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Abstract We introduce a new foliation of AdS5 black
holes such that the conformal boundary takes the form of
a 4-dimensional FLRW spacetime with scale factor a(t).
The foliation employs Eddington–Finkelstein-like coordi-
nates and is applicable to a large class of AdS black holes,
supported by matter fields or not, considerably extending pre-
vious efforts in the literature. We argue that the holographic
dual picture of a CFT plasma on a FLRW background pro-
vides an interesting prototype to study the nonequilibrium
dynamics of expanding plasmas and use holographic renor-
malization to extract the renormalized energy-momentum
tensor of the dual plasma. We illustrate the procedure for three
black holes of interest, namely AdS–Schwarzschild, AdS–
Gauss–Bonnet, and AdS–Reissner–Nordström. For the latter,
as a by-product, we show that the nonequilibrium dynamics
of a CFT plasma subject to a quench in the chemical potential
(i.e., a time-dependent chemical potential) resembles a cos-
mological evolution with the scale factor a(t) being inversely
related to the quench profile μ(t).

1 Introduction

The gauge/gravity duality (see, e.g., [1] for a recent review)
is currently established as a valuable tool to approach the
physics of strongly coupled quantum systems. The general
idea is that, by mapping certain quantum systems to an equiv-
alent dual gravity theory living in a higher dimensional bulk
spacetime, difficult problems may become tractable. The
duality has found a wide range of applications over the last
years, specially when it comes to the nonequilibrium dynam-
ics of quantum field theories at strong coupling, which typi-
cally involves time-dependent solutions on the gravity side.
Examples include the thermalization of non-Abelian plasmas
similar to the quark–gluon plasma formed in heavy ion col-
lisions at the RHIC and LHC, which is mapped to an anti de
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Sitter (AdS) black hole formation process on the gravity side
[2–7], and the quench dynamics of quantum systems, where
a time-dependent coupling (or quench) on the field theory
side translates into a boundary condition for bulk fields in
the dual gravity description [8–12].

The Friedmann–Lemaître–Robertson–Walker (FLRW)
metric corresponds to the most general spacetime exhibit-
ing spatial homogeneity and isotropy. In 4 dimensions, the
metric can be written as

ds2 = −dt2 + a(t)2d�2
k, (1)

where a(t) is called the scale factor and d�2
k = dρ2

1−kρ2 +
ρ2(dθ2 + sin2 θdφ2) is the 3-dimensional spatial metric of
a constant curvature space. The spatial curvature k can be
positive, negative, or zero, and without loss of generality
we can set its possible values to be k = +1, 0,−1 corre-
sponding to a unit sphere, Euclidean space, or unit hyperbolic
space, respectively. The FLRW metric describes an expand-
ing (contracting) spacetime provided that a(t) is a monoton-
ically increasing (decreasing) function. It is largely used in
cosmology due to the observation that our universe is homo-
geneous and isotropic (with k = 0) in cosmological scales
[13].

The FLRW spacetime also provides a good prototype to
approach the nonequilibrium dynamics of an expanding sys-
tem. It is well known, for instance, that even a locally static
fluid flow characterized by the 4-velocity uμ = (1, 0, 0, 0)

in the FLRW metric has a nonvanishing expansion rate
∇μuμ = 3H(t) (H(t) ≡ ȧ(t)

a(t) is the so-called Hubble param-
eter) due to the dynamical nature of the geometry itself. In
spite of the time dependence, the high degree of spatial sym-
metry of the metric may render certain problems technically
feasible. An interesting example is [14], where an analyti-
cal solution to the general relativistic Boltzmann equation in
FLRW has been found describing the dynamics of an expand-
ing massless gas with constant cross section.
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In the present work, we use an expanding FLRW space-
time as the background arena in which to study a strongly
coupled field theory plasma. In particular, we shall focus on
a conformal field theory (CFT) with a holographic dual and
resort to gauge/gravity duality methods in order to extract
information as regards the expanding CFT plasma. An advan-
tage of the holographic approach is that nonequilibrium quan-
tities of the expanding plasma such as the entropy density
can be naturally associated with the gravitational entropy of
the apparent horizon on the gravity side [15]. The crucial
step here involves setting the anti de Sitter (AdS) conformal
boundary to take a FLRW form instead of the commonly
used static boundaries. This is in principle possible since the
boundary metric belongs to a conformal class, and one can
switch between members of this class by appropriate bulk
diffeomorphisms.

Previous efforts in this direction have been made in [16]
(see also [17–19]) using Fefferman–Graham coordinates,
but were restricted basically to pure Einstein gravity in the
bulk. We propose here a different foliation of AdS5 black
hole spacetimes using Eddington–Finkelstein-like coordi-
nates such that the asymptotic boundary becomes the 4-
dimensional FLRW spacetime. The holographic dual picture
is, therefore, that of a thermalized CFT on an expanding back-
ground, even though the bulk solution is not truly dynamical.
The procedure is simple and applies equally well to a vari-
ety of AdS black holes, supported by external fields or not,
leading to the same results of [16] when applied to the AdS–
Schwarzschild solution.

The paper is organized as follows. In Sect. 2 we introduce
our FLRW foliation of generic AdS black holes, discuss the
entropy production by the dual expanding plasma and set the
ground to discuss holographic renormalization and one-point
functions in the sequence. In Sect. 3 we give three explicit
examples, namely for the AdS–Schwarzschild, AdS–Gauss–
Bonnet, and AdS–Reissner– Nordström solutions, calculate
the corresponding renormalized one-point functions of the
dual CFT and discuss the conformal anomalies. Section 4
contains the closing remarks.

2 AdS black holes with a FLRW boundary

We begin with a generic asymptotically AdS5 black hole
written in the usual form

ds2 = − f (r)dt2 + f (r)−1dr2 + �(r)2d�2
k, (2)

where d�2
k denotes the metric of the horizon, correspond-

ing to a spherical, planar, or hyperbolic horizon for k =
+1, 0,−1 respectively. The blackening factor f (r) and the
function �(r) are left completely general with the only
assumption that f (r) ∼ r2

L2 and �(r) ∼ r
L for large r , as

required in order to have AdS asymptotics with curvature
radius L .1 The event horizon rh is defined by (the largest
root of) f (rh) = 0 and the corresponding Hawking temper-
ature is T = | f ′(rh)|/4π . There may eventually be matter
fields supporting the geometry, but for our purposes at this
section they will play no role.

The first step involves going to the so-called ingoing
Eddington–Finkelstein coordinates (v, r ). This is done by
trading the time coordinate t for a new coordinate v adapted
to ingoing null geodesics, which is defined by dv = dt +
f (r)−1dr . The metric then reads

ds2 = 2dvdr − f (r)dv2 + �(r)2d�2
k . (3)

Notice that the large r behavior of the metric is ds2 ∼
2dvdr + r2

L2 [−dv2 + d�2
k], from where it is clear that the

4-dimensional conformal boundary at r = ∞ (where the
dual CFT lives) is the Einstein static universe R × �k with
metric2

ds2
0 = g(0)

μν dxμdxν = −dt2 + d�2
k . (4)

When k = 0 this is just the 4-dimensional Minkowski space-
time, which is by far the most studied one in holographic
applications since most field theories of physical interest live
in flat spacetime. In spite of that, for the sake of complete-
ness we shall keep the spatial curvature k arbitrary in the
sequence.

Before proceeding it is instructive to recall a simple reason
why the AdS conformal boundary indeed goes well with the
intuitive notion of a boundary. This can be seen by calculating
the time interval 	v(r0) spent by an outgoing light ray to
travel radially from r0 > rh to the boundary at r = ∞
and back to r0. It follows immediately from the definition of
outgoing null geodesics in (3), 2dr − f (r)dv = 0, that

	v(r0) = 4
∫ ∞

r0

dr ′

f (r ′)
< ∞, (5)

which is obviously finite since there are no poles in the
denominator for r0 > rh and the integrand vanishes at large
r ′.

In the following we shall introduce a different foliation
of the black hole spacetime (3) in such a way that the cor-
responding conformal boundary takes the form of a FLRW
spacetime, namely

ds2
0 = g(0)

μν dxμdxν = −dt2 + a(t)2d�2
k . (6)

1 Of course the zero temperature cases of Poincaré and global AdS
are also included in this class and, incidentally, will be included in our
analysis. However, we shall ignore them since we are interested only in
CFTs at finite T .
2 The time coordinates v and t coincide at fixed-r surfaces.

123



Eur. Phys. J. C (2016) 76 :682 Page 3 of 11 682

In order to achieve that, one needs two further coordinate
transformations. We first define a new time coordinate V with
respect to which the old v is a “conformal time” with scale
factor a(V ), i.e., dv = dV

a(V )
, where a(V ) is assumed to be

everywhere continuous and nonvanishing.
Finally, we introduce a new radial coordinate R defined

as R = r
a(V )

. After plugging dv = dV
a and dr = a(V )dR +

Rȧ(V )dV the metric (3) becomes

ds2 = 2
dV

a
(adR + RȧdV ) − f (Ra)

dV 2

a2 + �(Ra)2d�2
k

= 2dV dR −
[
f (Ra)

a2 − 2R
ȧ

a

]
dV 2 + �(Ra)2d�2

k

(7)

This form is the one we are interested in this work. Note
that the metric is still expressed in Eddington–Finkelstein-
like coordinates (in the sense that V is still adapted to null
geodesics), but now it carries an artificial time dependence
reminiscent of the transformation from v to V . At large R we

have f (Ra) ∼ (Ra)2

L2 and �(Ra) ∼ Ra
L due to our assump-

tion of AdS asymptotics, and, therefore,

ds2 ∼ 2dV dR + R2

L2 [−dV 2 + a(V )2d�2
k] .

As a result, the new conformal boundary at R = ∞ has
precisely the desired FLRW form (6) with spatial curvature
k (the time coordinate is now called V ). We shall refer to this
as the cosmological boundary just to remind the reader that
this is not the same as the commonly used AdS boundary at
r = ∞.

Actually we shall pause for a moment here to argue that the
cosmological boundary introduced above is indeed also com-
patible with the notion of a boundary. This is done by asking
the same question asked previously for the AdS boundary,
namely whether the time interval 	V (R0) spent by an out-
going light ray to go radially from R0 to ∞ and back to R0

in the metric (7) is finite or not. The outgoing null geodesics
in this case satisfy

dR

dV
= 1

2

[
f (Ra)

a2 − 2R
ȧ

a

]
= 1

2

[
R2

L2 − 2R
ȧ

a
+ · · ·

]
.

(8)

For simplicity we focus on the case of pure AdS space
( f (r) = r2

L2 ), without loss of generality since this corre-
sponds to the asymptotic structure of any AdS black hole. In
this case the ellipsis in the previous expression is not present
and it can be exactly integrated to yield

R(V ) = R0a0

a(V )
[
1 − R0a0

2L2

∫ V
V0

dV ′
a(V ′)

] , (9)

where we have introduced R0 ≡ R(V0) and a0 ≡ a(V0).
The time V∞ corresponding to reaching the cosmological
boundary R = ∞ is implicitly defined by

R0a0

2L2

∫ V∞

V0

dV ′

a(V ′)
= 1 . (10)

A straightforward consequence of our assumption that the
scale factor a(V ) is a continuous and everywhere nonva-
nishing function is that V∞ must be finite (although an
explicit expression for it cannot be obtained without spec-
ifying the form of the scale factor). As a result, the time
interval 	V (R0) = 2(V∞ − V0) is guaranteed to be finite
and, therefore, R = ∞ also provides a sensible notion of
asymptotic boundary.

To summarize, we have introduced a different type of
foliation for 5-dimensional AdS black hole spacetimes of
the form (2) where the 4-dimensional slices asymptotically
approach the FLRW metric. This is very similar to the work
done in [16]. It should be stressed, however, that our proce-
dure is astonishingly simpler and, in particular, our metric
(7) applies equally well for any AdS black hole (character-
ized by the functions f, � and eventually matter fields3), as
we shall illustrate in the sequence, while the method of [16]
is hardly applicable beyond the simplest case of the AdS–
Schwarzschild solution.

2.1 Entropy production

We begin our analysis by finding the location of the apparent
horizon in our FLRW-foliated black hole metric (7). The
apparent horizon is formally defined as the outermost trapped
surface, i.e., the closed null hypersurface on which all radially
outgoing null geodesics have vanishing expansion (see e.g.
[20]). For a generic 5-dimensional metric of the form

ds2 = 2dV dR − α(V, R)dV 2 + β(V, R)2d�2
k

the expansion along outgoing null rays is given by θout ≡
(∂V + α

2 ∂R) ln β3 and the apparent horizon hence corre-
sponds to the location Rh(V ) for which θout = 0. For the
case of interest, Eq. (7), with α(V, R) = f (Ra)

a2 − 2R ȧ
a and

β(V, R) = �(Ra), the result is[
∂V� +

(
f (Ra)

2a2 − R
ȧ

a

)
∂R�

] ∣∣∣∣
R=Rh

= 0 . (11)

However, since � only depends on (V, R) through the com-
bination Ra(V ), one can write ∂V�(Ra) = Rȧ�′(Ra),
∂R�(Ra) = a�′(Ra) (here a prime denotes the derivative

3 Of course matter fields when present must be changed according to
the same coordinate transformations above to take a different (V, R)-
dependent configuration that supports the FLRW-foliated metric (7).
This is the case, e.g., for the AdS–Reissner–Nordström charged black
hole (see Sect. 3).
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with respect to the argument Ra) and, therefore, the defini-
tion of Rh reduces to

f (Rha)�′(Rha) = 0. (12)

For most black hole solutions of interest, which have �(r) =
r
L (see the next section), the equation above gives simply
f (Rha) = 0 or, equivalently, Rh(V ) = rh

a(V )
, where the

constant rh denotes the black hole event horizon in the stan-
dard coordinate system (3) (i.e., f (rh) = 0). Nevertheless, if
�(r) has subleading contributions in r of any kind such that
�′(r) is not constant, there may appear an additional horizon
corresponding to �′(Rha) = 0.

Having determined its location, we now follow [15]
and associate the nonequilibrium entropy density s of the
expanding plasma living at the cosmological boundary with
the Bekenstein–Hawking entropy of the apparent horizon,
namely

s = �(Rha)3

4G5
. (13)

From this it follows that, if Rh = rh
a is the only apparent

horizon, then clearly

ds

dV
= 0, (14)

i.e., there is no entropy production by the plasma during the
dynamical process. This matches the expectation from the
hydrodynamics of conformally invariant fluids, for which
there is no entropy production at all orders in the hydrody-
namic expansion (see [21]). However, if the bulk solution
admits another apparent horizon corresponding to the root of
�′(Rha), then there may be a nonzero entropy production by
the plasma since the combination Rha on which s depends
will not necessarily be constant anymore. This is the case,
for instance, for the N = 2∗ plasma studied in [21].

Similarly, one can associate to the expanding plasma the
local temperature

T (V ) = TH
a(V )

, (15)

where TH is the temperature of the corresponding static
plasma (i.e., the Hawking temperature of the black hole).
As argued in [16], this follows from the fact that the FLRW
metric (6) and the static boundary metric (4) are connected by
a Weyl rescaling, i.e., ds2

FLRW = a(η)2ds2
0 where η ≡ ∫ dt

a
is the conformal time. As a result, the local temperature of
the plasma in FLRW and the equilibrium temperature TH of
the static plasma must be linked by a rescaling. Since the
Euclidean proper time period in FLRW scales as a accord-
ing to the formula above, the temperature of the expanding

plasma, being inversely related to the period, must scale as
a−1 with respect to TH . Another way to see that is to recall
that our new slicing does not change the physical content
of the bulk solution, i.e., we still have the same static AdS
black hole in thermal equilibrium with its Hawking radiation
at temperature TH . The difference now is that we have a new
notion of boundary (R = ∞) that expands in time according
to the scale factor a(V ), and a comoving observer sitting in
there will experience a temperature appropriately corrected
by a that corresponds precisely to (15).

2.2 One-point functions

We now follow the spirit of [16] and, by assuming that (i)
the cosmological boundary is holographic; (ii) the standard
holographic renormalization procedure can be carried out
in the same way in there as in the usual AdS boundary, we
proceed to calculate the one-point functions for the dual CFT
operators living in the cosmological boundary, i.e., for CFTs
in FLRW spacetime.

The first step involved is to find the Fefferman–Graham
(FG) expansion of the bulk metric (and eventually matter
fields) near the cosmological boundary, since knowledge of
the FG coefficients determines the CFT correlators via the
holographic dictionary. Namely, we need to put the metric
(7) in the FG form

ds2 = L2

z2

[
dz2 + gμν(z, x)dx

μdxν
]

(16)

(here z ∼ L2/R such that the cosmological boundary is, in
these coordinates, at z = 0) and find the first few coefficients
of the near-boundary expansion of gμν ,

gμν(z, x) = g(0)
μν (x) + z2g(2)

μν (x)

+z4(g(4)
μν (x) + h(4)

μν (x) log z
)+ · · · , (17)

where the leading one, g(0)
μν (x), is the FLRW metric (6), and

the subleading ones are determined by the bulk equations of
motion. A practical way to achieve that is to write generic
coordinate transformations from (V, R) to FG coordinates
(x0 ≡ τ, z), i.e., V = V (τ, z) and R = R(τ, z), and then
get the transformation equations by comparing our metric (7)
with (16). This leads to the following set of equations:

2∂z R∂zV − α(∂zV )2 = L2

z2

∂zV ∂τ R + ∂τV ∂z R − α∂zV ∂τV = 0, (18)

which determine the precise form of the transformations,
together with the FG metric components expressed in terms
of V and R, which can be massaged to take the simple form
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gττ = − (∂τV )2

(∂zV )2 gi jdx
idx j = z2

L2 �2d�2
k gτ i = 0 .

(19)

The near-boundary solution to the transformation equations
(18) can easily be obtained to any desired order with a power
series ansatz of the form

V (τ, z) =
∑
n=0

Vn(τ )zn R(τ, z) =
∑
n=0

Rn(τ )zn−1 (20)

with V0(τ ) ≡ τ (such that V and τ coincide at the boundary)
and R0(τ ) ≡ L2 (such that R = L2

z +· · · ). Once this solution
is found, by plugging it back into (19) and expanding for
small z yields the desired FG asymptotic expansion (17). One
is then ready to obtain the corresponding one-point functions
of the dual CFT living on the cosmological boundary using
standard holographic renormalization.

So far the analysis has been quite general. We shall
now illustrate the procedure by particularizing the functions
f (r),�(r) to a few black holes of physical interest.

3 Examples

3.1 AdS–Schwarzschild black hole

The AdS–Schwarzschild black hole is an exact static solu-
tion to pure Einstein gravity with a negative cosmological
constant � = −12/L2 in the bulk, namely

S = 1

16πG5

∫
d5x

√−g

[
R + 12

L2

]
. (21)

The solution with horizon curvature k corresponds to a metric
of the form (2) with f (r) and �(r) given by

f (r) = r2

L2

(
1 + kL2

r2 − M

r4

)
�(r) = r

L
, (22)

where the mass M is related to the event horizon radius rh
according to M = r4

h (1 + kL2

r2
h

). Its corresponding Hawking

temperature is readily found to be

TH = kL2 + 2r2
h

2πL2rh
. (23)

The explicit form of the foliation (7) for the AdS–
Schwarzschild black hole reads

ds2 = 2dV dR −
[
R2

L2

(
1 + kL2

R2a2 − M

R4a4

)
− 2R

ȧ

a

]
dV 2

+ R2a2

L2 d�2
k . (24)

If the standard holographic dictionary extrapolates to the cos-
mological boundary R = ∞, this metric would be the holo-
graphic dual of a N = 4 SYM plasma in the FLRW metric
(6) with spatial curvature k. As discussed in Sect. 2.1, one can
associate to this nonequilibrium plasma the local temperature
(15), namely

T (V ) = kL2 + 2r2
h

2πL2rha
. (25)

In the following, for the sake of simplicity we take L = 1.
It is worth mentioning that the metric above in the planar

case (k = 0) has been previously used by the authors of [21]
as the starting point to study the N = 2∗ plasma close to
conformality in a FLRW spacetime.4

The transformation (20) from our (V, R) coordinates to
the Fefferman–Graham system (τ, z) is given asymptotically
by

V = τ − z + −2aä + ȧ2 + k

12a2 z3 + a2...
a + ȧ3 + ȧ (k − 2aä)

24a3 z4

+ 1

240a4

[
3ȧ4 − 2a(4)a3 − 3(k2 + 6M) + 2aä(5k − ȧ2)

+ a2(6
...
a ȧ − 8ä2)

]
z5 + · · ·

R = 1

z
+ ȧ

a
− 2aä − 3ȧ2 + k

4a2 z + a2...
a + 4ȧ3 − ȧ (5aä + 2k)

6a3 z2

+ 1

24a4 [13ȧ4 − a3a(4) − 11kȧ2 + aä
(

5k − 21ȧ2
)

+ 3M

+ a2
(

2ä2 + 7
...
a ȧ
)
]z3 + · · · (26)

with a and its derivatives now viewed as functions of τ . From
(19) it then follows that the Fefferman–Graham expansion
(17) of the metric in this case has the following non-null
coefficients:

g(0)
ττ = −1,

g(2)
ττ = − ȧ2 − 2aä + k

2a2 ,

g(4)
ττ = − ȧ4 + 4a2ä2 + 2ȧ2(k − 2aä) − 4kaä + k2 − 12M

16a4 ,

g(0)
i j dxidx j = a2d�2

k ,

g(2)
i j dxidx j = − ȧ2 + k

2
d�2

k ,

g(4)
i j dxidx j = 2kȧ2 + ȧ4 + k2 + 4M

16a2 d�2
k .

(27)

The holographic renormalization for pure Einstein grav-
ity in the bulk has been done in [22], to which we refer the
reader for details. The resulting expression for the renormal-
ized energy-momentum tensor of the dual CFT living on the
boundary with metric g(0) is generically given by

4 We emphasize that, although not obvious, this is nothing but the AdS–
Schwarzschild case expressed in unusual coordinates.
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〈Tμν〉 = 1

4πG5

{
g(4)
μν − 1

2
g(2)σ

μ g(2)
σν + 1

4

(
g(2)σ

σ

)
g(2)
μν

−1

8

[(
g(2)σ

σ

)2 − g(2)
σρ g

(2)ρσ
]
g(0)
μν

}
, (28)

where indices are to be raised and lowered with the boundary
metric g(0). In our case, with the FG coefficients (27), this
yields the following energy density E ≡ 〈Tττ 〉 and pressure
P ≡ 〈T i

i 〉 (no summation over i implied) for the N = 4
SYM plasma:

E = 3(ȧ2 + k)2 + 12M

64πG5a4 ,

P = (ȧ2 + k)2 + 4M − 4aä(ȧ2 + k)

64πG5a4 ,

(29)

in perfect agreement with the results of [16]. These expres-
sions can be cast entirely in 4-dimensional CFT language by
expressing the mass parameter M = r4

h (1 + kL2

r2
h

) in terms

of the local temperature T of the plasma using (25) and the
5-dimensional Newton constant G5 in terms of the number
of colors Nc via the standard AdS5/CFT4 relation G5 = πL3

2N2
c

.

For instance, in the k = 0 case, with M = (πaT )4 we obtain

E = 3N 2
c T

4

8
+ 3N 2

c

32π2

ȧ4

a4 ,

P = E
3

− N 2
c

8π2

äȧ2

a3 .

(30)

It interesting to note that when a(V ) ≡ 1 (where R =
∞ becomes the usual AdS boundary r = ∞) we get the
expected conformal plasma inR×�k withE = 3P , while the
presence of a non-constant scale factor breaks the conformal
invariance leading to a conformal anomaly given by

〈Tμ
μ〉 = 3P − E = −3ä(ȧ2 + k)

16πG5a3 . (31)

The anomaly has a clearly geometric nature due exclusively
to the nontrivial rate of cosmological expansion. For an
expanding plasma (ä > 0) in flat space or in a sphere this
quantity is strictly negative.

3.2 AdS–Gauss–Bonnet black hole

We start by reviewing the Einstein–Gauss–Bonnet action in 5
dimensions. It consists in one of the simplest generalizations
of Einstein gravity built from higher derivative terms in the
action that still yield second order equations of motion for
the metric.5 With the inclusion of a negative cosmological
constant � ≡ −12/L2, the action is

5 In fact, the Einstein–Gauss–Bonnet action is just a very special case of
the so-called Lovelock gravity, which is the most general metric theory
of gravity giving rise to second order equations of motion (see [23] for
a review).

S = 1

16πG5

∫
d5x

√−g
[
R + 12

L2

+ L2

2
λGB(Rabcd R

abcd − 4RabR
ab + R2)

]
, (32)

where λGB is the Gauss–Bonnet parameter. It is still unclear
at the moment whether a higher curvature correction of the
Gauss–Bonnet type (32) can be obtained from a top-down
string theory construction: the leading α′ corrections to the
action of Type IIB supergravity, corresponding to finite ’t
Hooft coupling corrections to the dual N = 4 SYM the-
ory, are known to take the form of more complicated higher
curvature terms schematically of the form α′3R3 [24]. Nev-
ertheless, the general belief is that it may provide qualitative
information into properties shared by generic higher curva-
ture terms, with the practical advantages of being tractable
and having a number of exact solutions available in the liter-
ature.

The action (32) has been extensively studied in the context
of holography. Interestingly, the presence of the extra Gauss–
Bonnet coupling λGB in the bulk allows for a holographic
dual CFT with two distinct central charges c �= b [25,26].6

Namely, the central charges, defined in the standard way via
the conformal anomaly as

〈Tμ
μ〉 = 1

16π2 (cW − bE), (33)

are related to λGB and the other gravitational parameters via
[27]

c = πL3
AdS

8G5

√
1 − 4λGB ,

b = πL3
AdS

8G5

(−2 + 3
√

1 − 4λGB

)
.

(34)

The AdS radius appearing above depends on λGB (see below
for details), while the quantities W ≡ WμνρσWμνρσ and
E ≡ RμνσρRμνσρ − 4RμνRμν + R2 are, respectively, the
squared Weyl tensor and the Euler density associated with
the 4-dimensional metric where the CFT lives. In the Einstein
gravity limit λGB = 0 the two central charges collapse to a
single one c = b ∼ N 2

c and the SU (Nc)N = 4 SYM theory
is recovered consistently.

The AdS–Gauss–Bonnet black hole with horizon curva-
ture k is an exact static spherically symmetric solution to the
equations of motion of (32), first obtained in [28]. The metric
has the standard black hole form (3) with

6 We denote here the second central charge by b instead of the com-
monly used a in order to avoid confusion with the scale factor a(V )

appearing throughout the paper.
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f (r) = k + r2

2L2λGB

⎡
⎣1 −

√
1 − 4λGB

(
1 − ML2

r4

) ⎤
⎦ ,

�(r) = r

L
, (35)

where M is a parameter related to the black hole mass that
can be conveniently expressed in terms of the event horizon
location rh as

M ≡ r4
h

(
1

L2 + k

r2
h

+ λGB

L2k2

r4
h

)
.

The Hawking temperature associated to this solution reads

TH = rh(2r2
h + kL2)

2πL2(r2
h + 2kL2λGB)

. (36)

It is worth noticing that the AdS–Gauss–Bonnet is an
asymptotically AdS black hole, i.e., f (r) ∼ r2

L2
AdS

for large r .

However, the AdS curvature radius is shifted from the usual
L to an effective radius LAdS due to the presence of λGB,

namely L2
AdS ≡ L2

2 (1+√1 − 4λGB). In particular, when the
standard choice of units L = 1 is made (which corresponds
to making the cosmological constant � = −12) it should be
kept in mind that the resulting AdS radius appearing in the
metric is not unity.

Our FLRW foliation (7) of the AdS–Gauss–Bonnet black
hole metric takes the form

ds2 = 2dV dR + R2a2

L2
eff

d�2
k

−
⎧⎨
⎩

k

a2 + R2

2L2λGB

[
1 −

√
1 − 4λGB

(
1 − ML2

R4a4

)]
− 2R

ȧ

a

⎫⎬
⎭dV 2

(37)

where the spatial coordinates were conveniently redefined by

appropriate factors so as to make
d�2

k
L2 → d�2

k
L2

AdS
and, hence,

have a canonically normalized FLRW boundary of the form
(6). Just as in the AdS–Schwarzschild case (see the previous
section), the holographic dual expanding CFT plasma liv-
ing at R = ∞ can be associated with the local temperature
T (V ) = TH

a(V )
.

From now on we shall take L = 1 and treat the Gauss–
Bonnet parameter as small, working always to linear order
in λGB for simplicity (hence all the formulas containing
λGB below are valid up to O(λ2

GB
) corrections, although we

choose not to unnecessarily repeat this symbol in each and
every expression). The transformation from (V, R) to the
Fefferman–Graham coordinates (τ, z) can be obtained pre-
cisely in the same way as before (the expressions are too
cumbersome to be shown here, though), from which we get
the following FG metric coefficients:

g(0)
ττ = −1,

g(2)
ττ = − 1

2a2 (1 − λGB)
(
−2aä + ȧ2 + k

)
,

g(4)
ττ = − 1

16a4

[
(1 − 2λGB)

(
4aä(aä − ȧ2 − k) + 2kȧ2

+ ȧ4 + k2)− 12(1 + λGB)M
]
,

g(0)
i j dxidx j = a2d�2

k,

g(2)
i j dxidx j = −1

2
(1 − λGB)

(
ȧ2 + k

)
d�2

k,

g(4)
i j dxidx j = 1

16a2

[
(1 − 2λGB)(2kȧ2 + ȧ4 + k2)

+ 4(1 + λGB)M
]
d�2

k . (38)

The holographic renormalization of the Einstein–Gauss–
Bonnet action (32) has been carried out in detail in [29–31] to
linear order in λGB (see also [32] for arbitrary λGB).7 The final
expression for the boundary energy-momentum tensor can be
expressed in terms of the Fefferman–Graham coefficients as

〈Tμν〉 = 〈Tμν〉Einstein + λGB〈Tμν〉GB , (39)

where the λGB = 0 contribution 〈Tμν〉Einstein due to pure Ein-
stein gravity is the same as in (28), while the first order
Gauss–Bonnet correction 〈Tμν〉GB reads

〈Tμν〉GB = 1

16πG5

[
− 4g(2)σ

μ g(2)
νσ + 7g(2)σ

σ g(2)
μν − 6g(4)

μν

−g(2)
σρ g

(2)σρg(0)
μν − 2

(
g(2)σ

σ

)2
g(0)
μν + 6g(4)σ

σ g(0)
μν − 3h(4)

μν

+3h(4)σ
σ g(0)

μν + 13
4 R(0)g(2)

μν − 2R(0)g(2)σ
σ g(0)

μν + 29
2 g(2)σρR(0)

μσνρ

+4g(2)σ
σ R(0)

μν − 53
4 g(2)σ

ν R(0)
μσ − 53

4 g(2)σ
μ R(0)

νσ + 11
4 g(2)σρR(0)

σρ g
(0)
μν

+ 37
4 ∇(0)

ν ∇(0)
μ g(2)σ

σ − 37
4 ∇(0)

μ ∇(0)
σ g(2)σ

ν − 37
4 ∇(0)

ν ∇(0)
σ g(2)σ

μ

+ 5
4 g

(0)
μν ∇(0)

ρ ∇(0)
σ g(2)σρ + 37

4 �(0)g(2)
μν − 5

4 g
(0)
μν �(0)g(2)σ

σ

]
. (40)

In the above the covariant derivatives ∇(0) as well as the
curvatures R(0) are to be calculated with the boundary met-
ric g(0)

μν . In our case, inserting the FG coefficients (38) and
expanding to linear order in λGB results in the following
energy density E ≡ 〈Tττ 〉 and pressure P ≡ 〈T i

i 〉 of the
dual CFT:

E = 3(ȧ2 + k)2 + 12M

64πG5a4

− 3
[
15(k + ȧ2)2 + 4M − 64aä(k + ȧ2 − aä)

]
128πG5a4 λGB,

7 We follow here the same conventions as [31]. In particular, the Gauss–
Bonnet parameter λGB used here differs from the α used in [29], namely

α ≡ L2

2 λGB .
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P = (ȧ2 + k)2 + 4M − 4aä(k + ȧ2)

64πG5a4

− 15(k + ȧ2)2 + 4M − 4aä[31(k + ȧ2) − 16aä]
128πG5a4 λGB .

(41)

Notice, in particular, that there is a conformal anomaly
given by

〈Tμ
μ〉 = 3P − E = −

(
1 − 15

2
λGB

)3ä(k + ȧ2)

16πG5a3 , (42)

in agreement with the generic structure (33). Namely, the
central charges c and b of (34) when linearized in λGB read
c = π

8G5

(
1− 7

2λGB

)
and b = π

8G5

(
1− 15

2 λGB

)
, which together

with the expressions W = 0 and E = 24ä(k+ȧ2)

a3 for the
FLRW metric reduce the general equation (33) to (42).

The results above generalize the expressions (29) and (31)
obtained in the previous section to linear order in the Gauss–
Bonnet parameter. They are believed to share qualitative fea-
tures with the corresponding result for the N = 4 plasma
including leading 1/λ corrections (here λ = g2

YM
Nc is the

’t Hooft coupling). Once again one would like to empha-
size that it follows naturally from our FLRW-like foliation
(7) of generic AdS spacetimes as a simple application to the
AdS–Gauss–Bonnet black hole.

3.3 AdS–Reissner–Nordström black hole

We now turn to the case of a charged black hole in order to
introduce a chemical potential for the dual plasma. This is
the case, for instance, for the quark–gluon plasma of QCD
which has a nonvanishing barion chemical potential. It is
also interesting to illustrate how our procedure works when
matter fields are present. The simplest bulk action includes a
U (1) gauge field minimally coupled to the Einstein–Hilbert
action with a negative cosmological constant, namely

S = 1

16πG5

∫
d5x

√−g

[
R + 12

L2 − 1

4
FabF

ab
]

. (43)

An exact solution to the resulting Einstein and Maxwell equa-
tions is the AdS–Reissner–Nordström (AdSRN) black hole,
a charged black hole whose metric can be cast in the stan-
dard black hole form (2) with f (r) and �(r) given by (for
simplicity we consider only the planar horizon case k = 0)

f (r) = r2

L2

(
1 − M

r4 + Q2

r6

)
�(r) = r

L
, (44)

in addition to the nontrivial gauge field configuration

Aadxa = μ

(
1 − r2

h

r2

)
dt. (45)

In the above we have conveniently expressed the solution in
terms of four parameters, the mass M , charge Q, chemical
potential μ, and horizon radius rh (satisfying f (rh) = 0), but
only two of them are independent parameters. For instance,
M and Q can be eliminated in favor of μ and rh as

M = r4
h + Q2

r2
h

, Q2 = L2μ2r4
h

3
.

The corresponding Hawking temperature is

TH = rh
πL2

(
1 − L2μ2

6r2
h

)
. (46)

The AdSRN solution is believed to be holographically
dual to a CFT plasma at temperature TH and chemical poten-
tial μ living at the AdS boundary r = ∞. Notice that there is
a critical value for the chemical potential μc = √

6rh/L (cor-
respondingly Qc = √

2r3
h ) where the temperature vanishes

and the solution becomes extremal.
The explicit form of the foliation (7) for the AdSRN black

hole, including the corresponding (V, R)-dependent gauge
field configuration needed to support the metric,8 takes the
following form:

ds2 = 2dV dR −
[
R2

L2

(
1 − M

R4a4 + Q2

R6a6

)
− 2R

ȧ

a

]
dV 2

+ R2a2

L2 dx2,

Aadxa = μ

(
1 − r2

h

R2a2

)⎛
⎝ 1

a
− L2ȧ/Ra2

1 − M
R4a4 + Q2

R6a6

⎞
⎠ dV

− μ

(
1 − r2

h

R2a2

)
L2/R2a

1 − M
R4a4 + Q2

R6a6

dR, (47)

where we have used dx2 to denote the spatial part d�2
k=0. As

before, the local temperature T (V ) of the holographic dual
nonequilibrium plasma is given by (15).

It is interesting to notice that at the cosmological boundary
R = ∞ what remains of the gauge field above is

Aνdxν
∣∣

bdry
= μ

a
dV, (48)

showing that the CFT plasma living in there has a time-
dependent chemical potential μ̃(V ) ≡ μ

a(V )
. Remarkably,

by reversing the logic, one learns the important lesson that a
CFT plasma subject to a time-dependent chemical potential
μ̃(V ) (which is sometimes referred to as a quench in the

8 Namely, a gauge field configuration originally of the form Aadxa =
φ(r)dt (such as (45) after the sequence of coordinate transformations
dt = dv− f (r)−1dr , dv = a(V )−1dV and finally r = Ra(V ) becomes

Aadxa = φ(Ra)

[(
1

a
− Rȧ

f (Ra)

)
dV − a

f (Ra)
dR

]
.
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chemical potential) experiences a nonequilibrium dynam-
ics equivalent to a cosmological evolution with the scale
factor being inversely related to the “quench profile”, i.e.,
a(V ) ∼ 1/μ̃(V ).

The AdSRN metric (47) parametrized by (M, Q) differs
from the AdS–Schwarzschild solution (24) only due to the
presence of the charge Q, which comes with a subleading
1/R dependence and, thus, is expected to play a significant
role only sufficiently deep inside the bulk spacetime. This
suggests that the first terms in the Fefferman–Graham expan-
sion of AdSRN near the cosmological boundary at R = ∞
should not differ from those obtained before. In fact, one can
check explicitly that the transformation from (V, R) to FG
coordinates (τ, z) takes exactly the same form as in (26) (with
Q only beginning to affect at O(z7) in V (τ, z) and O(z5) in
R(τ, z)) and, consequently, that the first few FG metric coef-
ficients are the same as in (27) (with Q only beginning its
influence at O(z6) in both gττ and gi j ).9 The gauge field
appearing in (47), on the other hand, has a nontrivial FG
expansion that is readily found to be

Aadxa = μ

[
1

a
− aä − 2ȧ2 + 2r2

h

2a3 z2 + · · ·
]

dτ

−μ

[
ȧ

a2 z + ȧ
(
ȧ2 − 2r2

h

)
2a4 z3 + · · ·

]
dz. (49)

The holographic renormalization for the Einstein–Maxwell
system can be found, e.g., in [33]. The expressions for the
renormalized stress tensor andU (1) conserved current of the
dual CFT are generically given in terms of the FG coefficients
as10

〈
Tμν

〉 = 1

4πG5

{
g(4)
μν − 1

2
g(2)σ

μ g(2)
σν + 1

4

(
g(2)σ

σ

)
g(2)
μν

−1

8

[(
g(2)σ

σ

)2g(2)
σρ g

(2)ρσ
]
g(0)
μν + 1

48

(
F(0)
σρ F(0)σρ

)
g(0)
μν

}
,

〈
Jμ
〉 = 1

8πG5

(
A(2)

ν + B(2)
ν

)
g(0)νμ, (50)

where A(2)
ν and B(2)

ν are the second order coefficients appear-
ing in the FG expansion of the bulk gauge field, i.e.,

Aν(z, x) = A(0)
ν (x) + z2[A(2)

ν (x) + B(2)
ν (x) log z2]+ · · · .

Note that the expression for 〈Tμν〉 is almost the same as the
one for pure Einstein gravity in the bulk, (28), the exception

9 Of course we may want to parametrize the AdSRN metric using not
(M, Q) but instead (rh, Q), for instance. In this case the FG coefficients
are still going to be given by the AdS–Schwarzschild expressions (27)

with M now expressed in terms of (rh, Q) as M = r4
h + Q2

r2
h

(and

obviously the statement about Q only starting to affect the expansion
at higher orders must be forgotten).
10 Up to scheme dependent terms that do not contribute to the conformal
anomaly and can be removed by additional counterterms (see [33] for
details).

being the extra contribution due to the gauge field in the last
term. Inserting our FG expansion constructed above gives the
following result for the energy density, pressure, and charge
density Q ≡ 〈

J τ
〉

of a U (1)-charged plasma in a FLRW
spacetime:

E = 3ȧ4 + 12r2
h (r

2
h + 1

3μ2)

64πG5a4 ,

P = ȧ4 + 4r2
h (r

2
h + 1

3μ2) − 4aäȧ2

64πG5a4 ,

Q = μ
(
2r2

h + 2ȧ2 + aä
)

16πG5a3 .

(51)

Once again this can be put entirely in 4d CFT language using
G5 = π

2N2
c

, eliminating rh in favor of the local temperature

T (V ) as rh = 1
2πaT

(
1 + √1 + 2μ2/3π2T 2

)
and, finally,

writing μ = μ̃a, since the chemical potential associated to
the expanding plasma is the time-dependent one μ̃ = μ

a
instead of μ, as discussed above. The resulting expressions
are lengthy and no more instructive than (51), so we do not
show them explicitly here. We just point out, as a sanity
check, that forμ = 0 the result (30) is successfully recovered.

The conformal anomaly in this case is the same as in (31),
i.e., there is no contribution from the chemical potential to
the anomaly. TheU (1) gauge field usually contributes a term
proportional to

(
F (0)

μν

)2 (see [33]), but for our solution this

is zero since at the boundary we only have A(0)
ν dxν = μ

a dτ

(hence F (0)
μν = 0). It is straightforward to check from (51)

that

∇μ〈Tμν〉 = 0,

∇μ〈Jμ〉 = μ

2a3 (−3ȧä + a
...
a ) , (52)

i.e., the CFT energy-momentum tensor is conserved while
the U (1) current is not. This is a direct consequence of the
dynamical chemical potential experienced by the plasma and
should not come as a surprise.

4 Conclusions

We have introduced a new slicing of AdS black holes such
that a non-standard notion of conformal boundary with a
FLRW metric can be defined. The construction is based on
the use of Eddington–Finkelstein coordinates instead of early
approaches involving Fefferman–Graham coordinates, a fact
that makes the task tremendously simpler and applicable to
a large class of AdS black holes including eventual support-
ing matter fields. It also provides a good perspective into
the numerical study of expanding plasmas in holography
using the characteristic formulation of the Einstein equa-
tions in AdS [34], for which the use of EF coordinates is
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determinant. A Fefferman–Graham expansion near the new
“cosmological” boundary can easily be constructed to any
desired order for the FLRW-foliated metric, which leads to
the renormalized stress tensor of the dual expanding CFT
plasma upon the assumption that the standard holographic
renormalization procedure is still applicable. In particular,
the results of [16] are consistently recovered as a simple
application to the AdS–Schwarzschild solution and then gen-
eralized to include a second central charge (using the AdS–
Gauss–Bonnet black hole) or a nonvanishing chemical poten-
tial (using the AdS–Reissner–Nordström solution) for the
dual CFT plasma.

The new dynamical foliation elucidates the procedure car-
ried out in [21] by clarifying the assumptions involved and
the background solution on which the perturbative study
of the expanding N = 2∗ plasma close to conformal-
ity relies. It also teaches, as a by-product of the appli-
cation to the AdS–Reissner–Nordström solution, the inter-
esting lesson that the nonequilibrium dynamics of a CFT
plasma subject to a quench μ̃(t) in the chemical poten-
tial resembles a cosmological evolution with the scale
factor a(t) being inversely related to the quench profile,
a(t) ∼ μ̃(t)−1. A similar conclusion can be drawn for
a wider class of quenches of CFTs by applying our slic-
ing to the corresponding dual static hairy black hole solu-
tion, since the (time-independent) non-normalizable mode
associated with static matter field configurations natu-
rally acquires time dependence in the new (V, R) coordi-
nates.

The proposal also gives a novel tool to analytically explore
properties of expanding plasmas that have not yet been
explored. This involves, for instance, a study of the time evo-
lution of nonlocal observables with a known holographic dual
gravity description, such as higher-point correlators, Wilson
loops, and the entanglement entropy of spatial subsystems.
However, we choose to postpone this to a subsequent work.
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