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Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely
used architecture of wireless sensor networks for rainmonitoring relies on network transportation and back-end calculation, which
causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and
support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in
front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give
early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network
transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the
local response to heavy rain. The monitoring capacity is also raised.

1. Introduction

The development of Internet of Things (IoT) signals a shift
in the resources of data. An increasing proportion of data
collected today is generated by sensors. From this point of
view, the public’s urge for accurate environmental informa-
tion may be sated by large-scale wireless sensor networks
(WSN) [1] based on advanced Information Communication
Technologies (ICT) infrastructures. Currently, contextual-
ized and location-aware environmental sensor networks
(ESN) [2] are the mainstream in this area. ESN is promising
mainly due to the inexpensive embedded and system-on-chip
hardware, convenient access to communication networks,
and decreased cost for data storage.

In most existing ESN systems, the flood of sensor-
generated data pours into the back-end server without pro-
cessing, which shoves heavy load onto network transmission.
In harsh environments such as torrential rain and typhoon,
short time network failure leads to serious paralysis in mon-
itoring system. The database server may receive missing or
corrupted data for long period of time. In that case, ESN loses
the capabilities of recording and forecasting environmental

changes, which are the original intentions of ESN.Therefore,
it is desirable to learn the environmental information in the
front-end, so that the ESN system can respond to different
environmental situations with less help from the back-end.
This new data processing system, which we call intelligent
wireless sensor node, is the core of future ESN systems in
front-end. With increasing intelligence in the embedded
system that collects and learns from the sensor data, ESN’s
performance in predicting and capturing sudden extreme
environmental changes will be improved. Also, the life-long
training enables sensor node to reach better accuracy.

Case Study: Localized Torrential Rain (LTR) Monitoring.
Torrential rain is a phenomenon that can significantly affect
residents in the immediate surrounding of localized areas.
Torrential rain can cause flooding and road closures, which
significantly affects day-to-day travels in the flooded areas.
Hence, early warning is desired for adjusting travel plans in
advance. Localized torrential rain (LTR) is usually preceded
by a series of changes in weather phenomena. Therefore,
it is possible to predict LTR using the past and cur-
rent meteorological information. When early warnings are
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Figure 1: Biology inspired intelligent wireless sensor architecture.

published [3, 4], local residents are able to make smart travel
choices.

LTR has been found especially challenging in envi-
ronmental monitoring. In principle, if the movement of
cumulus clouds is captured by satellite or radar, then the
precipitation in a certain area can be estimated by analyzing
the acquired images. However, this approach is inapplicable
because current spatial and temporal resolutions of radar
or satellite image are far below the request. As ESN has
gradually replaced remote sensing approaches in applications
such as air [5] and water [6] quality monitoring, it may
outperform existing approaches for localized torrential rain
monitoring [7–9]. In fact, ESN has become the substitute
of surface climate station for its high resolution and low
cost. If we compare a city’s ICT infrastructure to a person
[10], there is no doubt that wireless sensor networks are
the hidden neurons inside the body. Weather information
obtained by sensors is usually transmitted from distributed
wireless sensor nodes to back-end server, the clouds, where
correlation analysis is conducted among all the received data
[11]. Some positive results have been achieved by ESN in
collecting localized meteorological information. However,
ESN lacks an intelligent solution for monitoring LTR in a
timely, efficient, and automatic manner.

Raspberry Pi Based Intelligent Wireless Sensor Node for LTR
Monitoring. To offer an intelligent solution for timely, effi-
cient, and automatic LTR monitoring, we introduce Rasp-
berry Pi to be the wireless sensor node. Raspberry Pi is a
well-known type of single-board computers (SBC), which
has quickly occupied the embedded system market for its
comprehensive abilities and low cost. Moreover, it gradually
becomes the main products of environmental sensor infor-
mation systems. However, it seems to be a waste of resources
if we use SBC only for collecting and packaging sensor data;
advanced data analysis can be expected to be done within
SBC.

Inspired by the knee-jerk reflex, a well-known biological
phenomenon, we developed an intelligent wireless sensor
node for distributed heavy rain monitoring. The main idea
is demonstrated in Figure 1. Multiple sensors stand out and
sensory nerve, information such as temperature, humidity,
solar radiation, and rainfall, is collected and transmitted to

Raspberry Pi (the sensor neuron and spinal cord). Statistical
and machine learning methods are implemented on Rasp-
berry Pi to evaluate the connection between rainfall and
environmental conditions.

Then, the probability of upcoming localized torrential
rain is estimated and sent to back-end database and server.
Also, clients in local area network will receive early warning
of heavy rain.

Our major contributions in this paper are as follows:

(i) Environmental information acquisition with high
spatial and temporal resolution: the area of study
is smaller than the minimum observation area that
satellite can tell.

(ii) Techniques for reducing ESN’s failure time: our
system works in times when harsh environments
influence the communication quality and paralyze
current ESN. Precious weather conditions that other
might miss are observed by our new sensor node.

(iii) Life-long learning and timely reaction with full use
of prior knowledge: our system learns the labeled
meteorological data using powerful unsupervised
learning algorithms such as support vector machines
(SVM) and predicts the probability of upcoming LTR
with accuracy.

The reminder of this paper proceeds as follows. Section 2
presents the related works, which include WSN for localized
heavy rain detection, Raspberry Pi for environmental moni-
toring, and probability estimation model for meteorological
applications. Section 3 describes Raspberry Pi based intelli-
gent torrential rain sensing system. The system architecture,
multiple low-cost sensors, local computing kernel based on
Raspberry Pi, and information processing software are intro-
duced in this section. Section 4 provides the state-of-the-art
information theoretical outlier detection method we utilized
in our system. Section 5 presents probability estimation
models for heavy rain, which involves data normalization,
localized torrential rain correlation model, logistics regres-
sion, and multikernel support vector machines. Section 6
discusses the experiments and the results. Conclusion is given
in Section 7.
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2. Related Works

2.1. Architecture: WSN for Localized Heavy Rain Detection.
SurfaceMeteorologicalMonitoringNetworks (SMMNs)were
first introduced to detect LHR. Researchers developed
SMMN system to measure the rainfall and wind speed in
numerous places. Calibration scheme and early predictions
are made to LHR when SMMNs are installed in environ-
ments. On the other hand, studies in radio signals [12] show
that attenuation of Wi-Fi or microwave signals may have
connections with heavy rain in nearby environment. Models
like compressive sensing [13] are used in finding the signals
related to heavy rain.

Admittedly, SMMN fills the gaps between the minimum
pixels of radar and satellite image, which enables us to identify
rainfall in limited areas.However, the foundation of SMMN is
stable and fast internet is required for its operation. All sensor
information must be gathered and processed in background,
which leaves uncertainty to the normal operation of sensors.
Once the internet is disturbed byweather, sensor information
may be lost.

2.2. Device: Raspberry Pi for Environmental Monitoring.
Since Raspberry Pi’s appearance in the markets, plenty of
attention is paid to its use in environmental issues. At first,
Raspberry Pi is considered to be one of the alternative plans
towards wireless sensor node in system design areas [14].
Thanks to the assistance from open-source platforms and
software, sensor system can be constructed by Raspberry Pi
andArduino. It is widely acknowledged that this combination
is low-cost and available to all sorts of environmental sensors.

Also, Raspberry Pi plays an essential role in information
processing on environmental relevant data. By extracting
effective information from rainfall warning calls to author-
ities and weather posts online [15], Raspberry Pi provides
useful information for background analysis. Experiments
have shown that this method made full use of information
ignored by most meteorologists and brought novel ideas to
localized rain warning.

Nevertheless, existed applications of Raspberry Pi do
not make full use of its competence in high performance
computing. Especially when MATLAB offers its open source
in Raspberry Pi, scientific computing algorithms can per-
fectly operate in embedded platforms. There is no doubt that
complex algorithms’ realization in open-source systems will
receive more and more attention in the future.

2.3. Processing: Outlier Detection on Sensor Data. Due to
the flood of machine-generated data received in database
systems, hidden outliers and anomalous value must be
effectively detected in advanced database systems. According
to [16], outlier detectionmethods have threemajor categories:
supervised, unsupervised, and semisupervised approaches.
The difference among these three categories lies in the
availability of labels in training datasets [17]. For example,
supervised anomaly detection approach is close to supervised
classification, which requires training data labeled as normal
or abnormal. Popular supervised models like support vector
machines (SVM) [18, 19] consider training data as a point

in a multidimensional space. Then, they select a half-space
that contains most of the points prelabeled as normal. Any
test data that falls outside the area is determined as outlier.
Sometimes we just want either to model normality or under
few circumstances to model abnormality [20, 21]. In that
case, only normal class is taught but the abnormality can be
recognized. These approaches are named as semisupervised
outlier detection, which learns a model from a given normal
dataset and calculates the likelihood of test objects. Both
supervised and semisupervised detectionmethods are widely
applicable when provided with large volume of training
objects. However, the general current situation that at present
data scientists face is the shortage of historical data. Advanced
algorithms, which are named as unsupervised approaches,
are required to determine the abnormality without prior
knowledge. Unsupervised outlier detection becomes the
constant challenges in recent years [22]. Existing researches
focus more on refining clustering algorithms such as K-
neighbors [23], K-means [24], and K-methods [25] in order
to meet the requirements for unsupervised detection. But
most of those approaches are limited to numerical values.
Only few outlier detection techniques are designed to process
categorical information such as name, gender, and address.
Also, owing to high dimensionality of datasets, complex
statistical tests, and unnecessary approximation, the effi-
ciency of these algorithms will suffer. Thus, new, general,
efficient, and unsupervised outlier detection algorithms are
required for big data analysis. Previous improvements have
been made via introducing information theory concepts
such as entropy, mutual information, and conditional mutual
information to denote the outliers. These techniques expand
the detection objects to both numerical and categorical data
[26, 27]. Because the existence of outliers increases the overall
entropy of certain data attributes, outlier can be modeled
as constraints that impede datasets to reach their optimal
entropy. Information theoretic techniques work well in quick
outliers determination.

2.4. Learning: Rainfall Probability Estimation. Several prob-
ability estimation methods have been proposed in the lit-
erature. Rainfall probability is the most critical part of
meteorological prediction. Probability and frequency anal-
ysis of rainfall data derive the expected rainfall occurrence
and thus help in better understanding of spatial-temporal
rainfall pattern [28]. Current rainfall prediction methods
can be grouped into two categories: distribution fitting and
classification approaches. The distribution fitting approaches
select the best fit distribution models for annual, seasonal,
and monthly rainfall time series based on values of statistical
test [29].

However, rainfall probability is so changeable that it
cannot be covered by certain distribution. Instead they are the
result of combined factors. Therefore, logistic regression and
SVM algorithms become major stream in rainfall probability
estimation. Logistic regression was chosen and implemented
onGIS system for quantitative prediction of rainfall and land-
slide in the study area [30]. SVM have been proved to impact
positively the prediction of the Indian summer monsoon
rainfall [31]. Also, hybrid models combining random forest
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Figure 2: Enhancement in WSN architecture for localized torrential rain monitoring.

(RF) and SVM have been used to predict amount of rainfall
in rainfall occurring days [32]. Accuracy achieved by SVM
in this application shows its potential in rainfall probability
estimation. Researchers may get better performance using
SVM, especially with large-scale historical sensor dataset.

3. Raspberry Pi Based Localized Torrential
Rain Sensing System

3.1. System Architecture. As Figure 2 implies, our localized
torrential rainWSNdiffers from existing ESN in the roles that
wireless sensor nodes play. Our sensor nodes transform the
centralized storage and computing to distributed alternatives,
which share part of database’s tasks. With swap space created
under Raspbian (the Raspberry Pi Linux operating systems),
storage spaces like SD cards andRAMs inMCUs aremanaged
by unified virtual memory. Thus, sensor information can be
saved orderly in Raspberry Pi’s storage units. Additionally,
Samba software is deployed on Raspberry Pi, which generates
sensor files for windows back-end server using Common
Internet File System (CIFS)/ServerMessage Block (SMB) net-
working protocol. Raspberry Pi supersedes database server
in quick sensor data storage and local warning to registered
clients. After running algorithms for localized heavy rain esti-
mation, sensor nodes publish heavy rain probabilities directly
to the local clients who registered in back-end previously.
Client lists will be refreshed periodically according to the
interaction between the back-end database and the sensor
nodes.

We now provide details of the three main parts of
our ESN system, which are multiple low-cost sensors, local
computing platform based on Raspberry Pi, and information
processing software. Both fundamental hardware and local
service software are introduced. All the energy our system
needed is supported by green solar power or electrical power.

3.2. Multiple Low-Cost Sensors. In order to capture the rapid
climate changes, there is no doubt that an integrated sensor

Table 1: Meteorological sensors produced by Fuyuan Technology
Feike Electronic Company in Wuhan, China.

Sensor type
Sensed
physical
quantity

Range (min–max) Cost $

FY-P Air pressure 500–1100 hPa 33
FY-T1 Temperature 50–70∘C 10
FY-RH Humidity 0–100% 16
FY-FS Wind speed 0–100m/s 33

FY-ZF Solar
radiation 0−2000W/m2 25

system must contain comprehensive sensors so that we can
know the exact state in a localized area. The sensors need to
be able to measure temperature, humidity, solar radiation, air
pressure, wind speed, and rain gauge. Moreover, the sensors
should be designed for long-time utilization and accurate in
an acceptable range. As Table 1 shows, we choose a series
of low-cost [33] and low-power meteorological sensors. Also
our sensors share the same error ratio, so that influence
brought by differences in error ranges is minimized.

3.3. Local Computing Platforms Based on Raspberry Pi.
Raspberry Pi board is one of the prevailing single-board
computers specially designed for open-source development.
We selected Raspberry 2 model B to construct sensor node.
Raspberry 2 model B typically consumes power less than
2W when conducting scientific computing. With a Broad-
com BCM2836 system-on-chip (SoC), which consists of a
900MHz quad-core ARM Cortex-A7 CPU and 1GB RAM,
Raspberry Pi is capable of complex operation. What is more,
Raspberry Pi has 4USB ports, 40 GPIO pins, full HDMI port,
ethernet port, display interface (DSI), micro SD card slot,
and 3D graphics core, which provide more possibilities for
its application. Recently, MATLAB launched its package and
open-source toolboxes on Raspbian. Therefore, MATLAB
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based intelligent algorithms can be implemented on Rasp-
berry Pi, which bring the idea of our paper.

As Figure 3 shows, all sensors are connected to a RS485
bus. MODBUS protocol is applied on Raspberry Pi to
start sensor and get data through a USB-RS485 converter.
Raspberry Pi stores the received data and then conducts cor-
relation analysis aiming at offering probabilities of upcoming
heavy rain. After calculation, Raspberry Pi sends results
to local registered clients through Wi-Fi (wireless fidelity)
communication module and database server will receive
data package through GPRS (General Packet Radio Service)
module.

3.4. Information Processing Software. The layers of our soft-
ware are shown in Figure 4. From top to down, the obtained

sensor data are managed by the data management module.
It stores the sensor data in MySQL database on board and
controls the sensor data exchanges between Raspberry Pi
and the back-end server. The sensor data are interpreted by
MATLAB database toolbox that is installed on Raspberry Pi
[34]. The data processing algorithm is the core of the whole
software. Both logistic regression and support vectormachine
classifiers are available for MATLAB programs to train and
test, which will be discussed in later part. Our programs
compare the test results of several popular algorithms in
period and select the best fitting model according to the
accuracy in LTR prediction and efficiency. All following
localized torrential rain estimationwill be based on themodel
we chose. With the receiver list given by database server,
Raspberry Pi sends probabilities of localized heavy rain to
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nearby clients through local Wi-Fi. The receiver list will
be updated by back-end periodically according to clients’
registration on our website. Also back-end server database
can get sensor data stored on Raspberry Pi through its
interaction with Raspberry Pi’s data management system.
Once the command is sent by back-end server, sensor data
in certain period will be packed and transmitted from
Raspberry Pi to back-end server through GPRS/protocols.
[35, 36].

4. Default Outlier Detection

In this section we present the outlier detection method
that filters the original sensor data for following probability
estimation on rainfall probability. We introduce and refine
information theoretical outlier function developed by Wu
and Wang [26] and apply the new function in anomaly
identification on environmental sensor data.

4.1. Entropy and Mutual Information. Consider a dataset 𝐷
containing 𝑘 objects {𝑥1, 𝑥2, . . . , 𝑥𝑘}, each object 𝑥𝑖 (1 ≤𝑖 ≤ 𝑘) being 𝑚 attributes categorical vector. To make
it clear, we use matrix {𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑚} to represent 𝑥𝑖.
And {𝐴1, 𝐴2, . . . , 𝐴𝑚} is used to represent 𝐷 as a form of
attributes. The entropy of a certain attribute 𝐴𝑗 (1 ≤ 𝑗 ≤ 𝑚)
is defined as

𝐻(𝐴𝑗) = − ∑
V∈domain(𝐴𝑗)

𝑃 (𝐴𝑗 = V) log𝑃 (𝐴𝑗 = V) , (1)

where the set of possible values in𝐴𝑗 is called its domain and
written in domain (𝐴𝑗), which is {V1, V2, . . .}.

The mutual information is developed as follows to evalu-
ate the correlation of heterogeneous information:

𝐼 (𝐴 𝑖, 𝐴𝑗) = 𝐻 (𝐴 𝑖) + 𝐻 (𝐴𝑗) − 𝐻(𝐴 𝑖, 𝐴𝑗) ,
1 ≤ 𝑖, 𝑗 ≤ 𝑚 (𝑖 ̸= 𝑗) , (2)

where 𝐻(𝐴 𝑖, 𝐴𝑗) is the joint entropy of 𝐴 𝑖, 𝐴𝑗 which uses
joint probability of 𝐴 𝑖, 𝐴𝑗 to calculate entropy.
4.2. Information Theoretical Outlier Detection. Frequency
based algorithms cannot handle the massive informative
datasets because the value of those attributes has too much
variance. Therefore, deep research on the essence of out-
lier was conducted previously by Wu and Wang [26]. In
that paper, they derive the function of outliers using the
differential holoentropy which takes both entropy and total
correlation of data attributes into account. However, their
work mainly focuses on detecting abnormal objects other
than values, so they sum up data from different attributes and
addweights to each value tomake a combination factor for an
object. After comparing outlier factors with threshold, outlier
objects can be detected. This method shuts down the future
opportunity for us to derive connections among outliers from
various attributes. Therefore, in this section, we refine his
model and focus on outlier detection within one attribute.

Definition 1 (the refined approximate differential holoen-
tropy). Generally, for a dataset 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑚}𝑇 with 𝑚

attributes and n objects {𝑥1, 𝑥2, . . . , 𝑥𝑛}, where 𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2,. . . , 𝑥𝑖𝑚}, the approximate differential holoentropy of 𝑥0 is
written as

ℎ̂ (𝑥0) =
𝑚∑
𝑖=1

𝑊𝑋 (𝑦𝑖) (log 𝑎 − 𝑎𝑏 log 𝑏) − 𝑎𝑊𝑋 (𝑌)

+ 𝑎 𝑚∑
𝑖=1

OF (𝑥𝑜,𝑖) ,
(3)

where

𝑊𝑋 (𝑦𝑖) = 2(1 − 1
1 + exp (−𝐻𝑥 (𝑦𝑖)))

𝑊𝑋 (𝑌) =
𝑚∑
𝑖=1

𝑊𝑋 (𝑦𝑖)𝐻𝑥 (𝑦𝑖)

OF (𝑥𝑜,𝑖) = {{{
0, if 𝑛 (𝑥𝑜,𝑖) = 1
𝛿 [𝑛 (𝑥𝑜,𝑖)] , otherwise

𝛿 (𝑥) = (𝑥 − 1) log (𝑥 − 1) − 𝑥 log (𝑥) .

(4)

𝐻𝑥(𝑌) represents the joint entropy of attributes in 𝑌. 𝑏 and𝑎 are reciprocal values of the cardinality of original attributes
and attributes without 𝑥𝑜,𝑖, and 𝑛(𝑥𝑜,𝑖) denotes the times 𝑥𝑜,𝑖
appears in the 𝑖th attribute.

In our work, environmental data is fluctuated and highly
correlated. The weights of different attributes are almost the
same. Moreover, we want to preserve the normal value in
certain objects instead of deleting the whole objects. So we
refine the function by giving uniform weights and then focus
on certain attributes rather than objects.The refined function
is as follows:

ℎ̂𝑟 (𝑥0) =
𝑚∑
𝑖=1

(log 𝑎 − 𝑎𝑏 log 𝑏) − 𝑎𝐻𝑥 (𝑌)

+ 𝑎 𝑚∑
𝑖=1

OF (𝑥𝑜,𝑖) .
(5)

Nowwe have derived the function of outliers in one attribute.
In the next step, this function is applied to an outlier detection
algorithm as in Algorithm 1.

5. Probability Estimation Model for LTR

In this part we discuss localized torrential rain estimation
models utilized in our information processing software. After
methods of default outlier detection, the meteorological
data attributes must be normalized so that they can be
processed by logistic regression and SVM model. Because
meteorological data attributes are correlated according to
past research [3], SVM kernels that model the data vec-
tors by their lengths might reach a high accuracy level.
Therefore, we introduce two kernels in order to get better
performance.
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Input: Informative and correlated subsets 𝐿 = {𝐴1, 𝐴2, . . . , 𝐴 𝑙} of𝐷
Output: Label matrix label of 𝐿𝐿 ← 0
Compute and store the Refined Approximate Differential Holoentropy ℎ̂𝑟(𝑥0) and OF(𝑥𝑜,𝑖) for all 𝑥𝑜,𝑖
For all 𝑥𝑜,𝑖 ∈ 𝐷
If ℎ̂𝑟(𝑥0) > 0 or OF(𝑥𝑜,𝑖) is the minimum label𝑖,𝑗 = 1
Else label𝑖,𝑗 = 0
Return label

Algorithm 1: Outlier detection on informative dataset.

5.1. Data Normalization. Because of the disunity of dimen-
sion, all the collected data must be standardized before it
can be used for analysis. There are two major methods of
normalization below:

𝐷𝑠 = 𝐷 − 𝐷min𝐷max − 𝐷min

𝐷𝑠 = 𝐷 − 𝐷mean𝜎𝑑 .
(6)

Here 𝐷𝑠 represents the results of standardization. 𝐷min,𝐷max, 𝐷mean, and 𝜎𝑑 are the minimum, maximum, average,
and variance of all received data, respectively. Because the
variance calculation of data requires more computing time

and themean of rainfall data is less valuable in our discussion,
we choose the first method as our standardization process.

5.2. Estimated LTR Probability

Definition 2 (estimated heavy rain probability). Generally,
for a dataset 𝑆 = [𝑆𝑡, 𝑆ℎ, 𝑆𝑝, 𝑆𝑤, 𝑆𝑟] with attributes as normal-
ized temperature, humidity, air pressure, wind speed, and
solar radiation, the estimated probability of heavy rain is as
follows:

𝑦rain = 𝑓 (𝑊𝑇 ⋅ 𝑆 + 𝐶) , (7)

where𝑊 = [𝑤𝑡, 𝑤ℎ, 𝑤𝑝, 𝑤𝑤, 𝑤𝑟] represents he weight for each
attribute.

As for training samples,

𝑦rain = {{{
1, rainfall more than 50mm per day or 30mm per 12 hours

0, otherwise.
(8)

5.3. Logistic Regression. Logistic regression, which is used to
estimate the probability of the binary response based on one
or more variables, is considered to be one of the prevailing
models in various economic andmedical applications. When
logistic function is established to measure the relationship
between categorical dependent variable and independent
variables, accuracy in categorization is promoted. In our
paper, the logistic function is given by

𝑃rain = 𝑃 (𝑦rain = 1 | 𝑆)
= exp (𝑊𝑇 ⋅ 𝑆 + 𝐶)
1 + exp (𝑊𝑇 ⋅ 𝑆 + 𝐶)

logit (𝑃rain) = log( 𝑃rain1 − 𝑃rain) = 𝑊
𝑇 ⋅ 𝑆 + 𝐶.

(9)

For later evaluation,

𝑦rain = {{{
1, logit (𝑃rain) > 0.5
0, logit (𝑃rain) < 0.5. (10)

Therefore, the heavy rain probability estimation problem has
been transferred to linear models. From this point of view,
our statistical hypothesis is defined as

𝐻(𝑖)0 : 𝑤𝑖 = 0 (𝑖 = 𝑡, 𝑤, ℎ, 𝑝, 𝑟) . (11)

Wald test is also utilized for estimating parameters.We assign
the Wald test model described as below:

𝑤 = 𝐵𝑤2
SE𝑤2

, (12)

where 𝐵𝑤 represents the predicted weights 𝑤𝑖 (𝑖 = 𝑡, 𝑤, ℎ, 𝑝,𝑟) of vector 𝑆 and SE𝑤 stands for its standard error. Given the
level of significance 𝛼, hypothesis𝐻(𝑖)0 is denied by

𝑝 = 𝑃 {𝑤 ≥ 𝑤𝛼} . (13)

After vector 𝑊 is fully estimated with affordable Wald test
scores, logistic model for rainfall probability is accomplished.

5.4.Multikernel Support VectorMachines. Logistic regression
does notmake full use of prior knowledge gained by historical
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Our system

Database

Figure 5: Picture for system installation (map from Google Earth).

data. Support vector machines (SVM) [31] outperform logis-
tic regression in binary classification, especially with growing
training dataset [32]. When variables are mapped to higher
dimensional space through divergent SVM kernels, nonlin-
ear classification can be achieved by identifying maximum
margin hyper plane between two sides [18, 19]. Because
weather information like temperature and humidity is highly
correlated, kernels that summarize the characteristics of
different data transactions may perform better. We introduce
two length based SVM kernels to estimate the probability of
heavy rain.

Definition 3 (length based SVM kernels). Given datasets 𝑆𝑖,𝑆𝑗, the length based SVM kernels are defined as

𝑘 (𝑆𝑖, 𝑆𝑗) = 𝑓 (󵄩󵄩󵄩󵄩𝑆𝑖󵄩󵄩󵄩󵄩 , 󵄩󵄩󵄩󵄩󵄩𝑆𝑗󵄩󵄩󵄩󵄩󵄩) . (14)

Kernel 1:

𝑘 (𝑆𝑖, 𝑆𝑗) = 󵄩󵄩󵄩󵄩𝑆𝑖󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑆𝑗󵄩󵄩󵄩󵄩󵄩 . (15)

Kernel 2:

𝑘 (𝑆𝑖, 𝑆𝑗) = 𝑆𝑖 ⋅ 𝑆𝑗󵄩󵄩󵄩󵄩𝑆𝑖󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑆𝑗󵄩󵄩󵄩󵄩󵄩
. (16)

Also we introduce the classic polynomial kernel for compar-
ison.

Polynomial kernel:

𝑘 (𝑆𝑖, 𝑆𝑗) = ( 𝑆𝑖 ⋅ 𝑆𝑗dim (𝑆))
2 . (17)

6. Experiments

6.1. System Installation and Study Area. Our system is
installed at the top of the main building on our campus.
The whole intelligent sensor node serves as a meteorological
station that characterizes the weather of Wuhan University.
As Figure 5 shows, multiple sensors are supplied by solar
panels and excess power will be stored in specialized batteries
for later uses. Also the sensor node is connected to our
building’s Wi-Fi resources so that local clients (the students
and staffs in the laboratory) can receive probability of heavy
rain every 5 minutes. All the predictions will be sent to
our laboratory (another building that is about 2 miles away
through GPRS channels). The sensor platform was installed

Figure 6: APP screenshot.

Table 2: Study area.

Rainfall forecast
tools Grid/degree Time sampling

rate Location

ECMWF
ERA-interim 0.75 × 0.75 4 times/day N 30∘32.25󸀠

E 114∘21.10󸀠

Centralized
WSN 0.75 × 0.75 268 times/day N 30∘32.25󸀠

E 114∘21.10󸀠

Our ESN 0.75 × 0.75 268 times/day N 30∘32.25󸀠
E 114∘21.10󸀠

on June 12, 2015, and our system has been working perfectly
so far. All sensor data and results of calculations conducted
in Raspberry Pi have enormous meteorological significance,
especially in exploring local meteorological differences and
early warning of heavy rain. Also we have developed APPs
for local client with screenshot as in Figure 6.

For rainfall forecast in small grid, European Centre
for Medium-Range Weather Forecasts (ECMWF) is broadly
applied [37]. ECMWF ERA-interim provides 6-hour fore-
casts in any 0.75 × 0.75 (longitude and latitude coordinates)
degrees’ areas. In our experiment, our system and ECMWF
predict rainfall in the same 0.75 × 0.75 degrees’ region
which centers around N 30∘32.25󸀠 E 114∘21.10󸀠. Also, we
have centralized WSN, which treats sensor system as a pure
collector and relies heavily on networks. The results are
compared and discussed in Section 6.3.

6.2. LTR Dataset. To compare the efficiency of our ESN and
ECMWF, we construct a LTR dataset for evaluation. The
LTR dataset is a collection of environmental information in
the study area, including rainfall, air pressure, temperature,
humidity, and solar radiation, both from centralized WSN
and our ESN (Table 2). Also, we have ECMWF forecast
dataset that gives prediction to rain probability 4 times a
day. These two datasets record the weather information and
forecast from Sep 26, 2015, to June 15, 2016.
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Table 3: LTR dataset.

Total number
of transactions

Number of
training

transactions
(our ESN)

Number of
training

transactions
(centralized

WSN)

Number of
testing

transactions

50000 25000 25000 25000

Table 4: ESN fault rate.

Rainfall
forecast tools

Number of valid
transactions (𝑛)

Expected
number of valid
transactions(𝑚 × 268)

Fault rate

Centralized
WSN 25742 70484 36.53%

Our ESN 6198 70484 8.80%

In the LTR dataset, there are 25000 data objects that
were randomly selected from Sep 26, 2015, to June 15, 2016.
Each transaction contains rainfall, air pressure, temperature,
humidity, and solar radiation data. They have been validated
as correct. So we can use them as test dataset. Also as Table 3
shows there are 25000 training samples each for centralized
WSN and our ESN.

6.3. Comparison and Discussion. In this section, we conduct
test to evaluate the effectiveness and efficiency of our ESN,
centralized WSN and ECMWF. To test the working time of
our ESN and centralized WSN, we compare their fault rate.
For the accuracy test, we plot the accuracy of ECMWF, SVM,
and logistic regression versus the size of training samples.
When we find out that only SVM with our ESN beats
ECMWF in LTR estimation, we compare the different SVM
kernels in both accuracy and efficiency.

6.3.1. Efficiency between Our ESN and Centralized WSN.
Before the probability estimation, we must calculate the
downtime when both our ESN and centralized WSN cannot
transmit any information. Also default outlier detection
method presented in the previous part will be applied on the
original dataset. In our work, we use the fault rate as follows
to represent the efficiency of the environmental monitoring
system.

Definition 4 (ESN fault rate). Given a dataset 𝑆, after down-
time detection and outlier detection, it still has 𝑛 valid
transactions {𝑥1, 𝑥2, . . . , 𝑥𝑛}, which present the environmen-
tal information fromour ESN and centralizedWSN in𝑚 days
(Table 4). The fault rate is defined as

FR = 𝑛
𝑚 × 268 . (18)

As Table 3 shows, from Sep 26, 2015, to June 15, 2016, it is
obvious that our system has lower fault rate, which implies
that our ESN keeps working when traditional centralized
WSN stops working. This improvement in efficiency enables

Results of SVM on LTR test dataset
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Figure 7: Results of SVM on LTR.

Results of logistic regression on LTR test dataset
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Figure 8: Results of logistic regression on LTR.

our ESN to deal with more LTR situations with more prior
knowledge.

6.3.2. Performance of LTR Probability Estimation. After eval-
uating the fault rate between two WSN architectures, the
performances of our ESN, centralizedWSN, and ECMWFare
tested by LTR dataset. The training data transactions from
both centralized WSN and our ESN are learned by linear
SVM and logistic regression. In Figures 7 and 8, we plot the
accuracy of ECMWF, SVM, and logistic regression on LTR
classification versus the size of training samples. As Table 5
and Figures 7 and 8 imply, our ESN has higher accuracy
than centralizedWSN in classification. And linear SVM have
better results than logistic regression in this problem because
only the result of SVM from our ESN outperforms ECMWF.

6.3.3. Evaluation of Multiple Kernels on SVM Based Rainfall
Probability Estimation. In this subsection, the accuracy and
efficiency in rainfall probability estimation are tested for
SVM with various kernels. Because SVM have been shown
to achieve higher accuracy in rainfall probability estimation,
it is meaningful to compare the performance of SVM with
different kernels. Also in LTR dataset, meteorological data
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Table 5: Best logistic regression models.

Rainfall forecast
tools Our ESN Centralized WSN

Number of training
samples 20000 20000

Accuracy 85.48% 80.48%

Weights/𝑊 =[𝑤𝑡, 𝑤ℎ, 𝑤𝑝, 𝑤𝑤, 𝑤𝑟]
[0.947, 0.025,
0.363, 0.102,−0.013]

[0.969, 0.03, 0.37,
0.1, −0.012]

Constant/𝐶 −401.87 −402.85
Results of SVM with different kernels on LTR test dataset
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Figure 9: Results of SVM with different kernels on LTR.

attributes are highly correlated so that length based SVM
kernels may have better performance.

In Figure 9, we plot the accuracy of various SVM kernels
on rainfall probability estimation versus the size of training
samples. It is easy to find out that length based kernels
estimate rainfall probability better than traditional SVM
kernels like linear SVM and polynomial SVM. However, we
can see from Figure 10 that length based SVM kernels cost
much more time than linear and polynomial SVM kernels.
Obviously there is a tradeoff between accuracy and efficiency.

7. Conclusion

Accurate and in-time localized torrential rain monitoring
with prior data is a core challenge in environmental sensor
networks. Despite a series of wireless sensor networks devel-
oped for environmental monitoring, current architecture
relies too much on network transportation, which causes
information loss and response delaywhenharsh environment
conditions paralyze network. In this paper, we developed
a Raspberry Pi based intelligent wireless sensor node that
can estimate the probability of LTR according to the self-
collected environmental data andpublish forecast in localized
area using Wi-Fi. Our ESN outperforms centralized WSN in
efficiency. Our ESN achieved higher efficiency and lower fault
rate than centralized WSN. Moreover, SVM on our system
enjoyed higher accuracy in LTR estimation. SVM on our
system is tested to have higher accuracy in LTR estimation.

Running time of SVM with different kernels
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Figure 10: Running time of SVM with different kernels on LTR.
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