source code of the Ginga-J
Emulator [9].

5. Experiments

This section presents the experiments conducted to demon-
strate the BiS tool implemented in this work. These experi-
ments use interactive applications to evaluate the tool with
three important scenarios. They aim to demonstrate that the
BiS tool supports the transmission of interactive content over
a simulate broadcast channel.The three applications that have
been developed will be detailed below.

5.1. Mixed Martial Arts. The first experiment consisted in
developing and executing an interactive TV application,
written in Java, which allows presenting interactive content
coming from a broadcaster, during a transmission of MMA
fights (Mixed Martial Arts). The application aims to present
the photo of each fighter participating in a fight.These photos
will be transmitted by a broadcaster and, once received, will
be presented automatically. This experiment seeks to keep
the focus on detailing the full operation of the simulator.
These details include content selection, content transmission,
content reception, and, finally, the presentation to a user.

Before transmitting the stream that represents the linear
content, the usermust select a video file.This is done by using
a button (named “Broadcast Main Content”) located on the
top of the broadcaster simulator window.This window can be
seen in Figure 8.



12 International Scholarly Research Notices

fighter1.png
[Binded File]

fighter2.png
[Binded File]

MMA App
[Binder 

Application]

MMA.class
[Binded File]

Figure 9: Cyclical sending of objects through the data carousel.

To transmit all the interactive contents (Java classes and
photos of two fighters) through the data carousel, a user
must first define the application name. In this experiment,
this name was defined as MMA App (Figure 8). To send this
content, the usermust first click on the “AddContent” button
and then select a file with extension “class” (the Java main
class). After that, the simulator browses the directory where
this file is stored and selects all other existing files (including
subfolders) for transmission. Each file ismapped to a “Binded
File” object and, moreover, the simulator also creates a
“Binder Application” object. After that, the usermust click on
the “Start Carousel” button and then the transmission begins.

The “Binder Application” object created by the simu-
lator aims to list all the objects that make up the MMA
App application. The directory tree of the MMA APP
application includes the Xlet “MMA.class” and the photos
fighter1.png/fighter2.png that will be presented during trans-
mission. Each of the objects generated by the simulator con-
tains an identifier that is unique to that channel. Note that the
“Binder Application” object contains all identifiers of objects
that compose the application, the path to the Java main class
(“MMA.class”), and an indication of how to treat each object
(execute, use as data consumed by application, etc.).

After the step described above, all objects are added to
data carousel and sent cyclically using broadcast method.
Figure 9 represents the cyclical sending of objects through
data carousel considering this experiment. For this, each
object occupies a fixed time frame.When a time frame expires
the next object is transmitted and this process is repeated
successively until the last object of carousel. Once the last
time frame has occurred, the carousel selects the first object
again and repeats all the transmission cycles. The carousel
stops sending objects when the user removes the application
(thus removing all related objects) or when the user manually
pauses or stops the carousel. The removal/replacement of
objects can also be made during a transmission without
stopping the carousel.

The Java class files as well as the photos of the fighters are
received in packets and stored in a temporary area on disk.

Su
bs

cr
ib

er

1
1.pkt

2.pkt

2

1.pkt

2.pkt

3 1.pkt

4 1.pkt

Directories Files

Figure 10: File structure of the simulator on receiver side.

For each object carousel, the simulator creates a folder named
with its respective packet identifier. This folder stores the
packets that are named with a sequence number and “.pkt”
extension. Figure 10 shows a file structure of the simulator
(Receiver).

Each object received is treated in a differentiated way.
“Binder Application” objects are stored in the root of the
directory tree with naming formed by its ID and “.bnd”
extension. For this experiment the object name is “4.bnd”.
Then, the “Binder Application” object checks if there is any
related file in the waiting list of “Binded Files” objects. These
objects are stored on disk in a folder whose name is an
attribute of the object itself. After that, two situations may
occur: (1) if the “BinderApplication” object has been received,
it is informed through an event that the “Binded Files” objects
associated with it have been received and can be consumed
or (2) if the “Binder Application” object was not received the
“Binded Files” objects are stored on a waiting list. Figure 11
shows the directory tree for this experiment.

Once a “Binder Application” finds all objects linked to it
in the list, or as soon as it receives all notification events, it
triggers an event indicating that an application has just been
received by the simulator. When the applications controller
receives the triggered event, it will verify the type of execution
of the application. In this experiment this type is Automatic
(see Section 4.1.1). Figure 12 shows the simulator during the
broadcast of an MMA fight and the application that can
present photos of the fighters.

5.2.Weather Forecast. Another experiment conducted in this
work was the development of an interactive TV application
in Java, named Weather Xlet, which allows a user to view a
weather forecast during a transmission of a Digital TV show
(e.g., a Formula 1 race). This application uses two different
data sources (Broadcaster and Internet) and presents to the
user information about the temperature at different locations.



International Scholarly Research Notices 13

Su
bs

cr
ib

er
4.bnd

MMA App

1.pkt

2.pkt

MMA.class

Directories Files

Figure 11: Structure of received files.

Figure 12: APP MMA execution on the simulator.

In this example, the temperature data in two Brazilian cities
(Salvador and Rio de Janeiro) are fictitious. The experiment
enables demonstrating the consumption of contents from a
source other than broadcaster.

The architecture of this implementation (see Figure 13)
was divided into five modules: Web Consumer, Broadcaster
Consumer, XML Reader, Data Consumption Service, and
Presentation.

TheWebConsumermodule performsHTTPGet requisi-
tions and receives back an XML file whose content represents
the temperature data of Salvador and Rio de Janeiro. The
XML files received are sent to the XML Reader module. The
development of this module used Java libraries for reading
HTTP requests and data stream (e.g., HttpURLConnection,
InputStream, and BufferedReader).

The Broadcaster Consumer module checks for a file
(named clima.xml) in the received files folder (this file
reaches this folder through the process explained in
Section 4.2.1). If this file exists (already received) then it is
sent to the XML Reader module.

The XML Reader module reads XML files sent by the
Broadcaster Consumer or the Web Consumer and returns
data (the name of each city and its respective temperature)
to the Data Consumption Service module. The code below
shows the structure of an XML file used in this experiment.

XML Reader

Presentation

Web ConsumerBroadcaster
Consumer

Data Consumption
Service

Weather forecast

Figure 13: Weather Xlet architecture.

<root>

<climates>

<climate>

<local>Salvador</local>

<temperature>29</temperature>

</climate>

<climate>

<local>Rio de Janeiro</local>

<temperature>40</temperature>

</climate>

</climates>

</root>

TheData Consumption Service module is responsible for
request data updates from both consumers. At the end of
each data request, this module sends information to update
the Presentationmodule.The implementation of this module
uses an independent thread (other than the main thread) to
avoid issues such as blocking its execution.

The Presentation module receives data from the Data
Consumption Service and presents it to a user using the
LWUIT library (e.g., Form, Label). In Figure 14, the table rows
shows (i) the title “Weather Time”; (ii) the message “Your
weather application”; (iii) the forecast, sent by a broadcaster
to Salvador (29 degrees) and Rio de Janeiro (40 degrees); and
(iv) the same prediction obtained from the Internet content
provider.

5.3. Video Replay. The last experiment of this study was,
again, the development of an interactive TV application in
Java, namedXlet Replay, which allows the user to view replays



14 International Scholarly Research Notices

Figure 14: Weather forecast application that consumes data from
the Broadcaster and the Internet (Weather Xlet).

of videos while viewing a linear TVprogram.This application
uses only a broadcaster as data source and presents to the user
amenu that lets him select and present a snippet clipped from
the main video.

In this example, the TV show and replays sent by the
broadcaster are all about a F1 race. The occurrence of replays
in F1 races is constant and is of high interest to the viewers.
Another important aspect of this experiment is that it is not
possible to know in advance the type of content of a replay
during a F1 race. This situation occurs because in a live linear
TV program it is not possible to determine when a highlight
(a crash, a pit-stop, etc.) might happen.

The focus of the simulator is not the production phase.
Thus, the videos with replays used in this experiment are
already edited and stored on disk. In a real environment these
videos could be created during the presentation of linear TV
program and, of course, after the occurrence of the corre-
sponding event (highlight). In this experiment, the synchro-
nization constraints are built in presentation time. At every
new Replay sent to the receiver, the restrictions need to be
updated to allow the presentation of new interactive content.

The architecture of this application (see Figure 15) is
almost the same as the Weather Xlet (see Figure 13). Except
for the Consumer Web, it has the other four modules:
Broadcaster Consumer, XML Reader, Data Consumption
Service, and Presentation.These four modules have the same
role as before but in a different context. The first difference
concerns the XML files contents. In this application, these
files sent by the Broadcaster Consumer return the following
data to the Data Consumption Service module:

(1) a Replay sequence number;
(2) a path to the video file;
(3) a video title;
(4) a short description of the video content.

XML reader

Presentation

Broadcaster
consumer

Data consumption
service

Xlet replay

Figure 15: Xlet Replay architecture.

The code below shows the structure of an XML file.

<root>

<replays>

<replay>

<title>Largada</title>

<description>

Largada do Grand Prix

</description>

<sequence>0</sequence>

</replay>

</replays>

</root>

After the XML Reader module has sent their response,
the Data Consumption Service module sends the XML file
content to update the Presentation module. This update
means including new synchronization constraints on the
presentation. The Presentation module receives these data
and presents it to a user through the application window.This
window presents a list with the name of each Replay so that
a user can select and view. When a user selects a Replay, it
will appear in a small area next to the list of replays available.
Figure 16 shows the execution window of this application.

6. Conclusion

This article presents a tool named BiS, Broadcast iDTV con-
tent simulator, for simulation of interactive TV applications.
This simulator is distinguished from the other related tools on
its wider scope because it allows simulating the transmission
of applications along with the TV program (simulating the
transmission of content and stream events over the air and
in broadcast to the receivers), while the other tools perform
only applications that are loaded locally from the repositories



International Scholarly Research Notices 15

Figure 16: Xlet Replay main window.

(e.g., USB and Hard Drive). Consequently, it is possible to
incorporate several features using a communication protocol.
This differential is a key point to make it possible to simulate
the applications included in the categories defined in [2, 22,
28]. However, the BiS is comparable to existing proposals
found in the literature since all of them support the execution
of interactive applications. BiS has met all the requirements
defined in Section 3.

Another aspect to be highlighted is that the BiS tool allows
the execution of interactive applications in Digital TV, albeit
not being limited to this platform. For example, interactive
applications with focus on IPTV or Connected TV can use
this environment since they also run over TCP/IP networks.

One of the difficulties in implementing this simulator
was the construction of the communication mechanisms. To
keep the similarity with the actual environment such mech-
anisms should be in accordance with the DSM-CC standard.
However, unlike other communication protocols (e.g., TCP),
we did not find (available for noncommercial use) an API
that allows the use of DSM-CC for application deployment.
This difficulty has become one of the contributions of this
work: the definition and implementation of a communication
protocol similar to DSM-CC (see Section 4.1.3).

One of the possibilities for further work includes the
addition of support for the execution of other types of
multimedia applications such as NCL, Flash, and SMIL. The
BiS tool presented in this work includes only the execution
environment for Java applications since its implementation is
based on the execution engine Ginga-J. Another possibility
for future work would be to adapt BiS to support multimedia
applications witch support multiuser or multidevices. These
applications allow the interaction of one (or more than one)
user throughmobile devices such as smartphones and tablets.

The presence of the test devices is very common in
integrated development environments tomakemore efficient
software. These devices may include, for example, simple
text outputs (outputs), where the developer can monitor
the outputs of the program or even include source code
debugging devices. The simulation environment presented
in this work has not the same purpose of an integrated

development environment (applications coding). However,
the integration of this simulator with some development
environments like Eclipse or NetBeans as well the inclusion
of such test devices could become another contribution of
the BiS tool. The integration of these IDEs also opens the
possibility of including the production activities as additional
features of the simulator.

Another possibility for future work is to extend the
simulator to allow the creation of multimedia applications
with support for the transmission and reception of sensorial
information in broadcast, as proposed by [41].

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work would not be possible without the support of
LAVID (Video Digital Lab) of the Federal University of
Paraiba, Brazil. They kindly provided the source code of
the simulator Ginga-J which was the basis for the BiS tool
presented in thiswork.Thus, the authorswould like to express
their most sincere thanks.

References

[1] L. E. C. Leite, G. L. De Souza Filho, S. R. D. L. Meira, P. C.
T. De Arújo, J. F. D. A. Lima, and S. M. Filho, “A component
model proposal for embedded systems and its use to add
reconfiguration capabilities to the FlexTV middleware,” in
Proceedings of the 12th Brazilian Symposium on Multimedia and
the Web (WebMedia ’06), pp. 203–212, Rio Grande do Norte,
Brazil, November 2006.

[2] M. C. Marques Neto and C. A. S. Santos, “StoryToCode: a new
model for specification of convergent interactive digital TV
applications,” Journal of the Brazilian Computer Society, vol. 16,
no. 4, pp. 215–227, 2010.

[3] S. Soursos and N. Doulamis, “Connected TV and beyond,”
in Proceedings of the IEEE Consumer Communications and
Networking Conference (CCNC ’12), pp. 582–586, Las Vegas,
Nev, USA, January 2012.

[4] R. Bagrodia, R. Meyer, M. Takai et al., “Parsec: a parallel
simulation environment for complex systems,” Computer, vol.
31, no. 10, pp. 77–85, 1998.

[5] M. Imran, A. M. Said, and H. Hasbullah, “A survey of sim-
ulators, emulators and testbeds for wireless sensor networks,”
in Proceedings of the International Symposium on Information
Technology (ITSim ’10), vol. 2, pp. 897–902, IEEE,Kuala Lumpur,
Malaysia, June 2010.

[6] E. R. de Carvalho, G. G. de Barros, L. C. de Paula Costa
et al., “The Brazilian digital television system access device
architecture,” Journal of the Brazilian Computer Society, vol. 13,
no. 1, pp. 95–113, 2007.

[7] Martin SVEDEN, Xletview emulator, xletview. sourceforge.net,
2009.

[8] T. Pakarinen and N. Hagstrom, “A guide to the openmhp
environment,” Helsinki, vol. 29, no. 3, p. 2005, 2004.

[9] G. L. Souza Filho, L. E. Leite, and C. E. Batista, “Ginga-J: the
procedural middleware for the Brazilian digital TV system,”



16 International Scholarly Research Notices

Journal of the Brazilian Computer Society, vol. 12, no. 4, pp. 47–
56, 2007.

[10] API JavaDTV. Java dtv api 1.3 specification, sun microsystems
(2009), 2010.

[11] L. F. G. Soares, R. M. R. Costa, M. F. Moreno, andM. F.Moreno,
“Multiple exhibition devices in DTV systems,” in Proceedings
of the 17th ACM International Conference on Multimedia (MM
’09), pp. 281–289, Beijing, China, October 2009.

[12] R. R. de Mello Brandão, G. L. de Souza Filho, C. E. C. F. Batista,
and L. F. Gomes Soares, “Extended features for the Ginga-NCL
environment: introducing the LuaTV API,” in Proceedings of
the 19th International Conference on Computer Communications
and Networks (ICCCN ’10), pp. 1–6, IEEE, Zurich, Switzerland,
August 2010.

[13] B. Calder, J. Courtney, B. Foote et al., Java TV API Technical
Overview: The Java TV API Whitepaper, Sun Microsystems,
Palo Alto, Calif, USA, 2000.

[14] A. Hori and Y. Dewa, “Japanese datacasting coding scheme
BML,” Proceedings of the IEEE, vol. 94, no. 1, pp. 312–317, 2006.

[15] R. C. M. Santos, J. R. Cerqueira Neto, C. S. Soares Neto, and M.
M. Teixeira, “Incremental validation of digital TV applications
in nested context language,” in Proceedings of the 10th European
Conference on Interactive TV and Video (EuroiTV ’12), pp. 203–
211, ACM, Berlin, Germany, July 2012.

[16] F. P. Miller, A. F. Vandome, and J. McBrewster, MPEG-2: Lossy
Compression, Video Compression, Audio Compression (Data),
ATSC (Standards), MPEG Transport Stream, MPEG-1 Audio
Layer II, H.262/MPEG-2 Part 2, MPEG-4, Advanced Audio
Coding, Alpha Press, 2009.

[17] ISO/IEC, “Generic coding of moving pictures and associated
audio information—part 6: extensions for DSM-CC,” ISO/IEC
13818-6:1998/Cor 1:1999, Padrão, 1999.

[18] G. Baum and L. F. G. Soares, “Ginga middleware and digital TV
in Latin America,” IT Professional, vol. 14, no. 4, pp. 59–61, 2012.

[19] J. Jones, “DVB-MHP/Java TV data transport mechanisms,” in
Proceedings of the 40th International Conference on Tools Pacific:
Objects for Internet, Mobile and Embedded Applications, pp. 115–
121, Australian Computer Society, 2002.

[20] I. Amerini, G. Ballocca, R. Becarelli, R. Borri, R. Caldelli, and
F. Filippini, “A DVB-MHP web browser to pursue convergence
between digital terrestrial television and internet,” Multimedia
Tools and Applications, vol. 50, no. 2, pp. 381–414, 2010.

[21] J. C. McKinney and R. Hopkins, Atsc Digital Television Stan-
dard, Advanced Television System Committee, Washington,
DC, USA, 1995.

[22] M. C.MarquesNeto andC. A. S. Santos, “An event-basedmodel
for interactive live TV shows,” in Proceedings of the 16th ACM
International Conference onMultimedia (MM ’08), pp. 845–848,
British Columbia, Canada, October 2008.

[23] M. Rosenblum, “VMware’s virtual platform,” in Proceedings of
Hot Chips, vol. 1999, pp. 185–196, 1999.

[24] L. F. G. Soares, R. F. Rodrigues, andM. F.Moreno, “Ginga-NCL:
the declarative environment of the Brazilian digital TV system,”
Journal of the Brazilian Computer Society, vol. 12, no. 4, pp. 37–
46, 2007.

[25] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Transport
Layer Protocol,” RFC Editor, 2006.

[26] R. Gordon and S. Talley, Essential JMF: Developer’s Java Media
Players, Prentice Hall PTR, 1999.

[27] R. J. Crinon, “The DSM-CC object carousel for broadcast data
services,” in Proceedings of the 16th International Conference on
Consumer Electronics (ICCE ’97), pp. 246–247, IEEE, June 1997.

[28] M. C. Maques Neto and C. A. S. Santos, “An approach based on
events for treating the late tuning problem in interactive live TV
shows,” in Proceedings of the 1st ACM InternationalWorkshop on
Events in Multimedia, pp. 41–48, Beijing, China, October 2009.

[29] R. M. R. Costa, M. F. Moreno, R. F. Rodrigues, and L. F. G.
Soares, “Live editing of hypermedia documents,” in Proceedings
of the ACM Symposium on Document Engineering (DocEng ’06),
pp. 165–172, ACM, October 2006.

[30] H. S. L. Pequeno, G. A. M. Gomes, R. M. C. Andrade, J. N.
de Souza, and M. F. de Castro, “FrameIDTV: a framework
for developing interactive applications on digital television
environments,” Journal of Network and Computer Applications,
vol. 33, no. 4, pp. 503–511, 2010.

[31] J. V. Da Silva and D. C. Muchaluat-Saade, “NEXT: graphical
editor for authoring NCL documents supporting composite
templates,” in Proceedings of the 18th Brazilian Symposium on
Multimedia and the Web (WebMedia ’12), pp. 387–394, São
Paulo, Brazil, October 2012.

[32] R. G. A. Azevedo, E. C. Araújo, B. Lima, L. F. G. Soares,
andM. F. Moreno, “Composer: meeting non-functional aspects
of hypermedia authoring environment,” Multimedia Tools and
Applications, vol. 70, no. 2, pp. 1199–1228, 2014.

[33] M. Rey-López, R. P. Dı́az-Redondo, A. Fernández-Vilas et al.,
“T-MAESTRO and its authoring tool: using adaptation to inte-
grate entertainment into personalized t-learning,” Multimedia
Tools and Applications, vol. 40, no. 3, pp. 409–451, 2008.

[34] M. R. M. Oliveira, C. B. P. Filho, and A. F. R. Silva, “iTV
project: an authoring tool for MHP and ginga-J based on a web
environment,” in Proceedings of the 1st International Conference
on Designing Interactive User Experiences for TV and Video
(UXTV ’08), pp. 179–182, Silicon Valley, Calif, USA, October
2008.

[35] R. Vásquez-Ramı́rez, G. Alor-Hernández, C. Sánchez-Ramı́rez,
J. Guzmán-Luna, R. Zatarain-Cabada, and M.-L. Barrón-
Estrada, “AthenaTV: an authoring tool of educational applica-
tions for TV using android-based interface design patterns,”
New Review of Hypermedia and Multimedia, vol. 20, no. 3, pp.
251–280, 2014.

[36] A. L. Damasceno, R. J. Galabo, and C. S. Soares Neto, “Cacuriá:
authoring tool for multimedia learning objects,” in Proceedings
of the 20th Brazilian Symposium on Multimedia and the Web
(WebMedia ’14), pp. 59–66, João Pessoa, Brazi, November 2014.

[37] W. D. C. Fernandes and A. De Almeida Prado Pohl, “Analysis
of ISDB-Tb signal propagation in indoor environments,” in Pro-
ceedings of the 9th International SymposiumonWireless Commu-
nication Systems (ISWCS ’12), pp. 899–903, IEEE, August 2012.

[38] M. Hauswirth and M. Jazayeri, “A component and commu-
nication model for push systems,” in Proceedings of the 7th
European Software Engineering Conference Held Jointly with the
7th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 20–38, Springer, Toulouse, France, September
1999.

[39] D. Terra, N. Kumar, N. Lourenço, L. N. Alves, and R. L. Aguiar,
“Design, development and performance analysis of DSSS-
based transceiver for VLC,” in Proceedings of the International
Conference on Computer as a Tool (EUROCON ’11), pp. 1–4,
Lisbon, Portugal, April 2011.

[40] J. Hannemann and G. Kiczales, “Design pattern implementa-
tion in java and aspectj,”ACM Sigplan Notices, vol. 37, no. 11, pp.
161–173, 2002.

[41] B. Choi, J. Kim, S. Kim, Y. Jeong, J. W. Hong, and W. D. Lee,
“A metadata design for augmented broadcasting and testbed
system implementation,” ETRI Journal, vol. 35, no. 2, pp. 292–
300, 2013.



Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


