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We study the exponential stability of Euler-Bernoulli beam with interior time delays and boundary damping. At first, we prove the
well-posedness of the system by the 𝐶

0
semigroup theory. Next we study the exponential stability of the system by constructing

appropriate Lyapunov functionals. We transform the exponential stability issue into the solvability of inequality equations. By
analyzing the relationship between delays parameters 𝛼 and damping parameters 𝛽, we describe (𝛽, 𝛼)-region for which the system
is exponentially stable. Furthermore, we obtain an estimation of the decay rate 𝜆∗.

1. Introduction

It is well known that the time delay always exists in real
system, which may be caused by acquisition of response and
excitation data, online data processing, and computation of
control forces. Since time delay may destroy stability [1, 2]
even if it is very small, the stabilization problem of systems
with time delays has been a hot topic in the mathematical
control theory and engineering. In recent years, the systems
described by PDEs with time delays have been an active
area of research; see [3–7] and references therein. Generally
speaking, there are mainly three kinds of time delay in the
system, one is the interior time delay of the system (also
called structural memory), one is the input delay (control
delay), and the third is the output delay (measurement delay).
Many scholars have made great efforts to minimize the
negative effects of time delays although time delay cannot
be eliminated due to its inherent nature, for example, [8–10]
for boundary control with delays, [11, 12] for internal control
delays, and [13] for output delays.

In past several years, the research on the Euler-Bernoulli
beam with time delay has made great progress. For example,
Park et al. [14] considered the stabilization problem of an
Euler-Bernoulli beam with structural memory; Liang et
al. [15] introduced the modified Smith predictor to Euler-
Bernoulli beam with the boundary control and the delayed

boundary measurement; Shang et al. [16–18] investigated
the stabilization problem of the Euler-Bernoulli beam with
boundary input delay; Yang et al. [19, 20] solved the stabi-
lization problem of constant and variable coefficients Euler-
Bernoulli beam with delayed observation and boundary
control; at the same time, Jin and Guo [21] solved the output
feedback stabilization of Euler-Bernoulli beam by Lyapunov
approach. However, few people investigate the influence of
an Euler-Bernoulli beam with interior delays and boundary
damping on the system stability. In this paperwemainly study
the exponential stability of a system described by the Euler-
Bernoulli beam with interior delays and boundary damping.
More precisely, we consider the following system, whose
dynamic behavior is governed by the Euler-Bernoulli beam:

𝑦
𝑡𝑡
(𝑥, 𝑡) + 𝑦

𝑥𝑥𝑥𝑥
(𝑥, 𝑡) − 2𝛼𝑦

𝑡
(𝑥, 𝑡 − 𝜏) = 0,

𝑥 ∈ (0, 1) , 𝑡 > 0,

𝑦 (0, 𝑡) = 𝑦
𝑥
(0, 𝑡) = 𝑦

𝑥𝑥
(1, 𝑡) = 0,

𝑦
𝑥𝑥𝑥

(1, 𝑡) = 𝛽𝑦
𝑡
(1, 𝑡) ,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) ,

𝑦
𝑡
(𝑥, 0) = 𝑦

1
(𝑥) ,

𝑥 ∈ (0, 1) ,

𝑦
𝑡
(𝑥, 𝑠) = ℎ

0
(𝑥, 𝑠) , 𝑥 ∈ (0, 1) , 𝑠 ∈ (−𝜏, 0) ,

(1)
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with 𝛽, 𝛼, 𝜏 > 0, where 𝑦
𝑡
(𝑥, 𝑡) = 𝜕𝑦/𝜕𝑡, 𝑦

𝑥
(𝑥, 𝑡) = 𝜕𝑦/𝜕𝑥,

and 𝜏 is the delay time. We mainly investigate its exponential
stability.

The rest is organized as follows: In Section 2, we at first
formulate problem (1) into an appropriate Hilbert space H
and then study the well-posedness of the system by the
semigroup theory. In Section 3, we construct a Lyapunov
functional for system (1) and prove the exponential stability
under certain conditions. By optimization parameters we
obtain a complicated relationship between the decay rate
𝜆 and delay time 𝜏. Finally, in Section 4, we give a brief
conclusion.

2. Well-Posedness of the System

In this section, we will discuss the well-posedness and some
basic properties of system (1). For the purpose, firstly we
formulate system (1) into an appropriate Hilbert space.

Set

𝑧 (𝑥, 𝜌, 𝑡) = 𝑦
𝑡
(𝑥, 𝑡 − 𝜏𝜌) ,

𝑥 ∈ (0, 1) , 𝜌 ∈ (0, 1) , 𝑡 > 0.
(2)

Clearly, 𝑧(𝑥, 𝜌, 𝑡) satisfies

𝜏𝑧
𝑡
(𝑥, 𝜌, 𝑡) + 𝑧

𝜌
(𝑥, 𝜌, 𝑡) = 0, 𝑥 ∈ (0, 1) , 𝜌 ∈ (0, 1) ,

𝑧 (𝑥, 0, 𝑡) = 𝑦
𝑡 (𝑥, 𝑡) ,

𝑧 (𝑥, 1, 𝑡) = 𝑦
𝑡
(𝑥, 𝑡 − 𝜏) .

(3)

Thus, system (1) is equivalent to the following:

𝑦
𝑡𝑡
(𝑥, 𝑡) + 𝑦

𝑥𝑥𝑥𝑥
(𝑥, 𝑡) − 2𝛼𝑧 (𝑥, 1, 𝑡) = 0, 𝑥 ∈ (0, 1) ,

𝜏𝑧
𝑡
(𝑥, 𝜌, 𝑡) + 𝑧

𝜌
(𝑥, 𝜌, 𝑡) = 0, 𝑥 ∈ (0, 1) , 𝜌 (0, 1) ,

𝑦 (0, 𝑡) = 𝑦
𝑥
(0, 𝑡) = 𝑦

𝑥𝑥
(1, 𝑡) = 0,

𝑦
𝑥𝑥𝑥

(1, 𝑡) = 𝛽𝑦
𝑡
(1, 𝑡) ,

𝑧 (𝑥, 0, 𝑡) = 𝑦
𝑡
(𝑥, 𝑡) ,

𝑦 (𝑥, 0) = 𝑦
0
(𝑥) ,

𝑦
𝑡 (𝑥, 𝑡) = 𝑦

1 (𝑥) ,

𝑧 (𝑥, 𝜌, 0) = 𝑧
0
(𝑥, 𝜌) = ℎ

0
(𝑥, −𝜏𝜌) .

(4)

Set

𝐻
2

𝐸
(0, 1) = {𝑦 ∈ 𝐻

2
(0, 1) | 𝑦 (0) = 𝑦


(0) = 0} , (5)

where𝐻𝑘(0, 1) is the usual Sobolev space of order 𝑘. We take
the state space as

H = 𝐻
2

𝐸
(0, 1) × 𝐿

2
(0, 1) × 𝐿

2
[(0, 1) × (0, 1)] (6)

equipped with the following inner product, for any 𝑌
𝑖
=

(𝑓
𝑖
, 𝑔
𝑖
, ℎ
𝑖
)
𝑇
∈ H, 𝑖 = 1, 2:

⟨𝑌
1
, 𝑌
2
⟩
H
= ∫

1

0

(𝑓
1,𝑥𝑥

(𝑥) 𝑓
2,𝑥𝑥

(𝑥) + 𝑔
1
(𝑥) 𝑔
2
(𝑥)) 𝑑𝑥

+ 𝜏∬

1

0

ℎ
1
(𝑥, 𝜌) ℎ

2
(𝑥, 𝜌)𝑑𝜌 𝑑𝑥.

(7)

Obviously (H, ‖ ⋅ ‖H) is a Hilbert space.
We define an operatorA inH by

A(

𝑓

𝑔

ℎ

) = (

𝑔 (𝑥)

−𝑓
𝑥𝑥𝑥𝑥

(𝑥) + 2𝛼ℎ (𝑥, 1)

−
1

𝜏
ℎ
𝜌
(𝑥, 𝜌)

) (8)

with domain

𝐷 (A) = {(𝑓, 𝑔, ℎ)
𝑇
∈ H



𝑓 ∈ 𝐻
4
[0, 1] ∩ 𝐻

2

𝐸
[0, 1] , 𝑔 ∈ 𝐻

2

𝐸
(0, 1) , ℎ ∈ 𝐻

1
(0, 1)

𝑓

(1) = 0, 𝑓


(1) = 𝛽𝑔 (1) , ℎ (𝑥, 0) = 𝑔 (𝑥)

} . (9)

With the assistance of operator A, we can rewrite (4) as an
evolution equation inH:

𝑑𝑌 (𝑡)

𝑑𝑡
= A𝑌 (𝑡) , 𝑡 > 0,

𝑌 (0) = 𝑌
0
,

(10)

where 𝑌(𝑡) = (𝑦(𝑥, 𝑡), 𝑦
𝑡
(𝑥, 𝑡), 𝑧(𝑥, 𝜌, 𝑡))

𝑇 and 𝑌
0
= (𝑦
0
(𝑥),

𝑦
1
(𝑥), 𝑧
0
(𝑥, 𝜌))

𝑇.
For operatorA, we have the following result.

Lemma 1. LetA be defined as (8) and (9). ThenA is a closed
and densely defined linear operator in H. For any 𝛽 > 0 and

𝛼 > 0, 0 ∈ 𝜌(𝐴) and A−1 is compact on H. Hence 𝜎(A)

consists of all isolated eigenvalues of finite multiplicity.

Proof. It is easy to check that A is a closed and densely
defined linear operator in H; the detail of the verification is
omitted.

Let 𝛼 > 0, 𝛽 > 0 and for any 𝐹 ≜ (𝜇, ], 𝜔)𝑇 ∈ H we
consider the equation A𝑌 = 𝐹 where 𝑌 = (𝑓, 𝑔, ℎ) ∈ 𝐷(A);
that is,

𝑔 (𝑥) = 𝜇 (𝑥) ,

−𝑓
𝑥𝑥𝑥𝑥

(𝑥) + 2𝛼ℎ (𝑥, 1) = ] (𝑥) ,
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−
1

𝜏
ℎ
𝜌
(𝑥, 𝜌) = 𝜔 (𝑥, 𝜌) ,

(11)

with boundary condition

𝑓 (0) = 𝑓

(0) = 𝑓


(1) = 0,

𝑓

(1) = 𝛽𝑔 (1) ,

ℎ (𝑥, 0) = 𝑔 (𝑥) .

(12)

By a complex calculation, we get the solution

𝑔 (𝑥) = 𝜇 (𝑥) ,

ℎ (𝑥, 𝜌) = 𝜇 (𝑥) − ∫

𝜌

0

𝜏𝜔 (𝑥, 𝑠) 𝑑𝑠,

𝑓 (𝑥) = −∫

𝑥

0

∫

𝑟

0

∫

𝑞

1

∫

𝑝

1

(2𝛼𝜇 (𝑠) − 2𝛼∫

1

0

𝜏𝜔 (𝑠, 𝑘) 𝑑𝑘 − 𝜐 (𝑠)) 𝑑𝑠 𝑑𝑝 𝑑𝑞 𝑑𝑟 +
1

6
𝛽𝜇 (1) 𝑥

3
.

(13)

Let 𝑓, 𝑔, ℎ be given as (13). Then we have A𝑌 = 𝐹 and
𝑌 = (𝑓, 𝑔, ℎ) ∈ 𝐷(A). The closed operator theorem asserts
that 0 ∈ 𝜌(𝐴), and A−1 : H → 𝐷(A) is a bounded linear
operator. Since 𝐷(A) ⊂ 𝐻

4

𝐸
(0, 1) × 𝐻

2
(0, 1) × 𝐻

1
(0, 1), the

Sobolev Embedding Theorem asserts that A−1 is a compact
operator on H. Hence, by the spectral theory of compact
operator, 𝜎(A) consists of all isolated eigenvalues of finite
multiplicity.

Theorem 2. Let A and H be defined as before. Then A
generates a 𝐶

0
semigroup on H. Hence, system (10) is well

posed.

Proof. For any real 𝑌 = (𝑓, 𝑔, ℎ)
𝑇
∈ D(A), we calculate

⟨A𝑌, 𝑌⟩H = ∫

1

0

𝑔

(𝑥) 𝑓

(𝑥) 𝑑𝑥

+ ∫

1

0

𝑔 (𝑥) (−𝑓𝑥𝑥𝑥𝑥 (𝑥) + 2𝛼ℎ (𝑥, 1)) 𝑑𝑥

−∬

1

0

ℎ
𝜌
(𝑥, 𝜌) ℎ (𝑥, 𝜌) 𝑑𝑥 𝑑𝜌

= −𝑔 (1) 𝑓

(1) + 2𝛼∫

1

0

ℎ (𝑥, 1) 𝑔 (𝑥) 𝑑𝑥

−
1

2
∫

1

0

(ℎ
2
(𝑥, 1) − ℎ

2
(𝑥, 0)) 𝑑𝑥

= −𝛽𝑔
2
(1) + 2𝛼∫

1

0

ℎ (𝑥, 1) 𝑔 (𝑥) 𝑑𝑥

−
1

2
∫

1

0

ℎ
2
(𝑥, 1) 𝑑𝑥 +

1

2
∫

1

0

𝑔
2
(𝑥) 𝑑𝑥.

(14)

Since 𝛽 > 0, we have

⟨A𝑌, 𝑌⟩H ≤ −
1

2
∫

1

0

(ℎ (𝑥, 1) − 2𝛼𝑔 (𝑥))
2
𝑑𝑥

+
1

2
∫

1

0

(4𝛼
2
+ 1) 𝑔

2
(𝑥) 𝑑𝑥

≤ 𝑀⟨𝑌, 𝑌⟩H ,

(15)

where𝑀 = 2𝛼
2
+1/2, which shows thatA−𝑀𝐼 is a dissipative

operator. This together with Lemma 1 shows that A − 𝑀𝐼

satisfies the conditions of Lumer-Phillips theorem [22]. SoA
generates a 𝐶

0
semigroup onH.

3. Exponential Stability of the System

In this section, we consider the exponential stability issue of
system (1) based on Lyapunov method.

The energy function of system (1) is defined as

𝐸 (𝑡) =
1

2
∫

1

0

[𝑦
2

𝑥𝑥
(𝑥, 𝑡) + 𝑦

2

𝑡
(𝑥, 𝑡)] 𝑑𝑥. (16)

In what follows, we will give some lemmas that are the
foundation of our method.

Lemma 3 (see [23]). Let 𝐸(𝑡) be a nonnegative function on
R
+
. If there exists a function 𝑉(𝑡) and some positive numbers

𝑐
1
and 𝜆 such that the conditions

𝑉 (𝑡) > 𝑐
1
𝑒
𝜆𝑡
𝐸 (𝑡) , ∀𝑡 ≥ 0, (17)

�̇� (𝑡) ≤ 0 ∀𝑡 ≥ 0 (18)

hold, then 𝐸(𝑡) decays exponentially at rate 𝜆.

In order to construct a function 𝑉(𝑡) satisfying the
conditions in Lemma 3, we set

𝐺 (𝑡) = 𝜂∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥, (19)

where 𝜂 is a constant and satisfies 0 < 𝜂 < 2.

We can establish an equivalence relation between 𝐺(𝑡)

and 𝐸(𝑡) via the following Lemma.

Lemma 4. Let 𝐸(𝑡) and 𝐺(𝑡) be defined as before. Then there
exist positive constants 𝑐

2
and 𝑐
3
such that

𝑐
2
𝐸 (𝑡) ≤ 𝐺 (𝑡) + 𝐸 (𝑡) ≤ 𝑐

3
𝐸 (𝑡) , ∀𝑡 ≥ 0, (20)

holds.
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Proof. Let 𝑦(𝑥, 𝑡) be the solution of (1). Applying Young’s and
Poincaré’s inequalities


∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥



≤
𝛿

2
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 +

1

2𝛿
∫

1

0

𝑥
2
𝑦
2

𝑥
(𝑥, 𝑡) 𝑑𝑥

≤
𝛿

2
∫

1

0

𝑥𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 +

1

2𝛿
∫

1

0

𝑥
2
𝑑𝑥∫

𝑥

0

𝑦
2

𝑥𝑥
(𝑠, 𝑡) 𝑑𝑠

<
𝛿

2
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 +

1

8𝛿
∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥,

∀𝛿 > 0, 𝑡 ≥ 0.

(21)

Taking 𝛿 = 1/2, we get


𝜂 ∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥



<
𝜂

2
𝐸 (𝑡) , 𝑡 ≥ 0. (22)

Since 0 < 𝜂 < 2, we can set 𝑐
1
= 1 − 𝜂/2 and 𝑐

2
= 1 + 𝜂/2;

then

𝑐
2
𝐸 (𝑡) ≤ 𝐺 (𝑡) + 𝐸 (𝑡) ≤ 𝑐

3
𝐸 (𝑡) . (23)

The desired inequality follows.

Let 𝜆 > 0. We define a function 𝑉(𝑡) by

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) , (24)

where

𝑉
1
(𝑡) = 𝑒

2𝜆𝑡
(
1

2
∫

1

0

(𝑦
2

𝑥𝑥
(𝑥, 𝑡) + 𝑦

2

𝑡
(𝑥, 𝑡)) 𝑑𝑥

+ 𝜂∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥) ,

𝑉
2 (𝑡) = 2𝛼𝑒

−𝜆𝜏
∫

1

0

∫

𝑡

𝑡−𝜏

𝑒
2𝜆(𝑠+𝜏)

𝑦
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥.

(25)

Noting that 𝛼 > 0, according to Lemma 4 we can see that the
following result is true.

Lemma 5. Let 𝑉(𝑡) defined as before. Then 𝑉(𝑡) satisfies
condition (17); that is,

𝑉 (𝑡) > 𝑐
2
𝑒
2𝜆𝑡
𝐸 (𝑡) , 𝑡 ≥ 0. (26)

In what follows, we calculate �̇�(𝑡). For 𝑉
1
(𝑡) we have the

following result.

Lemma 6. Let 𝑉
1
(𝑡) be defined as before and let 𝑦(𝑥, 𝑡) be the

solution of (1). Then

�̇�
1 (𝑡) ≤ 𝑒

2𝜆𝑡
[(𝜆 −

3𝜂

2
+
𝜆𝜂

2
+
𝛽𝜂

2
+
𝛼𝜂
2

4
𝑒
𝜆𝜏
)

⋅ ∫

1

0

𝑦
2

𝑥𝑥
𝑑𝑥 + (𝜆 −

𝜂

2
+
𝜆𝜂

2
+ 𝛼𝑒
𝜆𝜏
)

⋅ ∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥] + 𝑒

2𝜆𝑡
(−𝛽 +

𝜂

2
+
𝛽𝜂

2
)𝑦
2

𝑡
(1, 𝑡)

+ 2𝛼𝑒
−𝜆𝜏

𝑒
𝜆𝑡
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥.

(27)

Proof. By definition, we see that

𝑉
1
(𝑡) = 𝑒

2𝜆𝑡
(𝐸 (𝑡) + 𝐺 (𝑡)) , (28)

where 𝐸(𝑡) and 𝐺(𝑡) are defined as before.
So

�̇�
1 (𝑡) = 𝑒

2𝜆𝑡
(2𝜆 (𝐸 (𝑡) + 𝐺 (𝑡)) + �̇� (𝑡) + �̇� (𝑡)) . (29)

In what follows, we will calculate �̇�(𝑡) and �̇�(𝑡).
Using integration by parts and the boundary condition,

we have

�̇� (𝑡) = ∫

1

0

𝑦
𝑥𝑥 (𝑥, 𝑡) 𝑦𝑥𝑥𝑡 (𝑥, 𝑡) + 𝑦𝑡 (𝑥, 𝑡) 𝑦𝑡𝑡 (𝑥, 𝑡) 𝑑𝑥

= 𝑦
𝑥𝑥 (𝑥, 𝑡) 𝑦𝑡𝑥 (𝑥, 𝑡)



1

0

− ∫

1

0

𝑦
𝑥𝑥𝑥 (𝑥, 𝑡) 𝑦𝑡𝑥 (𝑥, 𝑡) 𝑑𝑥

− ∫

1

0

𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑥𝑥𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+ ∫

1

0

2𝛼𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥

= 𝑦
𝑥𝑥
(𝑥, 𝑡) 𝑦

𝑡𝑥
(𝑥, 𝑡)



1

0
− 𝑦
𝑥𝑥𝑥

(𝑥, 𝑡) 𝑦
𝑡
(𝑥, 𝑡)



1

0

+ ∫

1

0

𝑦
𝑥𝑥𝑥𝑥

(𝑥, 𝑡) 𝑦
𝑡
(𝑥, 𝑡) 𝑑𝑥

− ∫

1

0

𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑥𝑥𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+ 2𝛼∫

1

0

𝑦
𝑡 (𝑥, 𝑡) 𝑦𝑡 (𝑥, 𝑡 − 𝜏) 𝑑𝑥 = −𝛽𝑦

2

𝑡
(1, 𝑡)

+ 2𝛼∫

1

0

𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥,

�̇� (𝑡) = 𝜂 (∫

1

0

𝑥𝑦
𝑡𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥

+ ∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡𝑡
(𝑥, 𝑡) 𝑑𝑥)

= 𝜂(∫

1

0

𝑥𝑦
𝑡𝑥 (𝑥, 𝑡) 𝑦𝑡 (𝑥, 𝑡) 𝑑𝑥

+ 2𝛼∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥
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− ∫

1

0

𝑥𝑦
𝑥 (𝑥, 𝑡) 𝑦𝑥𝑥𝑥 (𝑥, 𝑡) 𝑑𝑥) = 𝜂(

1

2
𝑦
2

𝑡
(1, 𝑡)

−
1

2
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 −

3

2
∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

− 𝛽𝑦
𝑥
(1, 𝑡) 𝑦

𝑡
(1, 𝑡)

+ 2𝛼∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥) ,

(30)
where we have used equalities

∫

1

0

𝑥𝑦
𝑡𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥

=
1

2
𝑦
2

𝑡
(1, 𝑡) −

1

2
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

∫

1

0

𝑥𝑦
𝑥𝑥𝑥𝑥

(𝑥, 𝑡) 𝑦
𝑥
(𝑥, 𝑡) 𝑑𝑥

=
3

2
∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥 + 𝛽𝑦

𝑥
(1, 𝑡) 𝑦

𝑡
(1, 𝑡) .

(31)

Summarizing the above all, we have

�̇�
1
= 𝑒
2𝜆𝑡

[𝜆∫

1

0

(𝑦
2

𝑥𝑥
(𝑥, 𝑡) + 𝑦

2

𝑡
(𝑥, 𝑡)) 𝑑𝑥

+ 2𝜆𝜂∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥] + 𝑒

2𝜆𝑡
[−𝛽𝑦
2

𝑡
(1, 𝑡)

+
𝜂

2
𝑦
2

𝑡
(1, 𝑡) − 𝛽𝜂𝑦𝑥 (1, 𝑡) 𝑦𝑡 (1, 𝑡)

−
𝜂

2
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥 −

3𝜂

2
∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+ 2𝛼∫

1

0

𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥

+ 2𝛼𝜂∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥]

= 𝑒
2𝜆𝑡

[(𝜆 −
3𝜂

2
)∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+ (𝜆 −
𝜂

2
)∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥]

+ 𝑒
2𝜆𝑡

[2𝜆𝜂∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥

+ 2𝛼∫

1

0

𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥

+ 2𝛼𝜂∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥]

+ 𝑒
2𝜆𝑡

[
𝜂 − 2𝛽

2
𝑦
2

𝑡
(1, 𝑡) − 𝛽𝜂𝑦

𝑥
(1, 𝑡) 𝑦

𝑡
(1, 𝑡)] .

(32)

Since

∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡) 𝑑𝑥

≤
1

4
∫

1

0

𝑦
2

𝑥𝑥
𝑑𝑥 +

1

4
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥,

− 𝛽𝜂𝑦
𝑥
(1, 𝑡) 𝑦

𝑡
(1, 𝑡) ≤

𝛽𝜂

2
𝑦
2

𝑥
(1, 𝑡) +

𝛽𝜂

2
𝑦
2

𝑡
(1, 𝑡)

≤
𝛽𝜂

2
∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥 +

𝛽𝜂

2
𝑦
2

𝑡
(1, 𝑡) ,

(33)

we have

�̇�
1
≤ 𝑒
2𝜆𝑡

[(𝜆 −
3𝜂

2
+
𝜆𝜂

2
)∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+ (𝜆 −
𝜂

2
+
𝜆𝜂

2
)∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥]

+ 𝑒
2𝜆𝑡

[2𝛼∫

1

0

𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥

+ 2𝛼𝜂∫

1

0

𝑥𝑦
𝑥 (𝑥, 𝑡) 𝑦𝑡 (𝑥, 𝑡 − 𝜏) 𝑑𝑥] + 𝑒

2𝜆𝑡 𝜂 − 2𝛽

2

⋅ 𝑦
2

𝑡
(1, 𝑡) + 𝑒

2𝜆𝑡
[
𝛽𝜂

2
∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+
𝛽𝜂

2
𝑦
2

𝑡
(1, 𝑡)]

= 𝑒
2𝜆𝑡

[(𝜆 −
3𝜂

2
+
𝜆𝜂

2
+
𝛽𝜂

2
)∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+ (𝜆 −
𝜂

2
+
𝜆𝜂

2
)∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥]

+ 𝑒
2𝜆𝑡

[2𝛼∫

1

0

𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥

+ 2𝛼𝜂∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥] + 𝑒

2𝜆𝑡

⋅
𝜂 − 2𝛽 + 𝛽𝜂

2
𝑦
2

𝑡
(1, 𝑡) .

(34)

We now estimate the integral terms with time delay. Applying
Young’s and Poincaré’s inequalities, we have

∫

1

0

𝑦
𝑡
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥

≤
𝛿
1

2
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥 +

1

2𝛿
1

∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥,

∫

1

0

𝑥𝑦
𝑥
(𝑥, 𝑡) 𝑦

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥

≤
𝛿
2

2
∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥 +

1

8𝛿
2

∫

1

0

𝑦
2

𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥.

(35)
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Thus,

�̇�
1
(𝑡) ≤ 𝑒

2𝜆𝑡
[(𝜆 −

3𝜂

2
+
𝜆𝜂

2
+
𝛽𝜂

2
+
𝛼𝜂

4𝛿
2

)∫

1

0

𝑦
2

𝑥𝑥
𝑑𝑥

+ (𝜆 −
𝜂

2
+
𝜆𝜂

2
+
𝛼

𝛿
1

)∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥] + 𝑒

2𝜆𝑡
(−𝛽

+
𝜂

2
+
𝛽𝜂

2
)𝑦
2

𝑡
(1, 𝑡) + [𝛼𝛿1 + 𝛼𝜂𝛿2]

⋅ 𝑒
2𝜆𝑡

∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥.

(36)

Taking 𝛿
1
= 𝑒
−𝜆𝜏, 𝛿
2
= 𝑒
−𝜆𝜏

/𝜂, we obtain

�̇�
1
(𝑡)

≤ 𝑒
2𝜆𝑡

[(𝜆 −
3𝜂

2
+
𝜆𝜂

2
+
𝛽𝜂

2
+
𝛼𝜂
2

4
𝑒
𝜆𝜏
)∫

1

0

𝑦
2

𝑥𝑥
𝑑𝑥

+ (𝜆 −
𝜂

2
+
𝜆𝜂

2
+ 𝛼𝑒
𝜆𝜏
)∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥]

+ 𝑒
2𝜆𝑡

(−𝛽 +
𝜂

2
+
𝛽𝜂

2
)𝑦
2

𝑡
(1, 𝑡)

+ 2𝛼𝑒
−𝜆𝜏

𝑒
2𝜆𝑡

∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥.

(37)

The desired inequality follows.

Since

𝑉
2 (𝑡) = 2𝛼𝑒

−𝜆𝜏
∫

1

0

∫

𝑡

𝑡−𝜏

𝑒
2𝜆(𝑠+𝜏)

𝑦
2

𝑡
(𝑥, 𝑠) 𝑑𝑠 𝑑𝑥 (38)

we have

�̇�
2
(𝑡) = 2𝛼𝑒

−𝜆𝜏
∫

1

0

𝑒
2𝜆(𝑡+𝜏)

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥

− 2𝛼𝑒
−𝜆𝜏

∫

1

0

𝑒
2𝜆𝑡
𝑦
2

𝑡
(𝑥, 𝑡 − 𝜏) 𝑑𝑥.

(39)

Employing the estimate, we have

�̇� (𝑡) = �̇�
1
(𝑡) + �̇�

2
(𝑡)

≤ 𝑒
2𝜆𝑡

[(𝜆 −
3𝜂

2
+
𝜆𝜂

2
+
𝛽𝜂

2
+
𝛼𝜂
2

4
𝑒
𝜆𝜏
)∫

1

0

𝑦
2

𝑥𝑥
𝑑𝑥

+ (𝜆 −
𝜂

2
+
𝜆𝜂

2
+ 3𝛼𝑒

𝜆𝜏
)∫

1

0

𝑦
2

𝑡
(𝑥, 𝑡) 𝑑𝑥]

+ 𝑒
2𝜆𝑡

(−𝛽 +
𝜂

2
+
𝛽𝜂

2
)𝑦
2

𝑡
(1, 𝑡) .

(40)

Clearly, if the parameters 𝜂, 𝛽, 𝛼, 𝜆, and 𝜏 are such that the
inequalities

𝜆 −
3𝜂

2
+
𝜆𝜂

2
+
𝛽𝜂

2
+
𝛼𝜂
2
𝑒
𝜆𝜏

4
≤ 0,

𝜆 −
𝜂

2
+
𝜆𝜂

2
+ 3𝛼𝑒

𝜆𝜏
≤ 0,

−𝛽 +
𝜂

2
+
𝛽𝜂

2
≤ 0

(41)

hold, then we have �̇�(𝑡) ≤ 0.
Summarizing discussion above, we have the following

result.

Theorem 7. Let 𝑦(𝑥, 𝑡) be the solution of (1), and let 0 < 𝜂 < 2

and 𝜆 > 0. If inequalities (41) hold, then the energy function
𝐸(𝑡) decays exponentially at rate 2𝜆.

We now are in a proposition to study the solvability of
inequalities (41). Noting that 𝜂 is not a system parameter, it is
only amiddle parameterwhich is introduced in themultiplier
term. From the third inequality of (41) we see that 𝜂 and 𝛽

have a relationship:

0 < 𝜂 <
2𝛽

1 + 𝛽
. (42)

Taking 𝜂 = 2𝛽/(1 + 𝛽), (41) is equivalent to

𝜆 −
3𝛽

1 + 𝛽
+

𝜆𝛽

1 + 𝛽
+

𝛽
2

1 + 𝛽
+

𝛼𝛽
2
𝑒
𝜆𝜏

(1 + 𝛽)
2
≤ 0,

𝜆 −
𝛽

1 + 𝛽
+

𝜆𝛽

1 + 𝛽
+ 3𝛼𝑒

𝜆𝜏
≤ 0.

(43)

Theorem8. Set 𝜂 = 2𝛽/(1+𝛽). If𝛼 and𝛽 satisfy the inequality

𝛼 < min{3
𝛽
+ 2 − 𝛽,

𝛽

3 (1 + 𝛽)
} , (44)

then there exists 𝜆∗ > 0 such that for 𝜆 ∈ (0, 𝜆
∗
] inequality

(41) holds true.

Proof. If (44) holds, then

𝛼 <
3

𝛽
+ 2 − 𝛽,

𝛼 <
𝛽

3 (1 + 𝛽)
,

(45)

or equivalently

−
3𝛽

1 + 𝛽
+

𝛽
2

1 + 𝛽
+

𝛼𝛽
2

(1 + 𝛽)
2
< 0,

−
𝛽

1 + 𝛽
+

𝜆𝛽

1 + 𝛽
+ 3𝛼 < 0.

(46)
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Set

𝑓 (𝑥) = 𝑥 −
3𝛽

1 + 𝛽
+

𝑥𝛽

1 + 𝛽
+

𝛽
2

1 + 𝛽
+

𝛼𝛽
2
𝑒
𝑥𝜏

(1 + 𝛽)
2
,

𝑥 ≥ 0,

𝑔 (𝑦) = 𝑦 −
𝛽

1 + 𝛽
+

𝑦𝛽

1 + 𝛽
+ 3𝛼𝑒

𝑦𝜏
, 𝑦 ≥ 0.

(47)

Since

𝑓 (0) = −
3𝛽

1 + 𝛽
+

𝛽
2

1 + 𝛽
+

𝛼𝛽
2

(1 + 𝛽)
2
< 0,

𝑔 (0) = −
𝛽

1 + 𝛽
+

𝜆𝛽

1 + 𝛽
+ 3𝛼 < 0,

𝑓 (3) = 3 +
𝛽
2

1 + 𝛽
+

𝛼𝛽
2
𝑒
3𝜏

(1 + 𝛽)
2
> 0,

𝑔 (1) = 1 + 3𝛼𝑒
𝜏
> 0,

(48)

there exist 𝑥∗ ∈ (0, 3) and 𝑦∗ ∈ (0, 1) such that 𝑓(𝑥∗) = 0

and 𝑔(𝑦∗) = 0.
Set

𝑥
∗
= min {𝑥∗ ∈ (0,3) , 𝑓 (𝑥∗) = 0} ,

𝑦
∗
= min {𝑦∗ ∈ (0, 1) , 𝑔 (𝑦∗) = 0} ,

(49)

and 𝜆
∗
= min{𝑥

∗
, 𝑦
∗
}. Clearly, when 𝜆 ∈ (0, 𝜆

∗
], we have

𝑓(𝜆) ≤ 0 and 𝑔(𝜆) ≤ 0, so (43) holds. Hence (41) holds true.

In what follows, we discuss the property of the function

𝐺 (𝛽) = min{ 3
𝛽
+ 2 − 𝛽,

𝛽

3 (1 + 𝛽)
} , 𝛽 ≥ 0. (50)

We consider equation

3

𝛽
+ 2 − 𝛽 =

𝛽

3 (1 + 𝛽)
, (51)

and it is equivalent to

9 + 15𝛽 + 2𝛽
2
− 3𝛽
3
= 0. (52)

This equation has three real roots 𝛽
1
< 𝛽
2
< 0 < 2 < 𝛽

3
< 3.

So we have

𝐺 (𝛽) =

{{{{{{{

{{{{{{{

{

𝛽

3 (1 + 𝛽)
, 𝛽 ∈ (0, 𝛽

3
]

3

𝛽
+ 2 − 𝛽, 𝛽 ∈ [𝛽

3
, 3]

3

𝛽
+ 2 − 𝛽 < 0, 𝛽 ≥ 3,

(53)

max
𝛽>0

𝐺 (𝛽) =
𝛽
3

3 (1 + 𝛽
3
)
. (54)

0 0.5 1 1.5 2 2.5 3 3.5
0
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0.2

0.3

0.4

𝛼

𝛽

𝛼 =
3

𝛽
+ 2 − 𝛽 𝛼 =

𝛽

3(1 + 𝛽)

Figure 1: The graph of function 𝐺, which gives the relationship
between 𝛼 and 𝛽.

3.1. (𝛽, 𝛼)-Region of the Exponential Stability. According to
(52) we determine 𝛽

3
≃ 2.818. And according to (53) we draw

the (𝛽, 𝛼)-region.
The picture of 𝐺(𝛽) is given as Figure 1. (𝛽, 𝛼)-region is

given by

∑(𝛽, 𝛼) = {(𝛽, 𝛼) | 𝛼 < 𝐺 (𝛽) , 𝛽 ∈ (0, 3)} . (55)

Figure 1 gives the graph of function 𝐺(𝛽) that gives
the relationship between 𝛼 and 𝛽 with which system (1) is
exponentially stable. From this picture we see that if 𝛼 is
larger, we cannot stabilize it by the boundary damping. 𝛼 has
upper bound 𝛼∗ = 𝛽

3
/3(1 + 𝛽

3
) ≃ 0.246.

3.2. The Best Decay Rate 𝜆∗. Suppose that 𝛼 < 𝐺(𝛽) with 𝛽 ∈

(0, 3). According to (43) we determine the best decay rate 𝜆∗.
Note that 𝜆∗ = min{𝑥

∗
, 𝑦
∗
} ∈ (0, 1), where 𝑥

∗
and 𝑦

∗
solve

the following equation, respectively:

𝑥
∗
−

3𝛽

1 + 𝛽
+

𝑥
∗
𝛽

1 + 𝛽
+

𝛽
2

1 + 𝛽
+
𝛼𝛽
2
𝑒
𝑥
∗
𝜏

(1 + 𝛽)
2
= 0,

𝑦
∗
−

𝛽

1 + 𝛽
+

𝑦
∗
𝛽

1 + 𝛽
+ 3𝛼𝑒

𝑦
∗
𝜏
= 0.

(56)

Firstly, let

𝑝 (𝑥) = 𝑥 −
3𝛽

1 + 𝛽
+

𝑥𝛽

1 + 𝛽
+

𝛽
2

1 + 𝛽
+

𝛼𝛽
2
𝑒
𝑥𝜏

(1 + 𝛽)
2
,

𝑞 (𝑥) = 𝑥 −
𝛽

1 + 𝛽
+

𝑥𝛽

1 + 𝛽
+ 3𝛼𝑒

𝑥𝜏
.

(57)
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Figure 2: 𝛽 = 1, 𝛼 = 0.1, and 𝜏 = 0.1.

Obviously, 𝑝(𝑥) and 𝑞(𝑥) both are monotonic function.
For comparing to the two equations of (56), we define the
function 𝑓(𝑥):

𝑓 (𝑥) = 𝑝 (𝑥) − 𝑞 (𝑥)

= 𝑥 −
3𝛽

1 + 𝛽
+

𝑥𝛽

1 + 𝛽
+

𝛽
2

1 + 𝛽
+

𝛼𝛽
2
𝑒
𝑥𝜏

(1 + 𝛽)
2

− (𝑥 −
𝛽

1 + 𝛽
+

𝑥𝛽

1 + 𝛽
+ 3𝛼𝑒

𝑥𝜏
)

=
𝛽
2
− 2𝛽

1 + 𝛽
+ 𝛼[

𝛽
2

(1 + 𝛽)
2
− 3] 𝑒

𝑥𝜏
.

(58)

Since 𝛽, 𝛼, 𝜏 > 0, we have 𝛼[𝛽2/(1 + 𝛽)
2
− 3]𝑒
𝑥𝜏

< 0. When
𝛽 ∈ (0, 2], we get (𝛽2 − 2𝛽)/(1 + 𝛽) < 0; that is, 𝑓(𝑥) < 0.
Therefore, when 𝛽 ∈ (0, 2], 𝜆∗ = 𝑦

∗
.

An example is given: Assume that 𝛽 = 1, 𝛼 = 0.1, 𝜏 = 0.1

(i.e., they are constants). We obtain the approximative zero
points of 𝑝(𝑥) and 𝑞(𝑥) from Figure 2. That is, 𝑥

∗
≃ 0.6489

and 𝑦
∗
≃ 0.1307. Therefore, we get the best decay rate 𝜆∗ =

𝑦
∗
≃ 0.1307.
Next, we consider 𝛽 ∈ (2, 𝛽

3
). By researching (58), we can

obtain (𝛽
2
− 2𝛽)/(1 + 𝛽) > 0 and [𝛽

2
/(1 + 𝛽)

2
− 3]𝑒
𝑥𝜏

≤

𝛽
2
/(1 + 𝛽)

2
− 3 ≤ 0. We have 𝑓(𝑥) ≤ (𝛽

2
− 2𝛽)/(1 + 𝛽) +

𝛼[𝛽
2
/(1 + 𝛽)

2
− 3].

Let

𝐻 =
𝛽
2
− 2𝛽

1 + 𝛽
+ 𝛼[

𝛽
2

(1 + 𝛽)
2
− 3] < 0. (59)

We have 𝛼 > (2𝛽−𝛽
2
)(1+𝛽)/(𝛽

2
−3(1+𝛽)

2
) > 0. According

to (𝛽, 𝛼)-region of the exponential stability, we obtain 𝛼 <

𝛽/3(1 + 𝛽). After comparison,

(2𝛽 − 𝛽
2
) (1 + 𝛽)

𝛽2 − 3 (1 + 𝛽)
2

< 𝛼 <
𝛽

3 (1 + 𝛽)
. (60)

To summarize, 𝛽 ∈ (2, 𝛽
3
], when (2𝛽 − 𝛽2)(1 + 𝛽)/(𝛽2 −

3(1 + 𝛽)
2
) < 𝛼 < 𝛽/3(1 + 𝛽), we can get 𝑓(𝑥) ≤ 𝐻 < 0.

Therefore, the best decay 𝜆∗ = 𝑦
∗
.

Then, we give two examples.
Assume that 𝛽 = 2.1 ∈ (2, 𝛽

3
], 𝛼 = 0.1 ∈ (0.0267, 0.2258),

𝜏 = 0.1 (i.e., they are constants); we can obtain Figure 3. We
get the best decay rate 𝜆∗ = 𝑦

∗
.

Assume that 𝛽 = 2.1 ∈ (2, 𝛽
3
], 𝛼 = 0.2 ∈ (0.0267, 0.2258),

𝜏 = 0.1 (i.e., they are constants); we can obtain Figure 4. We
get the best decay rate 𝜆∗ = 𝑦

∗
.

Finally, we consider 𝛽 ∈ (𝛽
3
, 3). We can also obtain 𝛼 >

(2𝛽 − 𝛽
2
)(1 + 𝛽)/(𝛽

2
− 3(1 + 𝛽)

2
) > 0, when 𝑓(𝑥) ≤ 𝐻 < 0.

Here, 𝛼 < 3/𝛽 + 2 − 𝛽. After comparison,

(2𝛽 − 𝛽
2
) (1 + 𝛽)

𝛽2 − 3 (1 + 𝛽)
2

>
3

𝛽
+ 2 − 𝛽. (61)

Therefore, Not all 𝑓(𝑥) < 0 were always correct.
Summarizing the above all, the best decay 𝜆∗ is easy to

determine, when 𝛽 ∈ (0, 2). The best decay 𝜆∗ is not easy to
determine, when 𝛽 ∈ (2, 3). We have two conclusion:

(i) 𝛽 ∈ (0, 2], the best decay 𝜆∗ = 𝑦
∗
;

(ii) 𝛽 ∈ (2, 𝛽
3
], when (2𝛽 − 𝛽2)(1 + 𝛽)/(𝛽2 − 3(1 + 𝛽)2) <

𝛼 < 𝛽/3(1 + 𝛽), the best decay 𝜆∗ = 𝑦
∗
.

4. Conclusions

In this paper, using the Lyapunov functional approach we
discussed the exponential stabilization of an Euler-Bernoulli
beam equation with interior delays and boundary damping.
Different from the earlier papers, we added a multiplier
term 𝑒

2𝜆𝑡 to the Lyapunov function so as to transform the
exponential stability. By solving the inequality equations, we
give the exponential stability region of the system.

We note that the method used in this paper also can
apply to the investigation of the exponential stability of other
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Figure 3: 𝛽 = 2.1, 𝛼 = 0.1, and 𝜏 = 0.1.
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Figure 4: 𝛽 = 2.1, 𝛼 = 0.2, and 𝜏 = 0.1.

model. In the future, we will study the boundary feedback
control anti-interior time delay for other models.
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