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A stable numerical method is proposed for matrix inversion. The new method is accompanied by theoretical proof to illustrate
twelfth-order convergence. A discussion of how to achieve the convergence using an appropriate initial value is presented. The
application of the new scheme for finding Moore-Penrose inverse will also be pointed out analytically. The efficiency of the
contributed iterative method is clarified on solving some numerical examples.

1. Introduction and Preliminary Notes

It is well known that the inverse of a square matrix 𝐴
𝑚×𝑚

,
which is also known as a reciprocal matrix, is a matrix 𝐴−1
such that 𝐴𝐴−1 = 𝐼, where 𝐼 is the identity matrix. A regular
nonsingular matrix 𝐴

𝑚×𝑚
can be inverted using methods

such as the Gauss-Jordan elimination or Gaussian elimina-
tion method. Such schemes fall in the category of direct
methods for this purpose.

The direct methods cannot properly handle sparse matri-
ces possessing sparse inverses arising in the numerical solu-
tion of integral equations [1]. On the other hand, methods
such as conjugate gradient for symmetric positive definite
matrices and GMRES are effective for large sparse linear
systems. However, there is a problem when the coefficient
matrix (when solving a linear system of equations) is ill-
conditioned. To remedy this, one may apply a preconditioner
to the system in which its construction is not an easy task [2].

An iterative method for preconditioning is the SPAI
(sparse approximate inverse preconditioner) algorithm [3].
Given a sparse matrix 𝐴 the SPAI algorithm computes a
sparse approximate inverse 𝑀 by minimizing ‖𝐴𝑀 − 𝐼‖

in the Frobenius norm. Then, the approximate inverse is
computed explicitly and can be applied as a preconditioner
to an iterative method.

There are other types of schemes, which can be consid-
ered as iterationmethodswhile they have different structures;
see, for example, [4, 5]. In such iterativemethods, at each iter-
ation an approximate inverse of a matrix (if it is rectangular,
one can find Moore-Penrose inverse) may easily be attained.
And consequently, the users have the ability to solve the linear
systems (with multiple right-hand side vectors) iteratively or
use the approximate inverses in sensitivity analysis and the
preconditioning of a linear system.This type of methods is in
focus here.

Several known methods were proposed for approximat-
ing matrix inverse, such as those based on the so-called min-
imum residual iterations and Hotelling-Bodewig algorithm
[6]. The Hotelling-Bodewig algorithm is defined by

𝑉
𝑛+1

= 𝑉
𝑛
(2𝐼 − 𝐴𝑉

𝑛
) , 𝑛 = 0, 1, 2, . . . , (1)

where 𝐼 is the identity matrix. Schulz in [7] found that the
eigenvalues of 𝐼 − 𝐴𝑉

0
must have magnitudes less than 1 to

ensure the convergence, which is a key element in designing
higher efficient Schulz-type iterative methods.

In 2011, Li et al. in [8] theoretically investigated

𝑉
𝑛+1

= 𝑉
𝑛
(3𝐼 − 𝐴𝑉

𝑛
(3𝐼 − 𝐴𝑉

𝑛
)) , 𝑛 = 0, 1, 2, . . . , (2)
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and also proposed another third-order iterative method for
finding 𝐴−1 as follows:

𝑉
𝑛+1

= [𝐼 +
1

4
(𝐼 − 𝑉

𝑛
𝐴) (3𝐼 − 𝑉

𝑛
𝐴)
2

]𝑉
𝑛
, 𝑛 = 0, 1, 2, . . . .

(3)

The iterative method (2) can also be found in Chapter 5
of the textbook [9]. As an another example from this primary
source, the authors provided the following twelfth-order
method:

𝑉
𝑛+1

= 𝑉
𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
(𝐼 + 𝑌

𝑛
))))))))))) ,

𝑛 = 0, 1, 2, . . . ,

(4)

in which 𝑌
𝑛
= 𝐼 − 𝐴𝑉

𝑛
. For further reading, one may refer to

[10–12].
In this paper, wewill propose an efficient iterativemethod

for finding 𝐴
−1 numerically. The theoretical convergence

of the method will also be studied. We also discuss the
application of the new scheme in finding Moore-Penrose
inverse (also known as pseudoinverse) for rectangular or
singular matrices. It is also proven analytically that the new
method has asymptotical stability in general. Some large-
scale sparse matrices will be taken into account as some
examples to put on show a clear reduction of the execution
time when the new algorithm is applied.

The rest of the paper is organized as follows. The main
contribution of this paper is given in Sections 2-3. Section 2
is devoted to the analysis of convergence which shows that
the method can be considered for the pseudoinverse as
well. Section 3 thoroughly and for the first time studies
the stability of this high-order Schulz-type iterative method
for finding generalized inverses. Section 4 covers the matter
of initial guess/value in order to preserve the convergence
order. Subsequently, the method is examined in Section 5
numerically. And finally, concluding remarks are presented
in Section 6.

2. A New Method and Its Convergence Study

By applying the following nonlinear equation solver (to see
the new developments on root-finding methods, refer to
[13])

𝑦
𝑛
= 𝑥
𝑛
− 2
−1

𝑓


(𝑥
𝑛
)
−1

𝑓 (𝑥
𝑛
) ,

𝑧
𝑛
= 𝑥
𝑛
− 𝑓(𝑦

𝑛
)
−1

𝑓 (𝑥
𝑛
) ,

𝑢
𝑛
= 𝑧
𝑛
− [[𝑧
𝑛
− 𝑥
𝑛
]
−1

(𝑓 (𝑧
𝑛
) − 𝑓 (𝑥

𝑛
))]
−1

𝑓 (𝑧
𝑛
) ,

𝑔
𝑛
= 𝑢
𝑛
− 𝑓(𝑢

𝑛
)
−1

𝑓 (𝑢
𝑛
) ,

𝑥
𝑛+1

= 𝑔
𝑛
− [[𝑔
𝑛
− 𝑢
𝑛
]
−1

(𝑓 (𝑔
𝑛
) − 𝑓 (𝑢

𝑛
))]
−1

𝑓 (𝑔
𝑛
) ,

𝑛 = 0, 1, 2, . . . ,

(5)

on the nonlinear matrix equation 𝐴𝑉 = 𝐼, we obtain a
fixed-point iteration for matrix inversion using 𝜓

𝑛
= 𝐴𝑉
𝑛
as

follows:

𝑉
𝑛+1

=
1

64
𝑉
𝑛
𝜙 (𝑉
𝑛
)

=
1

64
𝑉
𝑛
(816𝐼 − 4812𝜓

𝑛
+ 17393𝜓

2

𝑛
− 43044𝜓

3

𝑛

+ 77154𝜓
4

𝑛
− 103312𝜓

5

𝑛
+ 105039𝜓

6

𝑛

− 81576𝜓
7

𝑛
+ 48268𝜓

8

𝑛
− 21516𝜓

9

𝑛

+ 7071𝜓
10

𝑛
− 1652𝜓

11

𝑛
+ 258𝜓

12

𝑛

− 24𝜓
13

𝑛
+𝜓
14

𝑛
) .

(6)

Simplifying (6) by proper factorizing yields

𝜁
𝑛
= 17𝐼 + 𝜓

𝑛
(−28𝐼 + 𝜓

𝑛
(22𝐼 + 𝜓

𝑛
(−8𝐼 + 𝜓

𝑛
))) ,

𝜅
𝑛
= 𝜓
𝑛
𝜁
𝑛
,

𝑉
𝑛+1

=
1

64
𝑉
𝑛
𝜁
𝑛
(48𝐼 + 𝜅

𝑛
(−12𝐼 + 𝜅

𝑛
)) , 𝑛 = 0, 1, 2, . . . ,

(7)

wherein the sequence of iterates {𝑉
𝑛
}
𝑛=∞

𝑛=0
converges to 𝐴

−1

for a good initial value. Such a guess, 𝑉
0
, will be discussed

in Section 4.

Theorem 1. Let𝐴 = [𝑎
𝑖𝑗
]
𝑚×𝑚

be a nonsingular real or complex
matrix. If the initial approximation 𝑉

0
satisfies

𝐼 − 𝐴𝑉0
 < 1, (8)

then the iterative method (7) converges with at least twelfth
order to 𝐴−1.
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Proof. Let ‖𝐼−𝐴𝑉
0
‖ < 1, and for the sake of simplicity assume

that 𝐸
0
= 𝐼 − 𝐴𝑉

0
and 𝐸

𝑛
= 𝐼 − 𝐴𝑉

𝑛
= 𝐼 − 𝜓

𝑛
stand for the

symmetric residual matrix. It is straightforward to have

𝐸
𝑛+1

= 𝐼 − 𝐴𝑉
𝑛+1

= 𝐼 − 𝐴(
1

64
𝑉
𝑛
(816𝐼 − 4812𝜓

𝑛
+ 17393𝜓

2

𝑛
− 43044𝜓

3

𝑛

+ 77154𝜓
4

𝑛
− 103312𝜓

5

𝑛
+ 105039𝜓

6

𝑛

− 81576𝜓
7

𝑛
+ 48268𝜓

8

𝑛
− 21516𝜓

9

𝑛

+ 7071𝜓
10

𝑛
− 1652𝜓

11

𝑛

+258𝜓
12

𝑛
− 24𝜓

13

𝑛
+ 𝜓
14

𝑛
))

= −
1

64
(−4𝐼 + 𝜓

𝑛
)
3

(−𝐼 + 𝜓
𝑛
)
12

=
1

64
(3𝐼 + 𝐼 − 𝜓

𝑛
)
3

(𝐼 − 𝜓
𝑛
)
12

=
1

64
(3𝐼 + 𝐸

𝑛
)
3

𝐸
12

𝑛

=
1

64
(27𝐸
12

𝑛
+ 27𝐸

13

𝑛
+ 9𝐸
14

𝑛
+ 𝐸
15

𝑛
) .

(9)

Hence, we attain

𝐸𝑛+1
 ≤

1

64
(27

𝐸𝑛


12

+ 27
𝐸𝑛



13

+ 9
𝐸𝑛



14

+
𝐸𝑛



15

) .

(10)

In addition, since ‖𝐸
0
‖ < 1, by relation (10) and using math-

ematical induction, we obtain that ‖𝐸
1
‖ ≤ (1/64)(27‖𝐸

0
‖
12

+

27‖𝐸
0
‖
13

+ 9‖𝐸
0
‖
14

+ ‖𝐸
0
‖
15

) ≤ ‖𝐸
0
‖
12

< 1. If we consider
‖𝐸
𝑛
‖ < 1, therefore

𝐸𝑛+1
 ≤

1

64
(27

𝐸𝑛


12

+ 27
𝐸𝑛



13

+ 9
𝐸𝑛



14

+
𝐸𝑛



15

)

≤
𝐸𝑛



12

.

(11)

Furthermore, we get that

𝐸𝑛+1
 ≤

𝐸𝑛


12

≤ ⋅ ⋅ ⋅ ≤
𝐸0



12
𝑛+1

< 1. (12)

That is, 𝐼 − 𝐴𝑉
𝑛
→ 0, when 𝑛 → ∞, and thus 𝑉

𝑛
→ 𝐴
−1,

as 𝑛 → ∞.
Now, we must show the twelfth order using the sequence

{𝑉
𝑛
}
𝑛=∞

𝑛=0
. To do this, we denote 𝜀

𝑛
= 𝑉
𝑛
− 𝐴
−1 as the error

matrix in the iterative procedure (7). We have

𝐼 − 𝐴𝑉
𝑛+1

=
1

64
[27(𝐼 − 𝐴𝑉

𝑛
)
12

+ 27(𝐼 − 𝐴𝑉
𝑛
)
13

+9(𝐼 − 𝐴𝑉
𝑛
)
14

+ (𝐼 − 𝐴𝑉
𝑛
)
15

] .

(13)

Hence, we could get that

𝐴(𝐴
−1

− 𝑉
𝑛+1

)

=
1

64
[27𝐴
12

(𝐴
−1

− 𝑉
𝑛
)
12

+ 27𝐴
13

(𝐴
−1

− 𝑉
𝑛
)
13

+9𝐴
14

(𝐴
−1

− 𝑉
𝑛
)
14

+ 𝐴
15

(𝐴
−1

− 𝑉
𝑛
)
15

] .

(14)

By multiplying 𝐴−1 by the left side, we have

𝐴
−1

− 𝑉
𝑛+1

=
1

64
[27𝐴
11

(𝐴
−1

− 𝑉
𝑛
)
12

+ 27𝐴
12

(𝐴
−1

− 𝑉
𝑛
)
13

+9𝐴
13

(𝐴
−1

− 𝑉
𝑛
)
14

+ 𝐴
14

(𝐴
−1

− 𝑉
𝑛
)
15

] ,

(15)

which now by taking an arbitrary matrix norm results in

𝜀𝑛+1
 ≤

1

64
[27‖𝐴‖

11𝜀𝑛


12

+ 27‖𝐴‖
12𝜀𝑛



13

+9‖𝐴‖
13𝜀𝑛



14

+ ‖𝐴‖
14𝜀𝑛



15

] .

(16)

And thus
𝜀𝑛+1

 = (
1

64
[27‖𝐴‖

11

+ 27‖𝐴‖
12𝜀𝑛



1

+9‖𝐴‖
13𝜀𝑛



2

+ ‖𝐴‖
14𝜀𝑛



3

] )
𝜀𝑛



12

.

(17)

That is, the iteration (7) converges with at least twelfth order
to 𝐴−1. This concludes the proof.

At this time, we discuss an application of (7) for finding
the generalized inverses. The Moore-Penrose inverse of a
complex matrix 𝐴 ∈ C𝑚×𝑘 (also called pseudoinverse),
denoted by 𝐴

†

∈ C𝑘×𝑚, is a unique matrix 𝑉 ∈ C𝑘×𝑚

satisfying the following four Penrose equations:

𝐴𝑉𝐴 = 𝐴, 𝑉𝐴𝑉 = 𝑉,

(𝐴𝑉)
∗

= 𝐴𝑉, (𝑉𝐴)
∗

= 𝑉𝐴,

(18)

wherein 𝐴
∗ is the conjugate transpose of 𝐴. Ben-Israel and

his colleagues in [14, 15] used themethod (1) with the starting
value

𝑉
0
:= 𝛼𝐴

∗

, (19)

where 0 < 𝛼 < 2/𝜌 (𝐴
∗

𝐴) and 𝜌 (⋅) denotes the spectral
radius. The authors in [15] further investigated that the
sequence generated by

𝑉
𝑛
= 𝛼

𝑛

∑

𝑖=0

𝐴
∗

(𝐼 − 𝛼𝐴𝐴
∗

)
𝑖

, 𝑛 = 0, 1, 2, . . . , (20)

converges to the pseudoinverse.
In the following theorem, we show analytically that in

case of having singular or rectangular matrices, scheme (7)
by considering the initial approximation (19) converges to the
Moore-Penrose generalized inverse.
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Theorem 2. For the sequence {𝑉
𝑛
}
𝑛=∞

𝑛=0
generated by the itera-

tive Schulz-type method (7), and any 𝑛 ≥ 0, it holds that

(𝐴𝑉
𝑛
)
∗

= 𝐴𝑉
𝑛
, (𝑉

𝑛
𝐴)
∗

= 𝑉
𝑛
𝐴,

𝑉
𝑛
𝐴𝐴
†

= 𝑉
𝑛
, 𝐴

†

𝐴𝑉
𝑛
= 𝑉
𝑛
.

(21)

Proof. We will prove the conclusion by induction on 𝑛. For
𝑛 = 0, and considering (19), the first two equations of (21) can
be demonstrated simply. And thus, we only give a verification
to the last two equations as follows:

𝑉
0
𝐴𝐴
†

= 𝛼𝐴
∗

𝐴𝐴
†

= 𝛼𝐴
∗

(𝐴𝐴
†

)
∗

= 𝛼𝐴
∗

(𝐴
†

)
∗

𝐴
∗

= 𝛼(𝐴𝐴
†

𝐴)
∗

= 𝛼𝐴
∗

= 𝑉
0
,

𝐴
†

𝐴𝑉
0
= (𝐴
†

𝐴)𝛼𝐴
∗

= 𝛼(𝐴
†

𝐴)
∗

𝐴
∗

= 𝛼𝐴
∗

(𝐴
†

)
∗

𝐴
∗

= 𝛼(𝐴𝐴
†

𝐴)
∗

= 𝛼𝐴
∗

= 𝑉
0
.

(22)

Assume now that the conclusion holds for some 𝑛 > 0. We
now show that it continues to hold for 𝑛+1. Using the iterative
method (7), one has

(𝐴𝑉
𝑛+1

)
∗

= [𝐴(
1

64
𝑉
𝑛
𝜙 (𝑉
𝑛
))]

∗

=
1

64
(816𝜓

𝑛

∗

− 4812(𝜓
𝑛

∗

)
2

+ 17393(𝜓
𝑛

∗

)
3

− 43044(𝜓
𝑛

∗

)
4

+ 77154(𝜓
𝑛

∗

)
5

− 103312(𝜓
𝑛

∗

)
6

+ 105039(𝜓
𝑛

∗

)
7

− 81576(𝜓
𝑛

∗

)
8

+ 48268(𝜓
𝑛

∗

)
9

− 21516(𝜓
𝑛

∗

)
10

+ 7071(𝜓
𝑛

∗

)
11

− 1652(𝜓
𝑛

∗

)
12

+258(𝜓
𝑛

∗

)
13

− 24(𝜓
𝑛

∗

)
14

+ (𝜓
𝑛

∗

)
15

)

=
1

64
[816𝜓

𝑛
− 4812𝜓

2

𝑛
+ 17393𝜓

3

𝑛
− 43044𝜓

4

𝑛

+ 77154𝜓
5

𝑛
− 103312𝜓

6

𝑛
+ 105039𝜓

7

𝑛

− 81576𝜓
8

𝑛
+ 48268𝜓

9

𝑛
− 21516𝜓

10

𝑛

+ 7071𝜓
11

𝑛
− 1652𝜓

12

𝑛
+ 258𝜓

13

𝑛
− 24𝜓

14

𝑛
+ 𝜓
15

𝑛
]

= 𝐴(
1

64
𝑉
𝑛
𝜙 (𝑉
𝑛
))

= 𝐴𝑉
𝑛+1

,

(23)

where the following fact (𝐴𝑉
𝑛
)
∗

= 𝐴𝑉
𝑛
has been used. Thus,

the first equality in (21) holds for 𝑛+1, and the second equality
can be proved in a similar way. For the third equality in (21),

using the assumption that 𝑉
𝑛
𝐴𝐴
†

= 𝑉
𝑛
and the iterative

method (7), we could write down

𝑉
𝑛+1

𝐴𝐴
†

= [
1

64
𝑉
𝑛
𝜙 (𝑉
𝑛
)]𝐴𝐴

†

=
1

64
(816𝑉

𝑛
𝐴𝐴
†

− 4812𝑉
𝑛
𝜓
𝑛
𝐴𝐴
†

+ 17393𝑉
𝑛
𝜓
2

𝑛
𝐴𝐴
†

− 43044𝑉
𝑛
𝜓
3

𝑛
𝐴𝐴
†

+ 77154𝑉
𝑛
𝜓
4

𝑛
𝐴𝐴
†

− 103312𝑉
𝑛
𝜓
5

𝑛
𝐴𝐴
†

+ 105039𝑉
𝑛
𝜓
6

𝑛
𝐴𝐴
†

− 81576𝑉
𝑛
𝜓
7

𝑛
𝐴𝐴
†

+ 48268𝑉
𝑛
𝜓
8

𝑛
𝐴𝐴
†

− 21516𝑉
𝑛
𝜓
9

𝑛
𝐴𝐴
†

+ 7071𝑉
𝑛
𝜓
10

𝑛
𝐴𝐴
†

− 1652𝑉
𝑛
𝜓
11

𝑛
𝐴𝐴
†

+ 258𝑉
𝑛
𝜓
12

𝑛
𝐴𝐴
†

−24𝑉
𝑛
𝜓
13

𝑛
𝐴𝐴
†

+ 𝑉
𝑛
𝜓
14

𝑛
𝐴𝐴
†

)

=
1

64
(816𝑉

𝑛
− 4812𝑉

𝑛
𝜓
𝑛
+ 17393𝑉

𝑛
𝜓
2

𝑛

− 43044𝑉
𝑛
𝜓
3

𝑛
+ 77154𝑉

𝑛
𝜓
4

𝑛
− 103312𝑉

𝑛
𝜓
5

𝑛

+ 105039𝑉
𝑛
𝜓
6

𝑛
− 81576𝑉

𝑛
𝜓
7

𝑛
+ 48268𝑉

𝑛
𝜓
8

𝑛

− 21516𝑉
𝑛
𝜓
9

𝑛
+ 7071𝑉

𝑛
𝜓
10

𝑛
− 1652𝑉

𝑛
𝜓
11

𝑛

+ 258𝑉
𝑛
𝜓
12

𝑛
− 24𝑉

𝑛
𝜓
13

𝑛
+ 𝑉
𝑛
𝜓
14

𝑛
)

=
1

64
𝑉
𝑛
𝜙 (𝑉
𝑛
)

= 𝑉
𝑛+1

.

(24)

Hence, the third equality in (21) holds for 𝑛 + 1. The fourth
equality can similarly be proved, and the desired result
follows.

The iterative method (7) is a matrix multiplication
rich scheme. So, in order to reduce the computational
load of matrix multiplications, it is enough to use
SparseArray[mat] to avoid unnecessary multiplications
to the nonzero elements when dealing with large sparse
matrices.

Remark 3. The (inverse finder) informational efficiency
index is defined as 𝑝/𝜂 where 𝑝 and 𝜂 stand for the local
order and the number of matrix-matrix products per cycle.
The proposed method of this paper requires 8 matrix-matrix
multiplications to achieve the convergence order 12. This
implies that 12/8 = 1.5 as its informational index, which is
much better than 2/2 = 1, 3/3 = 1, 3/4 = 0.75, and 12/12 = 1

of schemes (1), (2), (3), and (4), respectively.

Before stating the main theorem for finding Moore-
Penrose inverse, it is required to recall that for 𝐴 ∈ C𝑚×𝑘
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with the singular values 𝜎
1
> 𝜎
2
> ⋅ ⋅ ⋅ 𝜎

𝑟
> 0 and the initial

approximation 𝑉
0
= 𝛼𝐴
∗ with 0 < 𝛼 < 2/𝜎

2

1
, it holds that


𝐴 (𝑉
0
− 𝐴
†

)

< 1. (25)

We are about to use this fact in the following theorem so as
to find the theoretical order of the proposed method (7) for
finding theMoore-Penrose inverse (see [16] formore details).

Theorem 4. For𝐴 ∈ C𝑚×𝑘, with the singular values 𝜎
1
> 𝜎
2
>

⋅ ⋅ ⋅ 𝜎
𝑟
> 0, the sequence {𝑉

𝑛
}
𝑛=∞

𝑛=0
generated by (7) and using

the initial approximation 𝑉
0
= 𝛼𝐴

∗ converges to the Moore-
Penrose inverse𝐴† in twelfth order provided that 0 < 𝛼 < 2/𝜎

2

1
.

Proof. Set E
𝑛
= 𝑉
𝑛
− 𝐴
† and 𝐸

𝑛
= 𝐼 − 𝐴𝑉

𝑛
; we have

𝐴E
𝑛+1

= 𝐴𝑉
𝑛+1

− 𝐴𝐴
†

= 𝐴𝑉
𝑛+1

− 𝐼 + 𝐼 − 𝐴𝐴
†

= −𝐸
𝑛+1

+ 𝐼 − 𝐴𝐴
†

= −
1

16
[27𝐸
12

𝑛
+ 27𝐸

13

𝑛
+ 9𝐸
14

𝑛
+ 𝐸
15

𝑛
] + 𝐼 − 𝐴𝐴

†

.

(26)

On the other hand, from the definitions of theMoore-Penrose
inverse 𝐴†, we have

(𝐼 − 𝐴𝐴
†

)
𝑘

= 𝐼 − 𝐴𝐴
†

, 𝑘 = 1, 2, . . . ;

(𝐼 − 𝐴𝐴
†

)𝐴E
𝑛
= 0.

(27)

The use of these relations implies that

𝐴E
𝑛+1

=
1

16
[−27(𝐴E

𝑛
)
12

+ 27(𝐴E
𝑛
)
13

−9(𝐴E
𝑛
)
14

+ (𝐴E
𝑛
)
15

] .

(28)

So, for any matrix norm ‖ ⋅ ‖, we obtain

𝐴E𝑛+1
 ≤

1

16
[27

𝐴E𝑛


12

+ 27
𝐴E𝑛



13

+9
𝐴E𝑛



14

+
𝐴E𝑛



15

] .

(29)

Applying (25), which implies that ‖𝐴E
0
‖ < 1, and a similar

reasoning as in (10)–(12), one can obtain

𝐴E𝑛+1


≤
1

16
[27

𝐴E𝑛


12

+ 27
𝐴E𝑛



13

+ 9
𝐴E𝑛



14

+
𝐴E𝑛



15

]

≤
𝐴E𝑛



12

≤ ‖𝐴‖
12E𝑛



12

.

(30)

Finally, using the properties of theMoore-Penrose inverse
𝐴
† and Theorem 2, it would be now easy to find the error

inequality of the new scheme (7) as follows:

𝑉
𝑛+1

− 𝐴
†

=

𝐴
†

𝐴𝑉
𝑛+1

− 𝐴
†

𝐴𝐴
†

≤

𝐴
†



𝐴𝑉
𝑛+1

− 𝐴𝐴
†


=

𝐴
†


𝐴E𝑛+1
 ≤


𝐴
†

‖𝐴‖
12E𝑛



12

.

(31)

Thus, ‖𝑉
𝑛
− 𝐴
†

‖ → 0; that is, the sequence of (7) converges
to the Moore-Penrose inverse in twelfth order as 𝑛 → +∞.
This ends the proof.

3. Stability

We investigate the stability of (7) for finding𝐴† (or the simpli-
fied case 𝐴−1) in a neighborhood of the solution of equation
𝐴𝑉 = 𝐼. Note that if the iteration is not self-correcting,
that is, if errors made at one stage are not subsequently
damped, then the inevitable rounding errors introduced
into the iteration may accumulate to the point where they
overwhelm the answer. Thus, we should either show that
the proposed method is self-correcting or must furnish an
analysis showing that rounding errors remain under control.
This will be done in what follows. In fact, we analyze how a
small perturbation at the 𝑛th iterate is amplified or damped
along the iterates. Note that this procedure has recently been
applied on a general family of methods for matrix inversion
in [17].

Theorem 5. The sequence {𝑉
𝑛
}
𝑛=∞

𝑛=0
generated by (7) with the

initial approximation (19) is asymptotically stable for finding
the Moore-Penrose generalized inverse.

Proof. Let Δ𝑉
𝑛
be the numerical perturbation introduced at

the 𝑛th iterate of (7). Next, one has

�̃�
𝑛
= 𝑉
𝑛
+ Δ𝑉
𝑛
. (32)

Here, we perform a first-order error analysis; that is, we
formally neglect quadratic or higher terms such as (Δ𝑉

𝑛
)
2.

This formal manipulation is meaningful if Δ𝑉
𝑛
is sufficiently

small and further yields to 𝑉
𝑛
⋅ Δ𝑉
𝑛
≈ Δ𝑉
𝑛
⋅ 𝑉
𝑛
. We have

�̃�
𝑛+1

=
1

64
�̃�
𝑛
𝜙 (�̃�
𝑛
)

=
1

64
�̃�
𝑛
(816𝐼 − 4812𝐴�̃�

𝑛
+ 17393(𝐴�̃�

𝑛
)
2

− 43044(𝐴�̃�
𝑛
)
3

+ 77154(𝐴�̃�
𝑛
)
4

−103312(𝐴�̃�
𝑛
)
5

+ 105039(𝐴�̃�
𝑛
)
6

− 81576(𝐴�̃�
𝑛
)
7

+ 48268(𝐴�̃�
𝑛
)
8

− 21516(𝐴�̃�
𝑛
)
9

+ 7071(𝐴�̃�
𝑛
)
10

− 1652(𝐴�̃�
𝑛
)
11

+ 258(𝐴�̃�
𝑛
)
12

−24(𝐴�̃�
𝑛
)
13

+ (𝐴�̃�
𝑛
)
14

)
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=
1

64
(𝑉
𝑛
+ Δ𝑉
𝑛
)

× (816𝐼 − 4812𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
) + 17393(𝐴 (𝑉

𝑛
+ Δ𝑉
𝑛
))
2

− 43044(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
3

+ 77154(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
4

− 103312(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
5

+ 105039(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
6

− 81576(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
7

+ 48268(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
8

− 21516(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
9

+ 7071(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
10

− 1652(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
11

+ 258(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
12

− 24(𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
13

+ (𝐴 (𝑉
𝑛
+ Δ𝑉
𝑛
))
14

)

≈
1

64
(𝑉
𝑛
+ Δ𝑉
𝑛
)

× (816𝐼 − 4812 (𝐴𝑉
𝑛
+ 𝐴Δ𝑉

𝑛
)

+ 17393 ((𝐴𝑉
𝑛
)
2

+ 2𝐴(𝐴𝑉
𝑛
)
1

Δ𝑉
𝑛
)

− 43044 ((𝐴𝑉
𝑛
)
3

+ 3𝐴(𝐴𝑉
𝑛
)
2

Δ𝑉
𝑛
)

+ 77154 ((𝐴𝑉
𝑛
)
4

+ 4𝐴(𝐴𝑉
𝑛
)
3

Δ𝑉
𝑛
)

− 103312 ((𝐴𝑉
𝑛
)
5

+ 5𝐴(𝐴𝑉
𝑛
)
4

Δ𝑉
𝑛
)

+ 105039 ((𝐴𝑉
𝑛
)
6

+ 6𝐴(𝐴𝑉
𝑛
)
5

Δ𝑉
𝑛
)

− 81576 ((𝐴𝑉
𝑛
)
7

+ 7𝐴(𝐴𝑉
𝑛
)
6

Δ𝑉
𝑛
)

+ 48268 ((𝐴𝑉
𝑛
)
8

+ 8𝐴(𝐴𝑉
𝑛
)
7

Δ𝑉
𝑛
)

− 21516 ((𝐴𝑉
𝑛
)
9

+ 9𝐴(𝐴𝑉
𝑛
)
8

Δ𝑉
𝑛
)

+ 7071 ((𝐴𝑉
𝑛
)
10

+ 10𝐴(𝐴𝑉
𝑛
)
9

Δ𝑉
𝑛
)

− 1652 ((𝐴𝑉
𝑛
)
11

+ 11𝐴(𝐴𝑉
𝑛
)
10

Δ𝑉
𝑛
)

+ 258 ((𝐴𝑉
𝑛
)
12

+ 12𝐴(𝐴𝑉
𝑛
)
11

Δ𝑉
𝑛
)

− 24 ((𝐴𝑉
𝑛
)
13

+ 13𝐴(𝐴𝑉
𝑛
)
12

Δ𝑉
𝑛
)

+ ((𝐴𝑉
𝑛
)
14

+ 14𝐴(𝐴𝑉
𝑛
)
13

Δ𝑉
𝑛
))

≈ 𝑉
𝑛+1

+
51

4
𝑉
𝑛
−
1203

16
(𝐴𝑉
𝑛
)
1

𝑉
𝑛
+
17393

64
(𝐴𝑉
𝑛
)
2

𝑉
𝑛

−
10761

16
(𝐴𝑉
𝑛
)
3

𝑉
𝑛
+
38577

32
(𝐴𝑉
𝑛
)
4

𝑉
𝑛

−
6457

4
(𝐴𝑉
𝑛
)
5

𝑉
𝑛
+
105039

64
(𝐴𝑉
𝑛
)
6

𝑉
𝑛
−
10197

8
(𝐴𝑉
𝑛
)
7

𝑉
𝑛

+
12067

16
(𝐴𝑉
𝑛
)
8

𝑉
𝑛
−
5379

16
(𝐴𝑉
𝑛
)
9

𝑉
𝑛

+
7071

64
(𝐴𝑉
𝑛
)
10

𝑉
𝑛
−
413

16
(𝐴𝑉
𝑛
)
11

𝑉
𝑛
+
129

32
(𝐴𝑉
𝑛
)
12

𝑉
𝑛

−
3

8
(𝐴𝑉
𝑛
)
13

𝑉
𝑛
+
1

64
(𝐴𝑉
𝑛
)
14

𝑉
𝑛
+
51

4
Δ𝑉
𝑛
−
1203

8
𝐴𝑉
𝑛
Δ𝑉
𝑛

+
52179

64
(𝐴𝑉
𝑛
)
2

Δ𝑉
𝑛
−
10761

4
(𝐴𝑉
𝑛
)
3

Δ𝑉
𝑛

+
192885

32
(𝐴𝑉
𝑛
)
4

Δ𝑉
𝑛
−
19371

2
(𝐴𝑉
𝑛
)
5

Δ𝑉
𝑛

+
735273

64
(𝐴𝑉
𝑛
)
6

Δ𝑉
𝑛
− 10197(𝐴𝑉

𝑛
)
7

Δ𝑉
𝑛

+
108603

16
(𝐴𝑉
𝑛
)
8

Δ𝑉
𝑛
−
26895

8
(𝐴𝑉
𝑛
)
9

Δ𝑉
𝑛

+
77781

64
(𝐴𝑉
𝑛
)
10

Δ𝑉
𝑛
−
1239

4
(𝐴𝑉
𝑛
)
11

Δ𝑉
𝑛

+
1677

32
(𝐴𝑉
𝑛
)
12

Δ𝑉
𝑛
−
21

4
(𝐴𝑉
𝑛
)
13

Δ𝑉
𝑛

+
15

64
(𝐴𝑉
𝑛
)
14

Δ𝑉
𝑛
,

(33)

where (Δ𝑉
𝑛
)
𝑖

≈ 0, 𝑖 ≥ 2 has been used, since they are very
close to the zero (matrix). After some algebraic manipulation
and using Δ𝑉

𝑛+1
≈ �̃�
𝑛+1

− 𝑉
𝑛+1

, we have

Δ𝑉
𝑛+1

≈
3

64
(4𝐼 − 𝐴𝑉

𝑛
)
2

(𝐼 − 𝐴𝑉
𝑛
)
11

(17𝐼 − 5𝐴𝑉
𝑛
) Δ𝑉
𝑛

≈
3

64
[(3𝐼+𝐼−𝐴𝑉

𝑛
)
2

(𝐼−𝐴𝑉
𝑛
)
11

(12𝐼 + 5 (𝐼 − 𝐴𝑉
𝑛
))] Δ𝑉

𝑛
,

≈
3

64
[108(𝐼 − 𝐴𝐴

†

)
11

+ 117(𝐼 − 𝐴𝐴
†

)
12

+42(𝐼 − 𝐴𝐴
†

)
13

+ 5(𝐼 − 𝐴𝐴
†

)
14

] Δ𝑉
𝑛
,

(34)

by using the fact that for enough large 𝑛, we have 𝑉
𝑛
≈ 𝐴
†.

We attain
Δ𝑉𝑛+1

 ≤
3

64
[108


𝐼 − 𝐴𝐴

†


11

+ 117

𝐼 − 𝐴𝐴

†


12

+42

𝐼 − 𝐴𝐴

†


13

+ 5

𝐼 − 𝐴𝐴

†


14

]
Δ𝑉𝑛

 .

(35)

From (35), we can conclude that the perturbation at the iterate
𝑛+ 1, is bounded.Therefore, the sequence {𝑉

𝑛
}
𝑛=∞

𝑛=0
generated

by (7) is asymptotically stable. This ends the proof.

Corollary 6. By using the matrix identity in (27), it would be
possible to further simplify bound (35) as follows:

Δ𝑉𝑛+1
 ≤ (

51

4


𝐼 − 𝐴𝐴

†

)
Δ𝑉𝑛

 .
(36)
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(1) Given 𝐴 ∈ C𝑚×𝑚

(2) construct the matrix 𝑉
0
= (1/(‖𝐴‖

2

𝐹
)) 𝐴
∗

(3) obtain the LU decomposition of the matrix 𝐴, for example LU = LinearSolve[A]

(4) for 𝑙 = 1, . . . , 𝑗 (𝑗 ≪ 𝑛), and when 𝑒
𝑙
is the 𝑙th column of the identity matrix

(5) update the columns of 𝑉
0
by finding the columns of the real 𝐴−1 as follows: V

𝑙
= LU[𝑒

𝑙
]

(6) end for.

Algorithm 1: An algorithm for constructing a rapid and robust initial approximation for 𝐴−1.

Using (36) recursively, onemay attain the following very simple
bound:

Δ𝑉𝑛+1
 ≤ [(

51

4
)

𝑛+1

𝐼 − 𝐴𝐴

†

]
Δ𝑉0

 .
(37)

Remark 7. In case of finding the regular inverse of nonsin-
gular matrices, that is, when 𝐴

†

= 𝐴
−1, according to (37),

we have Δ𝑉
𝑛+1

≈ 0, and so the matrix method is strongly
numerically stable. Consequently, in case of finding the 𝐴†,
the matrix method (7), is asymptotically stable. Of course,
since the iteration is not self-correcting in the general case,
proceeding beyond convergencemay cause a serious increase
in error.

4. Initial Value

The iterative methods that have been discussed up to now
are sensitive upon choosing the initial guess/value to start the
process. As a matter of fact, the high accuracy and efficiency
of such types of iterative algorithms are guaranteed only if
the initial value satisfies the appropriate condition given in
Theorem 1. Thus, in order to preserve the convergence order,
we present some ways from the literature to remedy this flaw,
although an efficient way for square or rectangular matrices
is the way (19).

For a symmetric positive definite (SPD)matrix𝐴, one can
easily use the Householder-JohnTheorem to attain

𝑉
0
= 𝑃
−1 (38)

as the initial value, wherein thematrix𝑃 is any of thematrices
such that 𝑃 + 𝑃𝑇 − 𝐴 is SPD [8].

If the square matrix 𝐴 is diagonally dominant, one may
apply the approach given in [18] and use

𝑉
0
= diag( 1

𝑎
11

,
1

𝑎
22

, . . . ,
1

𝑎
𝑛𝑛

) , (39)

wherein 𝑎
𝑖𝑖
is the diagonal entry of 𝐴. Note that this choice

is so much fruitful in solving PDEs resulting from discretiza-
tions. Some further generalizations of such an initial matrix
are given in [19].

Although the two abovementionedways are efficient, they
cannot be applied for finding an initial guess/value to the
inverse of general input matrices. For instance, for large-scale
matrices which do not satisfy the above structures, they may
fail to provide the convergence. Hence, we here take into

account the suboptimal way of producing 𝑉
0
as given by Pan

and Schreiber in [20] as follows:

𝑉
0
=

𝐴
𝑇

‖𝐴‖
1
‖𝐴‖
∞

. (40)

We should note that choosing the initial value as given
above can satisfy the necessary condition of arriving to the
convergence phase. Someways for updating the initial matrix
for sparse matrices are brought forward by [21].

In what follows, we provide an algorithm for improving
an initial matrix for square matrices rapidly. In fact, the
derivation of LU factorization for almost all kinds of square
nonsingular matrices could be done rapidly in the linear
algebra programming packages. In the Mathematica, the
one argument command LinearSolve[ ] provides an LU
factorization of 𝐴 too much fast. Then, by applying the
LU decomposition on the columns of a identity matrix
recursively, one could update the columns of a derived initial
matrix produced by other strategies such as (40). Such a
procedure is illustrated in Algorithm 1. We summarized this
idea as in Algorithm 2.

The initial1[A , num ] takes the nonsingular matrix 𝐴
and the number of columns that userswish to update from the
real inverse into the approximate inverse from the left, while
the function initial2[A , num ]works doubly.That is, if, for
example, num = 10, it updates the first and last 10 columns of
the approximate inverse as rapidly as possible.

Next, we conduct some numerical tests to support the
theoretical results given in Section 2 using the initial value
discussed herein.

5. Computational Aspects

In this section, some experiments are presented to demon-
strate the capability of the proposed method. The program-
ming package mathematica 8 [22] has been used in the
demonstrations. We work on the numerical aspects of the
methods in machine precision.

It is clear that large sparse matrices cannot be handled
easily and their storage needs to be done in sparse form
as in the input form to be accessible and economic in
real applications. Methods like (7) are powerful in finding
an approximate inverse or a robust approximate inverse
preconditioner in low number of steps and computational
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initial1[A , num ] :=

Quiet@Module[{n = Dimensions[A] [[1]], i = 1, LU = LinearSolve[A]},

Id = SparseArray[{{k , k } -> 1.}, {n, n}];

mat = (1/Norm[A, “Frobenius”]∧2)∗ConjugateTranspose[A];
While[i <= num, {ith = LU[Id[[All, n + 1 - i]]];

mat[[All, n + 1 - i]] = ith; i++;}]; mat];

initial2[A , num ] := Quiet@Module[{n = Dimensions[A] [[1]], i = 1},

Id = SparseArray[{{k , k } -> 1.}, {n, n}, 0]; LU = LinearSolve[A];

mat = Quiet[initial1[A, num]];

While[i <= num, {ith = LU[Id[[All, i]]];

mat[[All, i]] = ith; i++;}]; mat];

Algorithm 2: Two-argument function written in the Mathematica environment.

m = 1500; k = 1800; number = 30; SeedRandom[1234];

Table[A[l] = SparseArray[{Band[{400, 10}, {m, k}] -> Random[] - I,

Band[{10, 200}, {m, k}] -> {1.1, -Random[]},

Band[{-60, 100}] -> -3.02, Band[{-100, 500}] -> 3.1 I}, {m, k}, 0.];, {l, number}];

Id = SparseArray[{{i , i } -> 1.}, {m, m}, 0.];

Algorithm 3
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Figure 1: The results of comparisons for Experiment 1 in terms of
the number of iterations.

time, in which the output form of the approximate inverse
is also sparse.

In this paper, as the programs were running, we found
the running time using the command AbsoluteTiming[ ] to
report the elapsedCPU time (in seconds) for this experiment.
In this paper, the computer specifications are Microsoft
Windows XP Intel(R), Pentium(R) 4, and CPU 3.20GHz,
with 4GB of RAM.

Experiment 1. This test is devoted to the application of the
Schulz-type iterative methods in finding the pseudoinverse
of 30 large random complex matrices defined as shown in
Algorithm 3 (𝐼 = √−1).
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Figure 2: The results of comparisons for Experiment 1 in terms of
the elapsed time using ‖𝑉

𝑛+1
− 𝑉
𝑛
‖
∞
≤ 10
−6.

The results of comparisons for these random matrices
of the size 𝑚 × 𝑘 = 1500 × 1800 are reported in Figures
1, 2, and 3 in terms of the number of iterations and the
computational time. The compared methods are (1) denoted
by “Schulz,” (2) denoted by “Chebyshev,” (4) denoted by
“KMS,” and the new iterative scheme (7) denoted by “PM.”
A saving in the elapsed time by considering the stopping
criteria as ‖𝑉

𝑛+1
− 𝑉
𝑛
‖
∞

≤ 10
−6 and ‖𝑉

𝑛+1
− 𝑉
𝑛
‖
𝐹
≤ 10
−6

can be observed for the studied method (7). In this test, the
initial matrix has been computed for each random matrix by
V
0
[j]=ConjugateTranspose[A[j]] ∗(1./((Singular-

ValueList[A[j],1][[1]])2)), while the maximum
number of iterations is set to 100.
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Figure 3: The results of comparisons for Experiment 1 in terms of
the elapsed time using ‖𝑉

𝑛+1
− 𝑉
𝑛
‖
𝐹
≤ 10
−6.

6. Concluding Remarks

It is well known that matrix inverse and generalized inverse
are important in applied fields of nature science, such as the
solution to various systems of linear and nonlinear equations,
eigenvalue problems, and the linear least square problems.
Iterative methods are often effective especially for large-
scale systems with sparsity and Schulz-type methods are
great tools for preconditioning such systems or in finding
pseudoinverses.

Hotelling-Bodewig algorithm is simple to describe and
analyze and is numerically stable. This was the idea of
developing an iterative method of this type in this paper.

In this paper, we have shown that the suggested method
(7) reaches twelfth order of convergence. The stability of the
newmethodwas also studied in detail and established that the
new scheme is asymptotically stable. The efficacy of the new
scheme was illustrated numerically in Section 5. Finally, and
based on the numerical results obtained, one can conclude
that the presentedmethod is useful. Further extensions of the
new scheme for other generalized inverses (such as the ones
in [23, 24]) can be done for future works.
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