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The robust fuzzy control for fractional-order hydroturbine regulating system is studied in this paper. First, the more practical
fractional-order hydroturbine regulating system with uncertain parameters and random disturbances is presented. Then, on the
basis of interval matrix theory and fractional-order stability theorem, a fuzzy control method is proposed for fractional-order
hydroturbine regulating system, and the stability condition is expressed as a group of linear matrix inequalities. Furthermore, the
proposed method has good robustness which can process external random disturbances and uncertain parameters. Finally, the
validity and superiority are proved by the numerical simulations.

1. Introduction

Due to the advantages of describing actual projects, especially
for the description of memory and hereditary properties
of numerous materials and processes [1, 2], fractional cal-
culus has attracted more and more people’s attention. It
has been verified that many practical systems could be
elegantly expressed with fractional calculus, such as power
system [3], permanent magnet synchronous motor system
[4], mechanical system [5], and chemical processing system
[6].

The hydroturbine regulating system is a core compo-
nent for safe and stable operation of hydropower station
system. For a long time up to now, the integer-order model
is usually adopted [7–9]. However, as we all know, the
hydroturbine regulating system is integration of hydraulic,
mechanical, and electrical parts. This complex composition
makes it a strong coupling, nonlinear, and nonminimum
phase system [10–12]. So the integer-order model may not
be suitable for perfectly describing the hydroturbine regu-
lating system. Besides, due to the memory character and
history-dependence of hydraulic servo system, the more
practical fractional-order model is considered accordingly in

this study. Many studies have shown that the hydroturbine
regulating system may exhibit irregular nonlinear vibrations
when the system is under parameter variations and external
random disturbances [13–15]. Therefore, it is very important
to design nonlinear controller for the stable operation of
fractional-order hydroturbine regulating system. Until now,
some nonlinear control schemes have been proposed for
fractional-order systems, such as sliding mode control [16],
predictive control [17], adaptive control [18], and pinning
control [19]. However, few of the above-mentioned methods
consider the uncertainty and random disturbances.

Fuzzy control is a robust method, which can deal with
external disturbances [20–22]. Besides, with the help of
fuzzy linearization and linear matrix theory, the uncertain
parameters can be well processed [23–25]. There have been
many results applying fuzzy control to integer-order non-
linear systems [26–29]. However, there is little literature
about fractional-order nonlinear fuzzy control and there is
almost no relevant result for fractional-order hydroturbine
regulating system.

According to the above analysis, some advantages are
shown in this study. Firstly, the fractional-order hydroturbine
regulating system with uncertain parameters and random
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disturbances is presented, which is more in accordance with
practical engineering. Secondly, a fuzzy control method is
proposed for fractional-order hydroturbine regulating sys-
tem, and the stability condition is expressed as a group of
linear matrix inequalities (LMIs). Furthermore, the proposed
method has good robustness which can process external
random disturbances and uncertain parameters. Even if
the system is with six uncertain parameters, the controller
designed for fractional-order hydroturbine regulating system
is still valid. Lastly, numerical simulations have demonstrated
the effectiveness and superiority when compared with tradi-
tional PID control method.

The rest of this paper is organized as follows. In Sec-
tion 2, the fractional-order hydroturbine regulating system
is introduced. Section 3 presents the robust fuzzy controller
design for fractional-order hydroturbine regulating system.
Simulations are shown in Section 4. And the paper is ended
in Section 5.

2. The Fractional-Order Hydroturbine
Regulating System

The integer-order hydroturbine regulation system is given as
[30]

𝑑𝛿𝑑𝑡 = 𝜔0𝜔,
𝑑𝜔𝑑𝑡 = 1𝑇𝑎𝑏 (𝑚𝑡 − 𝐷𝜔 −

𝐸󸀠𝑞𝑉𝑠𝑥󸀠
𝑑Σ

sin 𝛿

− 𝑉2𝑠2
𝑥󸀠𝑑Σ − 𝑥𝑞Σ𝑥󸀠
𝑑Σ
𝑥𝑞Σ sin 2𝛿) ,

𝑑𝑚𝑡𝑑𝑡 = 1𝑒𝑞ℎ𝑇𝑤 (−𝑚𝑡 + 𝑒𝑦𝑦 +
𝑒𝑒𝑦𝑇𝑤𝑇𝑦 𝑦) ,

𝑑𝑦𝑑𝑡 = − 1𝑇𝑦𝑦,

(1)

where 𝛿, 𝜔, 𝑚𝑡, and 𝑦 are the rotor angle deviation of the
generator, the relative deviation of the rotational speed of
the generator, the hydroturbine output incremental torque
deviation, and the incremental deviation of the guide vane
opening, respectively.

The hydraulic servo system has significant historical
reliance. Since it is a powerful advantage for fractional
calculus to describe the function which has significant his-
torical reliance, the fractional-order hydraulic servo system
is adopted.

According to fractional calculus, the fractional-order
hydraulic servo system is obtained as

𝐷𝛼𝑦 = 1𝑇𝑦 (𝑢 − 𝑦) , (2)

where 𝑇𝑦 is the major relay connector response time.

According to (1) and (2) and for convenience, we use𝑥1, 𝑥2, 𝑥3, 𝑥4 to replace 𝛿, 𝜔,𝑚𝑡, 𝑦. Then, the fractional-order
mathematicalmodel of hydroturbine regulation system could
be represented as

𝑑𝑥1𝑑𝑡 = 𝜔0𝑥2,
𝑑𝑥2𝑑𝑡 = 1𝑇𝑎𝑏 (𝑥3 − 𝐷𝑥2 −

𝐸󸀠𝑞𝑉𝑠𝑥󸀠
𝑑Σ

sin𝑥1

− 𝑉2𝑠2
𝑥󸀠𝑑Σ − 𝑥𝑞Σ𝑥󸀠
𝑑Σ
𝑥𝑞Σ sin 2𝑥1) ,

𝑑𝑥3𝑑𝑡 = 1𝑒𝑞ℎ𝑇𝑤 (−𝑥3 + 𝑒𝑦𝑥4 +
𝑒𝑒𝑦𝑇𝑤𝑇𝑦 𝑥4) ,

𝑑𝛼𝑥4𝑑𝑡𝛼 = − 1𝑇𝑦 𝑥4,

(3)

where 𝜔0 = 314, 𝑇𝑎𝑏 = 9.0 s, 𝐷 = 2.0, 𝐸󸀠𝑞 = 1.35, 𝑥󸀠𝑑Σ = 1.15,𝑥𝑞Σ = 1.474, 𝑇𝑤 = 0.8 s, 𝑇𝑦 = 0.1 s, 𝑉𝑠 = 1.0, 𝑒𝑞ℎ = 0.5,𝑒𝑦 = 1.0, 𝑒 = 0.7, and 𝛼 = 0.9.
Considering the universality of disturbances, the

fractional-order hydroturbine regulating system could be
represented as

𝑑𝑥1𝑑𝑡 = 𝜔0𝑥2 + rand (1) × 𝑥1,
𝑑𝑥2𝑑𝑡 = 1𝑇𝑎𝑏 (𝑥3 − 𝐷𝑥2 −

𝐸󸀠𝑞𝑉𝑠𝑥󸀠
𝑑Σ

sin𝑥1

− 𝑉2𝑠2
𝑥󸀠𝑑Σ − 𝑥𝑞Σ𝑥󸀠
𝑑Σ
𝑥𝑞Σ sin 2𝑥1) + rand (1) × 𝑥2,

𝑑𝑥3𝑑𝑡 = 1𝑒𝑞ℎ𝑇𝑤 (−𝑥3 + 𝑒𝑦𝑥4 +
𝑒𝑒𝑦𝑇𝑤𝑇𝑦 𝑥4) + rand (1)

× 𝑥3,
𝑑𝛼𝑥4𝑑𝑡𝛼 = − 1𝑇𝑦 𝑥4 + rand (1) × 𝑥4.

(4)

Figure 1 shows the state trajectories of fractional-
order hydroturbine regulating system (4) with initial value
[𝑥1 𝑥2 𝑥3 𝑥4]𝑇 = [0.01 0.01 0.01 0.01]𝑇. It clearly shows
that the system states are in irregular and unstable nonlinear
vibrations. So the effective controller should be designed for
the vibration inhibition and stable operation of the fractional-
order hydroturbine regulating system.
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Figure 1: State trajectories of fractional-order hydroturbine regulating system (4).

3. Robust Fuzzy Controller Design

3.1. Interval Matrix Theory. When the uncertain parameters
are considered, the fractional-order hydroturbine regulating
system could be rewritten as

𝑑𝑥1𝑑𝑡 = 𝑎̃𝑥2,
𝑑𝑥2𝑑𝑡 = 𝑏𝑥3 − 𝑐̃𝑥2 − 1𝑇𝑎𝑏 ×

𝐸󸀠𝑞𝑉𝑠𝑥󸀠
𝑑Σ

sin𝑥1 − 1𝑇𝑎𝑏
× 𝑉2𝑠2

𝑥󸀠𝑑Σ − 𝑥𝑞Σ𝑥󸀠
𝑑Σ
𝑥𝑞Σ sin 2𝑥1,

𝑑𝑥3𝑑𝑡 = −𝑑̃𝑥3 + 𝑒̃𝑥4,
𝑑𝛼𝑥4𝑑𝑡𝛼 = 𝑓̃𝑥4,

(5)

where 𝑎̃ ∈ [𝑎1, 𝑎2], 𝑏̃ ∈ [𝑏1, 𝑏2], 𝑐̃ ∈ [𝑐1, 𝑐2], 𝑑̃ ∈ [𝑑1, 𝑑2], 𝑒̃ ∈[𝑒1, 𝑒2], and 𝑓̃ ∈ [𝑓1, 𝑓2].
To discuss the parameter uncertainties of the coefficient

matrix of the fractional-order hydroturbine regulating system
(5), the following interval matrix theory is introduced.

The linear fractional-order interval system is given as [31]

𝑑𝛼𝑥𝑑𝑡𝛼 = 𝐴̃𝑥 (𝑡) , (6)

where the interval uncertain matrix 𝐴̃ satisfies𝐴̃ ∈ 𝑁[𝐴𝑙, 𝐴𝑢] = {𝐴̃ ∈ 𝑅𝑛×𝑛 | 𝑎𝑙𝑖𝑗 ≤ 𝑎𝑖𝑗 ≤ 𝑎𝑢𝑖𝑗, 𝑖, 𝑗 =1, . . . , 𝑛}, where𝐴𝑙 and𝐴𝑢 are the lower and upper bounds of
matrix 𝐴̃, respectively.

The matrix 𝐴̃ could be equivalent presented as

𝐴̃ = 𝐴0𝑖 + 𝐸Σ𝐹, (7)
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where

𝐴0𝑖 = 12 (𝐴𝑙𝑖 + 𝐴𝑢𝑖 ) ,
Σ ∈ Σ∗ = {Σ𝑖 ∈ 𝑅𝑛×𝑛 | Σ𝑖
= diag (𝜀11, . . . , 𝜀1𝑛, . . . , 𝜀𝑛1, . . . , 𝜀𝑛𝑛) , 󵄨󵄨󵄨󵄨󵄨𝜀𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 1, 𝑖, 𝑗
= 1, . . . , 𝑛} ,

𝐸 = (√ℎ11𝑒1, . . . , √ℎ1𝑛𝑒1, . . . , √ℎ𝑛1𝑒𝑛, . . . , √ℎ𝑛𝑛𝑒𝑛) ,
𝐹 = (√ℎ11𝑒1, . . . , √ℎ1𝑛𝑒𝑛, . . . , √ℎ𝑛1𝑒1, . . . , √ℎ𝑛𝑛𝑒𝑛)𝑇 ,

(8)

where𝐻 = (ℎ𝑖𝑗)𝑛×𝑛 = 𝐻𝑖 = (1/2)(𝐴𝑢𝑖 − 𝐴𝑙𝑖), 𝑒𝑖 (𝑖 = 1, . . . , 𝑛)
is the 𝑛 × 𝑛 identity matrix 𝑖th column.

Note that, for any 𝑖 and Σ ∈ Σ∗, there is
ΣΣ𝑇 = Σ𝑇Σ ≤ 𝐼, (𝐼 is 𝑛 × 𝑛 unit matrix) . (9)

3.2. Parallel Distributed Compensation (PDC) Controller.
Rule 𝑅𝑖: IF 𝑧1(𝑡) is𝑀𝑖1 and . . . and 𝑧𝑛(𝑡) is𝑀𝑖𝑝
THEN 𝑑𝛼𝑥 (𝑡)𝑑𝑡𝛼 = (𝐴̃𝑖 + Δ𝐴 𝑖) 𝑥 (𝑡)

+ (𝐵𝑖 + Δ𝐵𝑖) 𝑢 (𝑡) ,
𝑟 = (1, 2, . . . , 𝑟) ,

(10)

where the fuzzy set is 𝑀𝑖𝑗 (𝑗 = 1, 2, . . . , 𝑛) and 𝑟 is the IF-
THEN rules number, 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector, 𝐴 𝑖 ∈ 𝑅𝑛×𝑛,𝑧(𝑡) = [𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧𝑝(𝑡)] are the premise variables, the
fractional order is 𝛼 (0 < 𝛼 < 1), and the control input is 𝑢(𝑡).
The Takagi-Sugeno fuzzy model total output is introduced as

𝑑𝛼𝑥𝑑𝑡𝛼 =
𝑟∑
𝑖=1

ℎ𝑖 (𝑧 (𝑡)) (𝐴 𝑖 + Δ𝐴 𝑖) 𝑥 (𝑡)

+ 𝑟∑
𝑖=1

ℎ𝑖 (𝑧 (𝑡)) (𝐵𝑖 + Δ𝐵𝑖) 𝑢 (𝑡) ,
(11)

where

ℎ𝑖 (𝑧 (𝑡)) = ∏𝑛𝑗=1𝑀𝑖𝑗 (𝑧𝑗 (𝑡))
∑𝑟𝑖=1∏𝑛𝑗=1𝑀𝑖𝑗 (𝑧𝑗 (𝑡)) ≥ 0,

𝑟∑
𝑖=1

ℎ𝑖 (𝑧 (𝑡)) = 1.
(12)

The new fuzzy controller 𝑢(𝑡) is designed on the basis of
parallel distributed compensation (PDC) and represented as
follows.

Rule 𝑅𝑖: IF 𝑧1(𝑡) is𝑀𝑖1 and . . . and 𝑧𝑛(𝑡) is𝑀𝑖𝑝
THEN 𝑢 (𝑡) = 𝐾𝑖𝑥 (𝑡) (𝑖 = 1, 2, . . . , 𝑟) (13)

Theparallel distributed compensation controller is shown
as follows:

𝑢 (𝑡) = 𝑟∑
𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐾𝑖𝑥 (𝑡) , (14)

where𝐾𝑖 (𝑖 = 1, 2, . . . , 𝑟) represents the feedback gain.
By substituting (14) to (11), there follows

𝑑𝛼𝑥𝑑𝑡𝛼 =
𝑟∑
𝑖=1

ℎ𝑖 (𝑧 (𝑡)) (𝐴 𝑖 + Δ𝐴 𝑖) 𝑥 (𝑡)

+ 𝑟∑
𝑖=1

ℎ𝑖 (𝑧 (𝑡)) (𝐵𝑖 + Δ𝐵𝑖) 𝑟∑
𝑖=1

ℎ𝑖 (𝑧 (𝑡)) 𝐾𝑖𝑥 (𝑡) .
(15)

According to the term ∑𝑟𝑖=1 ℎ𝑖(𝑧(𝑡)) = 1, (15) can be
equally written as

𝑑𝛼𝑥𝑑𝑡𝛼 =
𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖 (𝑧 (𝑡)) ℎ𝑗 (𝑧 (𝑡))
⋅ (𝐴 𝑖 + Δ𝐴 𝑖 + (𝐵𝑖 + Δ𝐵𝑖)𝐾𝑗) 𝑥 (𝑡) .

(16)

3.3. Takagi-Sugeno Fuzzy Model of Fractional-Order Hydro-
turbine Regulating System. For the convenience of the coeffi-
cient matrix, the Maclaurin series expansion is introduced:

sin𝑥 = 𝑥 − 𝑥33! + 𝑥
5

5! − 𝑥
7

7! + ⋅ ⋅ ⋅ + (−1)𝑛 𝑥2𝑛+1(2𝑛 + 1)!
+ ⋅ ⋅ ⋅ .

(17)

Assume 𝑥2 ∈ [−𝑑, 𝑑]; here 𝑑 = 2. The Takagi-Sugeno
fuzzy model is established, with the following two rules to
describe the dynamic behavior of the system:

𝑅1: IF 𝑥2 is 𝑀1(𝑥2(𝑡)), THEN 𝑑𝛼𝑥(𝑡)/𝑑𝑡𝛼 = (𝐴̃1 +Δ𝐴1)𝑥(𝑡) + (𝐵1 + Δ𝐵1)𝑢(𝑡);
𝑅2: IF 𝑥2 is 𝑀2(𝑥2(𝑡)), THEN 𝑑𝛼𝑥(𝑡)/𝑑𝑡𝛼 = (𝐴̃2 +Δ𝐴2)𝑥(𝑡) + (𝐵2 + Δ𝐵2)𝑢(𝑡).

The membership functions are taken as follows:

𝑀1 (𝑥2 (𝑡)) = 12 (1 + 𝑥2 (𝑡)𝑑 ) ,
𝑀2 (𝑥2 (𝑡)) = 12 (1 − 𝑥2 (𝑡)𝑑 ) .

(18)

In view of the above description, there is

𝐴̃1 =
[[[[[[[
[

0 𝑎̃ 0 0
1723116951 −𝑏̃ 𝑐̃ 0
0 0 −𝑑̃ 𝑒̃
0 0 0 −𝑓̃

]]]]]]]
]
,
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𝐴̃2 =
[[[[[[[
[

0 𝑎̃ 0 0
157716951 −𝑏̃ 𝑐̃ 0
0 0 −𝑑̃ 𝑒̃
0 0 0 −𝑓̃

]]]]]]]
]
,

𝐵1 = 𝐵2 = 𝐼4×4.
(19)

So the fractional-order Takagi-Sugeno fuzzymodel of the
hydroturbine regulating system can be represented as

𝑑𝛼𝑥𝑑𝑡𝛼 =
2∑
𝑖=1

ℎ𝑖 (𝑧 (𝑡)) (𝐴̃𝑖 + Δ𝐴 𝑖 + (𝐵𝑖 + Δ𝐵𝑖) 𝑢 (𝑡)) . (20)

3.4. Controller Design. According to the PDC law, one has

𝑢 (𝑡) = 2∑
𝑗=1

ℎ𝑗 (𝑧 (𝑡)) 𝐾𝑗𝑥 (𝑡) . (21)

Then, (20) could be rewritten as

𝑑𝛼𝑥𝑑𝑡𝛼 =
2∑
𝑖=1

2∑
𝑗=1

ℎ𝑖 (𝑥 (𝑡)) ℎ𝑗 (𝑥 (𝑡))
⋅ (𝐴̃𝑖 + Δ𝐴 𝑖 + (𝐵𝑖 + Δ𝐵𝑖)𝐾𝑗) 𝑥 (𝑡) .

(22)

With the help of interval matrix theory in Section 3.1, (22)
can be equivalently given as

𝑑𝛼𝑥𝑑𝑡𝛼 =
2∑
𝑖=1

2∑
𝑗=1

ℎ𝑖 (𝑥 (𝑡)) ℎ𝑗 (𝑥 (𝑡))
⋅ (𝐴0𝑖 + 𝐸Σ𝐹 + Δ𝐴 𝑖 + (𝐵𝑖 + Δ𝐵𝑖)𝐾𝑗) 𝑥 (𝑡) .

(23)

Assumption 1. The parameter uncertainties considered here
are norm-bounded in the following form:

Δ𝐴 𝑖 = 𝐷𝑖𝐹𝑖 (𝑡) 𝐸1𝑖,
Δ𝐵𝑖 = 𝐷𝑖𝐹𝑖 (𝑡) 𝐸2𝑖, (24)

where𝐷𝑖, 𝐸1𝑖, 𝐸2𝑖 are known real constant matrices of appro-
priate dimensions and 𝐹𝑖 is a diagonal random matrix with
Lebesgue-measurable elements and satisfies 𝐹𝑖𝐹𝑖𝑇 ≤ 𝐼; 𝐼 is
the identity matrix with an appropriate dimension.

According to Assumption 1, (23) can be equally written as

𝑑𝛼𝑥𝑑𝑡𝛼 =
2∑
𝑖=1

2∑
𝑗=1

ℎ𝑖 (𝑥 (𝑡)) ℎ𝑗 (𝑥 (𝑡))
⋅ (𝐴0𝑖 + 𝐸Σ𝐹 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗) 𝑥 (𝑡) .

(25)

Lemma 2 (see [32]). For the linear fractional-order system
presented below,

𝐷𝛼𝑥 = 𝐴𝑥,
𝑥 (0) = 𝑥0, (26)

where𝐴 ∈ 𝑅𝑛×𝑛, 𝑥 ∈ 𝑅𝑛, and 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝑖, . . . , 𝛼𝑛] (0 <𝛼𝑖 ≤ 1), for all eigenvalues 𝜆𝑖 of matrix𝐴, when and only when| arg(𝜆𝑖)| > 𝛼𝜋/2 is satisfied; system (26) is asymptotically
stable.

Theorem 3. Assume the system matrix 𝐴meets the Lyapunov
function; that is, there is real positive definite symmetric matrix𝑃 as well as semipositive definite matrix𝑄meeting𝐴𝑇𝑃+𝑃𝐴 =−𝑄. The fractional-order hydroturbine regulating system (25)
then will converge to the equilibrium point asymptotically.

Proof. Assume 𝜆 is an eigenvalue of the system matrix 𝐴 and
the eigenvector is 𝜉; one can easily get

𝐴𝜉 = 𝜆𝜉. (27)

For both sides of (27), making conjugation and transpose,
one has

(𝐴𝜉)𝑇 = 𝜆𝜉𝑇. (28)

For (27) left side, multiplying 𝜉𝑇𝑃, one can be obtain

𝜉𝑇𝑃𝐴𝜉 = 𝜆𝜉𝑇𝑃𝜉. (29)

For (28) right side, making the similar treatment and
multiplying 𝑃𝜉, one can also get

(𝐴𝜉)𝑇𝑃𝜉 = 𝜆𝜉𝑇𝑃𝜉. (30)

Combining (29) and (30), one can easily get

𝜉𝑇 (𝑃𝐴 + 𝐴𝑇𝑃) 𝜉 = (𝜆 + 𝜆) 𝜉𝑇𝑃𝜉. (31)

According to Theorem 3, 𝐴𝑇𝑃 + 𝑃𝐴 is a seminegative
definite matrix. So, for any nonzero vector 𝜉, one has

𝜉𝑇 (𝑃𝐴 + 𝐴𝑇𝑃) 𝜉 = 𝜉𝑇 (−𝑄) 𝜉 ≤ 0,
𝜉𝑇𝑃𝜉 > 0. (32)

Combining (31) and (32), one can easily get

(𝜆 + 𝜆) = 𝜉𝑇 (−𝑄) 𝜉𝜉𝑇𝑃𝜉 ≤ 0. (33)

It means, for all eigenvalues of matrix 𝐴, there is
󵄨󵄨󵄨󵄨arg (𝜆)󵄨󵄨󵄨󵄨 ≥ 𝜋2 > 𝛼𝜋2 , (𝛼 < 1) . (34)

Referring to Lemma 2, the fractional-order hydroturbine
regulating system (25) then will converge to the equilibrium
point asymptotically. The proof is complete.

The following more flexible theorem is presented on the
basis of Theorem 3.

Theorem 4. For any system variables 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇,
there exists a real positive definite symmetric matrix 𝑃meeting𝐽 = 𝑥𝑇𝑃(𝑑𝛼𝑥/𝑑𝑡𝛼) ≤ 0, (𝑥𝑇𝑃(𝑑𝛼𝑥/𝑑𝑡𝛼) is called 𝐽 function).
The fractional-order hydroturbine regulating system (25) then
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will converge to the equilibrium point asymptotically. The
condition 𝐽 = 𝑥𝑇𝑃(𝑑𝛼𝑥/𝑑𝑡𝛼) ≤ 0 could be equivalently given
as

𝐽0 = 𝑥𝑇𝑃𝑑𝛼𝑥𝑑𝑡𝛼 + (𝑑
𝛼𝑥𝑑𝑡𝛼 )
𝑇 𝑃𝑥 ≤ 0. (35)

Proof. FromTheorem 3, there is

𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄. (36)

According to (36), one can easily get

𝑥𝑇 (𝐴𝑇𝑃 + 𝑃𝐴) 𝑥 = −𝑥𝑇𝑄𝑥, (37)

where 𝑄 is a semipositive definite matrix. That is to say, for
any system variable 𝑥, there is

𝑥𝑇 (𝐴𝑇𝑃 + 𝑃𝐴) 𝑥 = −𝑥𝑇𝑄𝑥 ≤ 0. (38)

Substituting (26) to (38), one has

𝑥𝑇𝑃𝑑𝛼𝑥𝑑𝑡𝛼 + (𝑑
𝛼𝑥𝑑𝑡𝛼 )
𝑇 𝑃𝑥 ≤ 0. (39)

The positive definite symmetric matrix 𝑃 is supposed as

𝑃 =
[[[[[[
[

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛... ... d
...

𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]]]]]]
]
. (40)

Introducing (40) to (39), one gets

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑖 𝑑
𝛼𝑥𝑗𝑑𝑡𝛼 +

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗 𝑑𝛼𝑥𝑖𝑑𝑡𝛼 ≤ 0. (41)

For 𝑎𝑖𝑗 = 𝑎𝑗𝑖 (∀𝑖, 𝑗), (41) could be rewritten as

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑖 𝑑
𝛼𝑥𝑗𝑑𝑡𝛼 +

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗 𝑑𝛼𝑥𝑖𝑑𝑡𝛼 = 2
𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗𝑥𝑗 𝑑𝛼𝑥𝑖𝑑𝑡𝛼
= 2𝑥𝑇𝑃𝑑𝛼𝑥𝑑𝑡𝛼 = 2(𝑑

𝛼𝑥𝑑𝑡𝛼 )
𝑇 𝑃𝑥 ≤ 0.

(42)

It is clear that Theorem 4 is equivalent toTheorem 3. The
proof is finished.

Based on the above theorems, the more practical stability
conditions are proposed as follows.

Theorem 5. The fractional-order hydroturbine regulating sys-
tem (25) then will converge to the equilibrium point asymp-
totically, once there exist a plus constant 𝜂, a positive definite
matrix 𝑃, and the controller gain matrices 𝐾𝑖 (𝑖 = 1, 2) which
satisfy the following LMIs:

[Φ𝑖𝑖 𝑄𝐹𝑇𝐹𝑄 𝜂−1𝐼] < 0,

[Φ𝑖𝑗 𝑄𝐹𝑇𝐹𝑄 −𝜂−1𝐼] < 0,
𝑄 > 0,

(43)

where

Φ𝑖𝑖 = 𝑄 (𝐴 𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖)𝑇 +𝑀𝑇𝑖 (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝑇
+ (𝐴 𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖) 𝑄 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝑀𝑖
+ 𝜂𝐸𝐸𝑇,

Φ𝑖𝑗 = 𝑄 (𝐴 𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖)𝑇 +𝑀𝑇𝑗 (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝑇
+ 𝑄 (𝐴𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗)𝑇
+𝑀𝑇𝑖 (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝑇 + (𝐴 𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖) 𝑄
+ (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝑀𝑗 + (𝐴𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗)𝑄
+ (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝑀𝑖 + 𝜂𝐸𝐸𝑇,

(44)

𝑄 = 𝑃−1, 𝑀𝑖 = 𝐾𝑖𝑃−1, 𝑀𝑗 = 𝐾𝑗𝑃−1, and 𝐼 is 4 × 4 unit
matrix.

Proof. Based on Theorem 4, choose 𝐽0 = 𝑥𝑇𝑃(𝑑𝛼𝑥/𝑑𝑡𝛼) +(𝑑𝛼𝑥/𝑑𝑡𝛼)𝑇𝑃𝑥 as 𝐽 function for system (25).

𝐽0 = 𝑥𝑇𝑃𝑑𝛼𝑥𝑑𝑡𝛼 + (𝑑
𝛼𝑥𝑑𝑡𝛼 )
𝑇 𝑃𝑥 = 4∑

𝑖=1

4∑
𝑗=1

ℎ𝑖ℎ𝑗 (𝐴0𝑖 + 𝐸Σ𝐹 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗)𝑇 𝑥𝑇𝑃𝑥 + 𝑥𝑇𝑃 4∑
𝑖=1

4∑
𝑗=1

ℎ𝑖ℎ𝑗 (𝐴0𝑖

+ 𝐸Σ𝐹 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗) = 4∑
𝑖=1

4∑
𝑗=1

ℎ𝑖ℎ𝑗𝑥𝑇 {[(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗)𝑇 𝑃 + 𝐹𝑇Σ𝐸𝑇𝑃]
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+ [𝑃 (𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗) + 𝑃𝐸Σ𝐹] 𝑥} = 4∑
𝑖=1

ℎ2𝑖 𝑥𝑇 [(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑖)𝑇 𝑃 + 𝐹𝑇Σ𝐸𝑇𝑃

+ 𝑃 (𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑖) + 𝑃𝐸Σ𝐹] 𝑥 + 4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 [(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗)𝑇 𝑃 + 𝐹𝑇Σ𝐸𝑇𝑃

+ 𝑃 (𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗) + 𝑃𝐸Σ𝐹] 𝑥 + 4∑
𝑖>𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 [(𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)𝑇 𝑃

+ 𝐹𝑇Σ𝐸𝑇𝑃 + 𝑃 (𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖) + 𝑃𝐸Σ𝐹] 𝑥 = 4∑
𝑖=1

ℎ2𝑖 𝑥𝑇 [(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑖)𝑇 𝑃

+ 𝑃 (𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑖)] 𝑥 + 4∑
𝑖=1

ℎ2𝑖 𝑥𝑇 (𝐹𝑇Σ𝐸𝑇𝑃 + 𝑃𝐸Σ𝐹) 𝑥 + 2 4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 (𝐹𝑇Σ𝐸𝑇𝑃 + 𝑃𝐸Σ𝐹) 𝑥

+ 4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 [(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗)𝑇 𝑃 + 𝑃 (𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗)] 𝑥 + 4∑
𝑖>𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 [(𝐴0𝑗
+ 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)𝑇 𝑃 + 𝑃 (𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)] 𝑥.

(45)

Considering that ∑4𝑖=1 ℎ2𝑖 + 2∑4𝑖<𝑗 ℎ𝑖ℎ𝑗 = 1 and
4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 [(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗)𝑇 𝑃 + 𝑃 (𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗)] 𝑥

+ 4∑
𝑖>𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 [(𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)𝑇 𝑃 + 𝑃 (𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)] 𝑥

= 4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 {[(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗) + (𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)]𝑇 𝑃
+ 𝑃 [(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗) + (𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)]} 𝑥
= 2 4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇{{{
[(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗) + (𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)2 ]

𝑇

𝑃

+ 𝑃[(𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸2𝑖)𝐾𝑗) + (𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)2 ]}}}
𝑥,

(46)

select

𝐺𝑖𝑖 = 𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖)𝐾𝑖,
𝐺𝑖𝑗 = (𝐴0𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖 + (𝐵𝑖 + 𝐷𝑖𝐹𝑖𝐸1𝑖)𝐾𝑗) + (𝐴0𝑗 + 𝐷𝑗𝐹𝑗𝐸1𝑗 + (𝐵𝑗 + 𝐷𝑗𝐹𝑗𝐸2𝑗)𝐾𝑖)2 . (47)



8 Mathematical Problems in Engineering

There follows

𝐽0 = 4∑
𝑖=1

ℎ2𝑖 𝑥𝑇 (𝐺𝑇𝑖𝑖𝑃 + 𝑃𝐺𝑖𝑖) 𝑥

+ 2 4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 (𝐺𝑇𝑖𝑗𝑃 + 𝑃𝐺𝑖𝑗) 𝑥 + 𝑥𝑇𝐹𝑇Σ𝐸𝑇𝑃𝑥
+ 𝑥𝑇𝑃𝐸Σ𝐹𝑥.

(48)

Select 𝜉𝑇 = 𝑥𝑇𝑃𝐸, 𝜃 = 𝐹𝑥, and there is

2𝑥𝑇𝑃𝐸Σ𝐹𝑥 ≤ 𝜂𝑥𝑇𝑃𝐸𝐸𝑇𝑃𝑥 + 𝜂−1𝑥𝑇𝐹𝑇𝐹𝑥. (49)

Taking the transpose of both sides in (49), one obtains

2𝑥𝑇𝐹𝑇Σ𝐸𝑇𝑃𝑥 ≤ 𝜂𝑥𝑇𝑃𝐸𝐸𝑇𝑃𝑥 + 𝜂−1𝑥𝑇𝐹𝑇𝐹𝑥. (50)

According to (50) and (49), one gets

𝑥𝑇𝐹𝑇Σ𝐸𝑇𝑃𝑥 + 𝑥𝑇𝑃𝐸Σ𝐹𝑥
≤ 𝜂𝑥𝑇𝑃𝐸𝐸𝑇𝑃𝑥 + 𝜂−1𝑥𝑇𝐹𝑇𝐹𝑥. (51)

By substituting (51) into (48), one has

𝐽0 ≤ 4∑
𝑖=1

ℎ2𝑖 𝑥𝑇 (𝐺𝑇𝑖𝑖𝑃 + 𝑃𝐺𝑖𝑖) 𝑥

+ 2 4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 (𝐺𝑇𝑖𝑗𝑃 + 𝑃𝐺𝑖𝑗) 𝑥 + 𝜂𝑥𝑇𝑃𝐸𝐸𝑇𝑃𝑥
+ 𝜂−1𝑥𝑇𝐹𝑇𝐹𝑥.

(52)

Note that∑4𝑖=1 ℎ2𝑖 + 2∑4𝑖<𝑗 ℎ𝑖ℎ𝑗 = 1, so (52) can be equally
represented as

𝐽0 ≤ 4∑
𝑖=1

ℎ2𝑖 𝑥𝑇 (𝐺𝑇𝑖𝑖𝑃 + 𝑃𝐺𝑖𝑖 + 𝜂𝑃𝐸𝐸𝑇𝑃 + 𝜂−1𝐹𝑇𝐹) 𝑥

+ 2 4∑
𝑖<𝑗

ℎ𝑖ℎ𝑗𝑥𝑇 (𝐺𝑇𝑖𝑗𝑃 + 𝑃𝐺𝑖𝑗 + 𝜂𝑃𝐸𝐸𝑇𝑃 + 𝜂−1𝐹𝑇𝐹)
⋅ 𝑥.

(53)

Accordingly, (25) can be assured as long as the following
inequalities hold.

𝐺𝑇𝑖𝑖𝑃 + 𝑃𝐺𝑖𝑖 + 𝜂𝑃𝐸𝐸𝑇𝑃 + 𝜂−1𝐹𝑇𝐹 < 0 (𝑖, 𝑗 = 1, 2) ,
𝐺𝑇𝑖𝑗𝑃 + 𝑃𝐺𝑖𝑗 + 𝜂𝑃𝐸𝐸𝑇𝑃 + 𝜂−1𝐹𝑇𝐹 < 0 (𝑖 < 𝑗 ≤ 2) . (54)

It is clear that the fractional-order hydroturbine regulat-
ing system (25) then will converge to the equilibrium point
asymptotically once (54) are satisfied.

With the help of Schur’s theorem [33], one can easily
transform (54) to the standard form of linear matrix inequal-
ities, which are presented as (43). The proof is complete.

4. Numerical Simulations

Considering the fractional-order hydroturbine regulating
system (4) with uncertain parameters, 𝑎̃ = 314 + 0.1 sin(𝑡),𝑏̃ = 2/9 + 0.1 cos(𝑡), 𝑐̃ = 1/9 + 0.1 sin(𝑡), 𝑑̃ = 5/2 + 0.1 cos(𝑡),𝑒̃ = 33/2 + 0.1 sin(𝑡), and 𝑓̃ = 10 + 0.1 cos(𝑡).

Therefore, 𝑎̃ ∈ [313.9, 314.1], 𝑏 ∈ [11/90, 29/90], 𝑐̃ ∈[1/90, 19/90], 𝑑̃ ∈ [2.4, 2.6], 𝑒̃ ∈ [16.4, 16.6], and 𝑓̃ ∈[9.9, 10.1].
To take control of the fractional-order hydroturbine

regulating system with uncertain parameters, we take 𝑑 = 2,𝐴0𝑖 (𝑖 = 1, 2), and 𝐸 and 𝐹 can be calculated. The value of Σ
can also refer to Section 3.1.

𝐵1 = 𝐵2 = 𝐼4×4,
𝐷1 = 𝐷2 = 𝐸11 = 𝐸12 = 𝐸21 = 𝐸22 = 𝐼4×4,
𝐹1 = 𝐹2 = diag (diag (rand (4, 4))) .

(55)

According to the above theorems and 𝜂 = 1000, in the
environment of Matlab 7.0 LMI toolbox we acquire

𝑃 = 10−4 × [[[[[
[

0.0000 −0.0000 0.0000 −0.0000
−0.0000 0.4004 0.0013 −0.0004
0.0000 0.0013 0.4955 0.0009
−0.0000 0.0004 0.0093 0.4965

]]]]]
]
,

𝐾1 = 103

× [[[[[
[

−0.0007 −7.4759 −0.0232 0.0079
−0.0003 −0.0038 −0.0000 0.0000
0.0000 0.0000 −0.0011 −0.0072
−0.0000 −0.0000 −0.0070 0.0052

]]]]]
]
,

𝐾2 =
[[[[[
[

−0.4730 −797.0103 −2.1527 −0.7156
−0.0270 −4.2479 −0.0467 0.0051
0.0000 0.0372 −1.0621 −7.2386
−0.0000 −0.0049 −7.0022 5.2363

]]]]]
]
.

(56)

Figure 2 shows the simulation results of the traditional
PID control method as well as the proposed scheme in this
paper. It is clear that when the controller is applied, the system
state variables quickly converge to zero point, which verifies
the effectiveness. Compared with the traditional PID control
method, it needs shorter transition time and the overshoot
is more smaller than the designed scheme, which shows the
superiority and good robustness of the proposed method.

5. Conclusions

The robust fuzzy control for fractional-order hydroturbine
regulating system was studied in this paper. First, mathemat-
ical model of the fractional-order hydroturbine regulating
system with uncertain parameters and random disturbances
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Figure 2: State trajectories of controlled fractional-order hydroturbine regulating system (4).

was introduced. Second, a fuzzy control method was pro-
posed for fractional-order hydroturbine regulating system.
Furthermore, the stability condition of the fractional-order
hydroturbine regulating systemwas given as a group of linear
matrix inequalities and the detailed mathematical proofs
were presented. Besides, the method could handle the case
of time-varying parameters and random disturbances, which
has shown the good robustness. Finally, the validity and
superiority were verified by the simulation results.

The scheme designed is simple and easy to implement
and could be applied to similar fractional-order nonlinear
systems. In the future, we will consider and extend the
approach to other fractional-order hydroturbine governing
systems, such as hydropower systems with time delay.
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