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Abstract A dilaton potential is adjusted to recently con-
firmed lattice QCD thermodynamics data in the temperature
range (0.7 . . . 3.5)Tc where Tc = 155 MeV is the pseudo-
critical temperature. The employed holographic model is
based on a gravity–single-field dilaton dual. We discuss con-
ditions for enforcing (for the pure gluon plasma) or avoiding
(for the QCD quark–gluon plasma) a first-order phase tran-
sition, but still keeping a softest point (minimum of sound
velocity).

1 Introduction

The celebrated AdS/CFT correspondence [1–3] has sparked
a large number of dedicated investigations of strongly cou-
pled systems (cf. [4,5] for recent surveys). A particular field
of application is provided by the strong coupling nature of
QCD at low momentum/energy scales. While employing
5d Einstein gravity in the dual description is strictly justi-
fied only in the large Nc and large ’t Hooft coupling limits
of the boundary theory, which ensure suppression of loop
and stringy corrections to classical gravitation theory, by
such means nevertheless one could study models which are
expected to exhibit a behavior resemblant of QCD. The aim
is then often to understand, on a qualitative level, phenomena
which are hardly accessible in the 4d quantum field theory.
A prominent example is given by real-time phenomena, e.g.
within QCD. Other phenomena, such as the hadron spec-
trum or the equation of state, are accessible by lattice QCD
calculations—but here one would like to understand qualita-
tively the emerging numerical results by means of transparent
models.

Many facets of the QCD equation of state are fairly
known by now, both for the physical parameter section and
for various limits of parameters (e.g. quark masses, dimen-
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sion of the gauge group, flavor number, adjoint representa-
tions of quarks etc.). This statement applies only for finite-
temperature (T ) QCD at zero baryo-chemical potential (μ).
However, in relativistic heavy-ion collisions, the bulk of
excited matter has μ > 0, as inferred from the analysis of
hadron abundancies [6]. The knowledge of the QCD equa-
tion of state is, therefore, presently incomplete (in particu-
lar beyond the range accessible by the μ/T � 1 expan-
sion) and calls urgently for an improvement. In particular,
there are several ideas that QCD allows for a critical point
in the T –μ phase diagram where the cross-over turns in
a first-order phase transition. Mainly based on universal-
ity arguments, a multitude of models have been employed
to locate the critical point [7–10], but also more directly
QCD anchored approaches, e.g. Dyson–Schwinger equations
as integral formulation of QCD, have been used [11]. Par-
allel to the theoretical attempts, also special experimental
searches are conducted, e.g. the beam energy scan at RHIC
[12,13].

Coming back to options for modeling a phase diagram
similar to QCD with the conjectured critical point, we men-
tion [14,15], where in a holographic model, including grav-
ity, a dilaton field and a U(1) gauge field, the possibility
of such a realization has been demonstrated. The set-up
of [14,15] is based on a dilation potential, which features
qualitatively the equation of state at μ = 0, supplemented
by a dynamical strength function, which is adjusted to the
quark number susceptibility, again at μ = 0. While in the
infinitely heavy quark mass (mq → ∞) limit of QCD,
which becomes then a pure Yang–Mills theory, the equation
of state is known since some time [16] and has been con-
firmed by high-precision lattice QCD simulations [17], the
status of QCD with physical quark masses has been settled
only very recently. After refinements in the lattice discretiza-
tion schemes and actions and continuum extrapolations the
results of two independent collaborations [18,19] became
consistent.
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Given this new situation and having in mind e.g. an appli-
cation in the spirit of [14,15] to the QCD phase diagram mod-
eling, one should seek for an appropriate dilaton potential,
reproducing sufficiently accurately the by now known QCD
equation of state at μ = 0. This is the aim of the present
note. We have hereby the attitude to take the AdS/CFT dic-
tionary literally, i.e. translate, without corrections due to
Nc = 3 or finite coupling, the 5d Riemann metric into 4d
energy-momentum tensor components (or correlators) and
vice versa.

2 Adjusting a dilaton potential

At μ = 0, the equation of state, in parametric form, follows
from [20]

LT (φH )= V (φH )

πV (φ0)
exp

(
A(φ0)+

∫ φH

φ0

dφ

[
1

4X
+ 2

3
X

])
,

(1)
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4
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3A(φ0) + 3

4

∫ φH

φ0

dφ
1

X

)
, (2)

for entropy density s and temperature T , where the scalar
function X (φ;φH ) [21] is determined by the system (a prime
means a derivative w.r.t. φ)
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) (
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which is integrated from the horizon φH − ε to the boundary
φ0 with initial conditions

X (φH − ε) = −3

4

V ′(φH )

V (φH )
+ O(ε1), (5)

Y (φH − ε) = − X (φH − ε)

ε
+ O(ε0), (6)

and ε → 0. The quantity A(φ0) encodes the near-boundary
behavior of the model. We assume L2V (φ) ≈ −12+ L2M2

2 φ2

for φ → φ0 = 0 which results in A(φ0) = log φ0
�−4 , whereby

we have set L� = 1 [20] and, as usual, L2M2 = �(� − 4).
We consider 2 < � < 4.

From s and T , the pressure follows as

p(φH ) =
∫ φH

∞
dφ̃H

dT (φ̃H )

dφ̃H
s(φ̃H ), (7)

where p(∞) = 0 holds if V ′/V < 2
√

2/3 with V ′/V |φ→∞
→ const, corresponding to a “good” singularity at φ = ∞
[21]. We consider only such cases.

Besides of a proper adjustment of the dilaton potential
V (φ) to the equation of state, the model parameters G5/L3

and L must be fitted, too. Since a direct mapping procedure
of an input equation of state to the potential is not at our
disposal, we use as trial ansatz

vD(φ) ≡ V ′
D

VD

=
{−L2M2

12 φ + s1φ
3 forφ≤φm,(

t1 tanh(t2φ − t3)+t4
) (

1− b1
cosh(b2φ−b3)2

)
forφ≥φm,

(8)

(requiring differentiability of vD at φm fixes L2M2 and s1)
and find

fit to φm t1 t2 t3 t4 b1 b2 b3 G5/L3

v2
s 0.2163 0.6453 0.4988 0.0845 0.0286 0.4842 2.5020 3.9887 0.4544
s/T 3 0.2430 0.6480 0.5023 0.0855 0.0344 0.4844 2.6162 4.1458 0.4586

(9)

with LTc = 1.8036 (fit to v2
s from [18]) or LTc = 0.5051

(fit to s/T 3 from [18]). This ansatz obeys the Chamblin–
Reall IR behavior L2V (φ → ∞) ∼ e(t1+t4)φ . The approach
belongs to a similar class of holographic models as the model
class B in [22]: it has no confinement in the sense of [21] for
t1+t4 <

√
2/3 and no explicit fermionic degrees of freedom.

Our ansatz is meant purely to match lattice QCD thermody-
namics data in a restricted temperature interval. It is there-
fore interesting to see in future investigations, e.g. whether
the explicit account of quarks has a similar impact on ζ/s as
found in the present setting. To set a scale, we determine Tc
in the holographic model by the inflection point of s/T 3 as
a function of T , and Tc = 155 MeV [18] is used in the lat-
tice QCD data [18]. The resulting velocity of sound squared,
v2
s = d log T

d log s = d log T
dφH

( d log s
dφH

)−1, the scaled entropy density,

s/T 3, the scaled pressure, p/T 4, and the scaled interaction
measure I/T 4 = (sT − 4p)/T 4 are exhibited in Fig. 1
together with the lattice QCD data [18,19]. The solid blue
(dotted red) curves are our optimum fits of v2

s (s/T 3) with
the parameters of (9). Circles depict the respective quantities
at Tc. One observes that the softest point, i.e. the minimum
of v2

s as a function of T/Tc, is slightly below unity (see
upper left panel in Fig. 1) and the maximum of the inter-
action measure is a little bit up-shifted in comparison with
the lattice QCD results (see lower right panel in Fig. 1). One
observes also some other minor imperfections of our fits, in
particular at the lowest temperatures covered by the lattice
QCD data, and also at large temperatures for the interaction
measure.

In the present setting, the ratio of shear viscosity to entropy
density is η/s = 1/(4π) [23], as usual for the Hilbert action
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Fig. 1 Velocity of sound squared v2
s (upper left panel), scaled entropy

density s/T 3 (upper right panel), scaled pressure p/T 4 (lower left
panel), and scaled interaction measure I/T 4 (lower right panel) as
functions of T/Tc. Solid blue curves fit to v2

s data, dashed red curves fit

to s/T 3 data, circles position of thermodynamic quantities at Tc. Lattice
QCD data: black plusses from [18], green crosses from [19]; for both
sets we use the pseudo-critical temperature Tc = 155 MeV

on the gravity side [24,25]. The ratio of bulk to shear viscosity
can be calculated via the Eling–Oz formula [25]

ζ

η

∣∣∣
φH

=
(
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dφH

)−2

=
(

1

v2
s

d log T

dφH

)−2

, (10)

or, equivalently [26,27], via the Gubser–Pufu–Rocha for-
mula [24]

ζ

η

∣∣∣
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= V ′(φH )2

V (φH )2

1

|h11(φ0)|2 , (11)

where h11(φ0) is extracted from solving the perturbation
equation
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) (
2 + 9
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11
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)
h11 = 0, (12)

with initial conditions h11(φH −ε) = 1 and h′
11(φH −ε) = 0

for ε → 0. The result is exhibited in Fig. 2. Remarkable is
the reduction of ζ/η by 50 % at Tc in comparison with the
SU(3) gluon plasma (YM) considered in [28]. To understand

this difference, recall the adiabatic approximation of [20]:
X (φ) ≈ − 3

4
V ′(φ)
V (φ)

. In this approximation, the non-local term
in (11) becomes unity, h11 = 1 (since the coefficient of h11

in (12) vanishes; see also [29]), and, comparing the values
of V ′/V ≈ 0.6 (0.8) for the QGP (pure glue; see below) at
Tc we find the ratio

(
(ζ/η)QGP/(ζ/η)YM

)
(Tc) ≈ 56 % (cf.

also [30,31] for recent holographic calculations of transport
coefficients).

On the other hand, for ζ/T 3, the situation is reversed:
at Tc, the QGP value is 50 % larger in comparison to the
gluon plasma case; the peak of ζ/T 3 is located at a larger
value T/Tc ≈ 1.3. This difference between ζ/η and ζ/T 3

for QGP and for the gluon plasma can be attributed to the
different number of degrees of freedom as reflected by the
scaled entropy density s/T 3.

Recent phenomenological investigations [32–35] of the
flow harmonics in relativistic heavy-ion collisions empha-
size the need to study in more detail the impact of bulk vis-
cosity effects. In this respect, estimates of ζ/T 3 in various
approaches are of contemporary interest.
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Fig. 2 Scaled bulk viscosity, ζ/T 3 (left) and ratio of bulk to shear viscosity, ζ/η (right) as a function of T/Tc. Line codes as in Fig. 1

Fig. 3 V ′/V (solid black curves), v2
s (dashed red curves, dot-dashed

curves are for the adiabatic approximation) and 0.1T/Tc (blue dotted
curves) as functions of φH . Left panel for the pure gluon plasma (the

gray band covers the unstable and metastable regions), right panel for
QCD quark–gluon plasma (fit to v2

s ). Vertical dotted lines bracket the
fit range to the lattice data

3 Cross-over vs. first-order phase transition

Remarkably, the ansatz (8) for the dilaton potential is the
same as used in [28] (cf. [36] for a modified variant) to
describe the SU(3) gluon plasma, which displays a first-order
phase transition. (This is actually not so surprising, as [20]
has demonstrated that a two-parameter ansatz for the poten-
tial allows either for a cross-over, or a first-order phase tran-
sition or a second-order transition, depending on the choice
of the parameters. Other examples can be found in [22,37],
where one form of the bottom–up ansatz allows for different
transition types.) To elucidate the origin of such a difference
we exhibit in Fig. 3 a few relevant quantities of both opti-
mized models.

For the pure gluon plasma (left panel) the quantity V ′/V
has a first maximum of about 0.8 at φH ≈ 5.1. In the adiabatic
approximation [20] the velocity of sound squared is

v2
s ≈ 1

3
− 1

2

(
V ′

V

)2

+ · · · , (13)

i.e. a local maximum (minimum) of V ′/V is related to a local
minimum (maximum) of v2

s . If V ′/V is sufficiently large,
v2
s can go to zero. In fact, the adiabatic approximation is

quite accurate [compare the red dot-dashed curve (adiabatic
approximation) and the dashed curve (exact result) in Fig. 3-
left panel]. That implies that lifting V ′/V sufficiently causes
a first-order phase transition, here signaled by v2

s = 0. The
entropy density s(φH ) is a monotonously dropping function,
as holds true for the considered examples (and this is assumed
to hold in general in the thermodynamically stable phase;
see [21]). Hence, v2

s = 0 corresponds to an extremum of
T (φH ), which is a minimum (maximum) if dv2

s /dφH < 0
(dv2

s /dφH > 0). Thus, if V ′/V is adjusted such that v2
s (φH )

becomes negative in some φH interval and then, for larger
φH , rises to become positive again, the local minimum of
T (φH ) is followed by a local maximum. (These extrema are
very shallow in the left panel of Fig. 3 and hardly visible
on the used scale.) Such a behavior of T (φH ) leads in turn
to the usual loop structure of p(T ), characteristic of a first-
order phase transition. For the case at hand, the pressure is
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always positive. (In contrast, the IHQCD model [21] has one
global minimum of T (φH ), which gives rise to the high-
temperature branch and the unstable section of p(φH ); the
low-temperature branch is represented by the line p = 0
corresponding to the thermal gas.)

Inspection of the same quantities for our fit of the QCD
equation of state (see right panel in Fig. 3) reveals V ′/V <

0.8 everywhere in the considered range of φ from 0 (UV
region) up to 10 (toward the IR region), that is, v2

s > 0 every-
where. Also here, the adiabatic approximation is quite accu-
rate [compare the red dot-dashed curve (adiabatic approxi-
mation) and the dashed curve (exact result) in Fig. 3-right
panel].

Note that Fig. 3 also unravels some uncomfortable features
of the ansatz (8) with parameters adjusted to the lattice Yang–
Mills equation of state as in [28]: To catch the shape of ther-
modynamic quantities in the temperature range (0.7−10)Tc,
the ansatz (8) does not qualify to continue toward the deep IR
region, since, e.g., v2

s becomes negative for φH � 9.5, sig-
naling the break-down of the ansatz’s capabilities. (From the
IHQCD viewpoint such a behavior is admissible: the point
where v2

s = 0 would signal a Hawking–Page phase transi-
tion to the p = 0 phase, and desirable: the model becomes
zero-T confining [21]. In contrast, our ansatz (8) is an ad hoc
construction to mimic the Yang–Mills equation of state for
T > 0.7Tc (up to 10Tc), corresponding to φH � 8.5 (down to
φH ≈ 1.5). It can be supplemented by further terms becom-
ing relevant for φH � 8.5. Thus, it is meaningless to derive
from (8) properties of the boundary theory in the IR region.)
In contrast, for the QCD parameter adjustment [see (9)], the
ansatz (8) seems to be applicable toward the deep IR region.

Upon an integration of V ′/V the potentials V (φ) emerge,
displayed in Fig. 4. In contrast to V ′/V , the potentials look
quite featureless, both in the region where the softest point

Fig. 4 The dilaton potentials V (φ) in units of −12L2 for the ansatz (8)
with parameter sets from (9) (solid blue or red dashed curve for the fit of
v2
s or s/T 3; the arrows point to the location where v2

s has the minimum).
The potential (8) with parameters adjusted to the Yang–Mills equation
of state [28] is exhibited by the dotted black curve (the un/metastable
region is depicted by the gray polygon). Vertical dashed (dotted) lines
bracket the fit range to QCD [18] (Yang–Mills [17]) lattice data

(minimum of v2
s ) appears for the QCD equation of state

(depicted by the arrows) and in the region of the first-order
phase transition for the Yang–Mills equation of state (gray
polygon).

4 Discussion and summary

In contrast to the IHQCD model, which covers quite a lot
of QCD features both for the pure gluon plasma [21,38]
and for QCD in the Veneziano limit [39], at finite as well
as at zero temperature together with a direct account of the
two-loop ’t Hooft running coupling, we consider here a sim-
ple holographic gravity–single-dilaton model without any
explicit a priori scale setting. All parameters are adjusted to
finite-temperature lattice QCD thermodynamics in a selected
temperature range. We formulate a simple criterion to see
already at the dilaton potential (actually its scaled deriva-
tive) whether a first-order phase transition can emerge, as
for the pure gluon plasma, or a cross-over is encoded, as for
QCD at μ = 0. While our focus is clearly on features in a
limited temperature range at T ≥ Tc, also some section of the
low-temperature region can be successfully accommodated
in the model, leaving the deep IR region for further studies.
We also stress that we do not require a specified behavior of
the model outcome in the UV region. Note here that the influ-
ence of both asymptotic regimes on the equation of state in
the considered temperature interval is fairly small: as shown
in [28] the influence of the UV region on dimensionless ther-
modynamic quantities should not exceed a few percent; for
T > 0.7 Tc, the deep IR region contributes to p and I as a
small integration constant, while s, T , v2

s , and the viscosities
are independent of it. Hence, although our dilaton potentials
ignore QCD features at T → 0 and T → ∞, we argue that
they qualify for further investigations. For instance, supple-
mented by a fit of the quark number susceptibility one can
repeat the analysis of [14,15] with an up-to-date input to a
holographic study of the phase diagram. Even prior to that
we note the interesting drop of the ratio ζ/η by 50 % at Tc
when including quarks.

Another obvious extension of our studies would be the
inclusion of a field dual to the chiral condensate 〈qq̄〉, which
is responsible not only for the breaking of conformal invari-
ance in addition to the gluon condensate as expressed by the
trace anomaly but, even more importantly, it is in the chi-
ral limit an order parameter of chiral symmetry breaking in
QCD. Extensive investigations in this direction, albeit for the
Veneziano limit QCD, were performed in [39], where chiral
symmetry breaking is realized by tachyon dynamics.

In summary, we present an adjustment of a single-field
dilaton potential to recently confirmed lattice QCD thermo-
dynamics data in the temperature range (0.7−3.5)Tc . A crite-
rion is delivered for ensuring a cross-over at the softest point.
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