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The basic market microstructure model specifies that the price/return innovation and the volatility innovation are independent
Gaussian white noise processes. However, the financial leverage effect has been found to be statistically significant inmany financial
time series. In this paper, a novel market microstructuremodel with leverage effects is proposed.Themodel specification assumed a
negative correlation in the errors between the price/return innovation and the volatility innovation. With the new representations,
a theoretical explanation of leverage effect is provided. Simulated data and daily stock market indices (Shanghai composite index,
Shenzhen component index, and Standard and Poor’s 500 Composite index) via Bayesian Markov Chain Monte Carlo (MCMC)
method are used to estimate the leverage market microstructure model. The results verify the effectiveness of the model and
its estimation approach proposed in the paper and also indicate that the stock markets have strong leverage effects. Compared
with the classical leverage stochastic volatility (SV) model in terms of DIC (Deviance Information Criterion), the leverage market
microstructure model fits the data better.

1. Introduction

Financial system is a complex dynamic system. Many math-
ematical models have already been proposed to describe the
dynamics of financial markets. With the fast development of
mathematical finance in recent years, stochastic differential
equations have been widely used to describe the dynamics
of a wide variety of random in finance. The current most
acceptable theorem of price movements in financial markets
is that they are random walks with predictive errors close
to white noise and this is due to the Markov properties of
financial time series. Hence,much of financial theory is based
on this assumption.

It has been long recognized that the returns of financial
assets are negatively correlated with changes in the volatilities
of returns; that is, there is leverage effect between volatility
and price/return. Black [1] and Christie [2] have found
empirical evidence of the leverage effect; that is, volatility
tends to rise in response to bad news but fall in response to

good news. Christie [2] provides a theoretical explanation of
leverage effect under a Modigliani/Miller economy.

Modeling of financial market volatility has been one
of the most active areas of research in empirical finance
and time series econometrics over the past two decades.
Two types of volatility models, the ARCH (autoregressive
conditional heteroskedasticity) model and the SV (stochastic
volatility) model, are well estimated in financial economet-
rics. Numerous researchers develop their extensions and
found overwhelming evidence of leverage effect. For instance,
Bollerslev [3] proposed the generalized ARCH (GARCH)
model, which formulates the serial dependence of volatil-
ity and incorporates the past observations into the future
volatility. Nelson [4] proposed the EGARCH (exponential
GARCH) specification, modeling the leverage effect, which
refers to the increase in volatility following a previous drop in
stock returns. while Glosten et al. [5] developed a threshold
indicator functionGARCHmodel with leverage effect, which
is commonly called the GJR model. A common idea used
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in the above models is the leverage effect, in which negative
shocks to price/return increase the predictable volatility to a
greater extent than do positive shocks.

On the other hand, regarding volatility clustering, the
stochastic volatility (SV) model has been widely used to
model the time-varying variance of time series in financial
econometrics. In the SV literature, the asymmetric (leverage)
volatility response is often studied by specifying a negative
correlation between the return innovation and the volatil-
ity innovation. This classical leverage SV model, proposed
by Harvey and Shephard [6], requires correlation between
the return innovation 𝜉

𝑡
and the volatility innovation 𝜂

𝑡+1
.

Instead of the dependence, that is, corr(𝜉
𝑡
, 𝜂
𝑡+1
) = 𝜌, Jacquier

et al. [7] generalized the basic SV model with leverage
effect by allowing for an dependence between 𝜉

𝑡
and 𝜂

𝑡
;

that is, corr(𝜉
𝑡
, 𝜂
𝑡
) = 𝜌. Yu [8] gives comments on the JPR

specification [7] and shows that it does not necessarily lead
to a leverage effect and hence is not theoretically justified.
Following Harvey and Shephard [6], Jacquier et al. [7], Yu [8,
9], Omori et al. [10], Wang et al. [11], Asai and McAleer [12],
and Tsiotas [13] extend the SV specification with leverage.

Differing from the ARCH model and the SV model, a
phenomenological model based on identifying the processes
influencing the demand and supply of amarketwas proposed,
which was called the market microstructure model [14].
O’Hara [15] defines market microstructure as “the study
of the process and outcomes of exchanging assets under a
specific set of rules. While much of economics abstracts from
the mechanics of trading, microstructure theory focuses on
how specific trading mechanisms affect the price formation
process.” In microeconomics, supply and demand is an
economic model of price determination in a market; see, for
example, Marshall [16], Zhang [17]. On the other hand, the
market liquidity affects the asset prices and expected returns.
Theory and empirical evidence suggests that, for an asset with
given cash flow, the higher its market liquidity, the lower
its expected return (e.g., [18, 19]). In this paper, the market
microstructure model assumes that asset price is driven by
the excess demand, and the amplitude of price changes is
dependent on the liquidity of the market. Some improve-
ments of the market microstructure model and their esti-
mation approaches as well as applications [20, 21] were also
presented. Although Peng et al. [22, 23] and Xi et al. [24, 25]
proposed the generalized market microstructure (GMMS)
models, which included jump component for capturing the
low-frequency and large-amplitude abnormal vibrations of
price, they did not consider the important property, namely,
leverage effect. Recently, to explain essential characteristics
of skewness and heavy tails, Xi et al. [25] proposed the
heavy-tailedmarketmicrostructuremodel based on Student-
𝑡 distribution (MM-𝑡). However, all of the above market
microstructure models are difficult to explain the asymmetry
in the relation between volatility and price/return. Motivated
by the empirical evidence, this paper is concerned with the
specification for modeling financial leverage effect in the
marketmicrostructuremodel, which allows for a dependence
between the price innovation and the volatility innovation to
pick up the kind of leverage behavior.

The remainder of the study is organized as follows.
Section 2 introduces the market microstructure model with
leverage and gives a theoretical explanation of leverage
effect. In Section 3, we discuss the MCMC estimation for
our market microstructure model with leverage. Section 4
describes the simulated data results by MCMC method.
Section 5 displays and discusses the empirical findings using
the leveragemarketmicrostructuremodel. Section 6 provides
the model comparison between the leverage SV model and
the leverage market microstructure model. Section 7 gives
some concluding remarks.

2. Leverage in the Market
Microstructure Model

To deal with the dynamics of a financialmarket fromdifferent
points of view, one phenomenological microstructure model
based on identifying different processes influencing the
demand and supply of the market is defined by [26]

𝑑𝑃
𝑡
= 𝜆𝜙
𝑡
𝑑𝑡, (1)

where 𝑃
𝑡
is the asset price, 𝜆 is the (inverse of) market

liquidity, and 𝜙
𝑡
is the excess demand which is defined by

𝜙
𝑡
= 𝜙+
𝑡
− 𝜙−
𝑡
, where 𝜙+

𝑡
is the instantaneous demand and

𝜙−
𝑡
is the instantaneous supply at any given instant of time for

the asset. 𝜙
𝑡
characterizes whether the market is overvalued

(𝜙
𝑡
> 0, which tends to push the price up) or undervalued

(𝜙
𝑡
< 0, which tends to push the price down). Model (1)

assumes that price 𝑃
𝑡
is driven by the excess demand 𝜙

𝑡
, and

the amplitude of price changes is determined by the market
liquidity, that is, 1/𝜆.

However, model (1) only provides an abstract description
for the dynamics of market. To estimate the two hidden
market state variables (𝜆 and 𝜙

𝑡
) from a time series of price,

model (1) can then be written as [14, 20]

𝑑𝑃
𝑡
= 𝜆
𝑡
𝜙
𝑡
𝑑𝑡 + 𝜆

𝑡
𝑑𝑤
1,𝑡
,

𝑑𝜙
𝑡
= (𝛼
1
+ 𝛽
1
𝜙
𝑡
) 𝑑𝑡 + 𝛾

1
𝑑𝑤
2,𝑡
,

𝑑 log 𝜆
𝑡
= (𝛼
2
+ 𝛽
2
log 𝜆
𝑡
) 𝑑𝑡 + 𝛾

2
𝑑𝑤
3,𝑡
,

(2)

where 𝑤
1,𝑡
, 𝑤
2,𝑡
, and 𝑤

3,𝑡
are independent Brownian motion

processes and 𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, and 𝛾

1
and 𝛾

2
are constant

parameters.
The first equation in model (2) describes the financial

asset price process. It is notable that the conditional expected
value and the conditional variance of the financial asset price
process are given by

E (𝑑𝑃
𝑡
) = E (𝜆

𝑡
𝜙
𝑡
𝑑𝑡 + 𝜆

𝑡
𝑑𝑤
1,𝑡
) = 𝜆
𝑡
𝜙
𝑡
𝑑𝑡,

Var (𝑑𝑃
𝑡
) = Var (𝜆

𝑡
𝜙
𝑡
𝑑𝑡 + 𝜆

𝑡
𝑑𝑤
1,𝑡
) = 𝜆
2

𝑡
𝑑𝑡.

(3)

The second equation in model (2) models the process
of the immeasurable hidden excess demand variable 𝜙

𝑡
. The

third equation in model (2) models the dynamics of liquidity,
which together with the first equation resembles a stochastic
volatility (SV) model in which the variance is specified to



Discrete Dynamics in Nature and Society 3

follow some latent stochastic process. Consequently, the third
equation reveals characterization of volatility dynamics. In
contrast with the SV model and the ARCH model, the
market microstructure model (model (2)) offers a better
representation of the internal characteristics of a financial
price varying process and information which possess better
stability than the market trend information obtained for the
mere prediction of a price process.

To make the above market microstructure model char-
acterize the leverage effect for financial variables, here we
assume that𝑤

1,𝑡
,𝑤
3,𝑡

are two dependence Brownian motions
with correlationmeasured by 𝜌; that is, corr(𝑑𝑤

1,𝑡
, 𝑑𝑤
3,𝑡
) = 𝜌.

Here, the correlation coefficient 𝜌 < 0 implies model (2)
with leverage effect, while 𝜌 = 0 implies model (2) without
leverage effect.

In the empirical literature, the continuous model is often
discretized to facilitate estimation. Inmathematics, the Euler-
Maruyama method [27] is a simple and generalized method
for the approximate numerical solution of a stochastic differ-
ential equation.

A general form for a stochastic differential equation is

𝑑𝑋
𝑡
= 𝑎 (𝑋

𝑡
) 𝑑𝑡 + 𝑏 (𝑋

𝑡
) 𝑑𝑤
𝑡
,

𝑋 (0) = 𝑋
0
,

(4)

where 𝑤
𝑡
stands for the Wiener process that depends contin-

uously on 𝑡 ∈ [0, 𝑇].
Stochastic differential equation (4) can be written in

integral form as

𝑋
𝑡
= 𝑋
0
+ ∫
𝑡

0

𝑎 (𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑏 (𝑋
𝑠
) 𝑑𝑤
𝑠
. (5)

To construct a numerical method from the integral form (5),
we begin by setting Δ𝑡 = 𝑇/𝑁 for some positive integer 𝑁
and 𝑡
𝑛
= 𝑛Δ𝑡 (𝑛 = 1, 2, . . . , 𝑁) and also define the numerical

approximation to 𝑋(𝑡
𝑛
) as 𝑋

𝑛
. Setting successively 𝑡 = 𝑡

𝑛+1

and 𝑡 = 𝑡
𝑛
in integral form (5), we can obtain

𝑋(𝑡
𝑛+1
) = 𝑋

0
+ ∫
𝑡
𝑛+1

0

𝑎 (𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡
𝑛+1

0

𝑏 (𝑋
𝑠
) 𝑑𝑤
𝑠
, (6)

𝑋(𝑡
𝑛
) = 𝑋

0
+ ∫
𝑡
𝑛

0

𝑎 (𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡
𝑛

0

𝑏 (𝑋
𝑠
) 𝑑𝑤
𝑠
. (7)

If we subtract (7) from (6), then we obtain

𝑋(𝑡
𝑛+1
) = 𝑋 (𝑡

𝑛
) + ∫
𝑡
𝑛+1

𝑡
𝑛

𝑎 (𝑋
𝑠
) 𝑑𝑠 + ∫

𝑡
𝑛+1

𝑡
𝑛

𝑏 (𝑋
𝑠
) 𝑑𝑤
𝑠
. (8)

We can now consider approximating each of the integral
terms. For the first integral in (8), we can use the conventional
deterministic quadrature:

∫
𝑡
𝑛+1

𝑡
𝑛

𝑎 (𝑋
𝑠
) 𝑑𝑠 ≈ (𝑡

𝑛+1
− 𝑡
𝑛
) 𝑎 (𝑋

𝑛
) = Δ𝑡𝑎 (𝑋

𝑛
) . (9)

And, for the second integral, we use the Ito formula:

∫
𝑡
𝑛+1

𝑡
𝑛

𝑏 (𝑋
𝑠
) 𝑑𝑤
𝑠
≈ 𝑏 (𝑋

𝑛
) (𝑤
𝑛+1

− 𝑤
𝑛
) = Δ𝑤

𝑛
𝑏 (𝑋
𝑛
) . (10)

By combining these together, the Euler-Maruyama method
takes the form

𝑋
𝑛+1

= 𝑋
𝑛
+ Δ𝑡𝑎 (𝑋

𝑛
) + Δ𝑤

𝑛
𝑏 (𝑋
𝑛
) , (11)

where Δ𝑤
𝑛
= √Δ𝑡𝜀 (𝜀 ∼ 𝑁(0, 1)).

Using the above Euler-Maruyama discrete time approxi-
mation, model (2) can be then derived as follows:

𝑃
𝑘
= 𝑃
𝑘−1

+ 𝜙
𝑘−1
𝜆
𝑘−1

+ 𝛾
3
𝜆
𝑘−1
𝜉
1,𝑘
,

𝜙
𝑘
= 𝛼
1
+ (1 + 𝛽

1
) 𝜙
𝑘−1

+ 𝛾
1
𝜉
2,𝑘
,

log 𝜆2
𝑘
= 𝛼
2
+ (1 + 𝛽

2
) log 𝜆2

𝑘−1
+ 𝛾
2
𝜉
3,𝑘
,

(12)

where 𝜉
1,𝑘
, 𝜉
2,𝑘
, and 𝜉

3,𝑘
are iid 𝑁(0, 1) (the abbreviation iid

refers to independent and identically distributed) and 𝜉
1,𝑘
,

𝜉
3,𝑘+1

are dependent errors with correlation measured by 𝜌;
that is, corr(𝜉

1,𝑘
, 𝜉
3,𝑘+1

) = 𝜌. 𝛾
3
is a new constant parameter,

which describes the relation between 𝑃
𝑘
, 𝜆
𝑘−1

and 𝜙
𝑘−1

.
To build the observation equation, 𝑃

𝑘
is chosen as

observation variable. So, the state space representation of
model (12) is given by

X
𝑘
= (

𝑃
𝑘

𝜙
𝑘

log 𝜆2
𝑘

)

=(

𝑃
𝑘−1

+ 𝜙
𝑘−1
𝜆
𝑘−1

+ 𝛾
3
𝜆
𝑘−1
𝜉
1,𝑘

𝛼
1
+ (1 + 𝛽

1
) 𝜙
𝑘−1

+ 𝛾
1
𝜉
2,𝑘

𝛼
2
+ (1 + 𝛽

2
) log 𝜆2

𝑘−1
+ 𝛾
2
𝜉
3,𝑘

),

𝑌
𝑘
= 𝑃
𝑘
+ 𝜀
1
,

(13)

where 𝜀
1
is iid𝑁(0, 𝑒2

1
).

To fully understand the leverage effect, it is convenient
to adopt the Gaussian nonlinear state space form with
uncorrelated error terms. To do so, let us denote 𝜉

𝑘+1
≡

(𝜉
3,𝑘+1

− 𝜌𝜉
1,𝑘
)/√1 − 𝜌2 and rewrite (12) as

(

𝑃
𝑘

𝜙
𝑘

log 𝜆2
𝑘+1

)

=(

𝑃
𝑘−1

+ 𝜙
𝑘−1
𝜆
𝑘−1

+ 𝛾
3
𝜆
𝑘−1
𝜉
1,𝑘

𝛼
1
+ (1 + 𝛽

1
) 𝜙
𝑘−1

+ 𝛾
1
𝜉
2,𝑘

𝛼
2
+ (1 + 𝛽

2
) log 𝜆2

𝑘
+ 𝛾
2
(𝜌𝜉
1,𝑘
+ √1 − 𝜌2𝜉

𝑘+1
)

),

(14)

where 𝜉
𝑘+1

is iid 𝑁(0, 1) and 𝜉
1,𝑘
, 𝜉
2,𝑘
, and 𝜉

𝑘+1
are indepen-

dent Gaussian white noise processes.
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Also, the system of (14) can be alternatively specified by

(

𝑃
𝑘

𝜙
𝑘

log 𝜆2
𝑘+1

) =(

(

𝑃
𝑘−1

+ 𝜙
𝑘−1
𝜆
𝑘−1

+ 𝛾
3
𝜆
𝑘−1
𝜉
1,𝑘

𝛼
1
+ (1 + 𝛽

1
) 𝜙
𝑘−1

+ 𝛾
1
𝜉
2,𝑘

𝛼
2
+ (1 + 𝛽

2
) log 𝜆2

𝑘
+
𝛾
2
𝜌 (𝑃
𝑘
− 𝑃
𝑘−1

− 𝜙
𝑘−1

log 𝜆2
𝑘−1
)

(𝛾
3
log 𝜆2
𝑘−1
)

+ 𝛾
2
√1 − 𝜌2𝜉

𝑘+1

)

)

. (15)

For simplicity, we set

𝜎
𝑘
= log 𝜆2

𝑘
. (16)

In finance, the volatility of asset price corresponds to standard
deviation. Consequently, 𝜎

𝑘
in (16) represents the volatility of

asset price, which is explained by the liquidity process.
To compute the partial derivative 𝜕𝜎

𝑘+1
/𝜕𝑟
𝑘
, we first

define

𝐹 (𝜎
𝑘+1
, 𝑟
𝑘
) ≡ 𝜎
𝑘+1

− 𝛼
2
− (1 + 𝛽

2
) 𝜎
𝑘

−
𝛾
2
𝜌 (𝑃
𝑘
− 𝑃
𝑘−1

− 𝜙
𝑘−1
𝑒𝜎𝑘−1/2) 𝑒−𝜎𝑘−1/2

𝛾
3

− 𝛾
2
√1 − 𝜌2𝜉

𝑘+1

= 𝜎
𝑘+1

− 𝛼
2
− (1 + 𝛽

2
) 𝜎
𝑘

−
𝛾
2
𝜌 (𝑟
𝑘
− 𝜙
𝑘−1
𝑒𝜎𝑘−1/2) 𝑒−𝜎𝑘−1/2

𝛾
3

− 𝛾
2
√1 − 𝜌2𝜉

𝑘+1
= 0,

(17)

where 𝑟
𝑘
= 𝑃
𝑘
− 𝑃
𝑘−1

is a compounded return.
According to the derivation rule of the implicit function,

we have

𝜕𝜎
𝑘+1

𝜕𝑟
𝑘

= −
𝜕𝐹/𝜕𝑟

𝑘

𝜕𝐹/𝜕𝜎
𝑘+1

=
𝛾
2

𝛾
3

𝜌𝑒
−𝜎
𝑘−1
/2
. (18)

Obviously, if 𝜌 < 0 and holding everything else constant,
a fall in the stock return (𝑟

𝑘
< 0) leads to an increase of future

expected volatility 𝜎
𝑘+1

. Instead, a rise in the stock return
(𝑟
𝑘
> 0) leads to an decrease of future expected volatility 𝜎

𝑘+1
.

This is a so-called leverage effect, a negative shock to returns
that increases the predictable volatility to a greater extent than
does a positive shock.

3. Estimation of the Leverage Market
Microstructure Model

For estimation of the basic market microstructure model,
Peng et al. [20] proposed the extended Kalman filter (EKF)
and the maximum likelihood method. However, its state
equations are highly nonlinear, the EKF may give a high

estimation error, and it may lead to inaccurate maximum
likelihood estimates. Recently, Markov Chain Monte Carlo
(MCMC) methods have become one of the most important
tools for estimating stochastic volatility models since it was
introduced in Jacquier et al. [28] to analyze the basic SV
model. A fast and reliable MCMC algorithm, proposed by
Kim et al. [29], was used in the SV model (see e.g., [10,
30, 31]). On the other hand, Bauwens and Lubrano [32],
Vrontos et al. [33], and Nakatsuma [34] develop the MCMC
estimationmethod for themodels in the GARCH class.Their
estimation results are very good sinceMCMCprovides a fully
likelihood-based inference.

In statistics, Markov Chain Monte Carlo (MCMC) meth-
ods are a class of algorithms for sampling from probability
distributions based on constructing a Markov chain that
has the desired distribution as its equilibrium distribution.
The state of the chain after a large number of steps is then
used as a sample of the desired distribution. To facilitate
an efficient posterior inference using WinBUGS (Windows
version of Bayesian Analysis Using Gibbs Sampler, a statis-
tical software for Bayesian analysis using MCMC methods.
WinBUGSHomepage: http://www.mrc-bsu.cam.ac.uk/bugs/
winbugs/contents.shtml), the following state and observation
equations for the model (13) were obtained as

𝜎
𝑘+1

| 𝜎
𝑘
, 𝛼
2
, 𝛽
2
, 𝛾
2
∼ 𝑁(𝛼

2
+ (1 + 𝛽

2
) 𝜎
𝑘
, 𝛾
2

2
) ,

𝜙
𝑘
| 𝜙
𝑘−1
, 𝛼
1
, 𝛽
1
, 𝛾
1
∼ 𝑁(𝛼

1
+ (1 + 𝛽

1
) 𝜙
𝑘−1
, 𝛾
2

1
) ,

𝑃
𝑘
| 𝑃
𝑘−1
, 𝜙
𝑘−1
, 𝜎
𝑘+1
, 𝜎
𝑘
, 𝜎
𝑘−1
, 𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
2

1
, 𝜌

∼ 𝑁(𝑃
𝑘−1

+ 𝜙
𝑘−1
𝑒
𝜎
𝑘−1
/2
+
𝛾
3

𝛾
2

⋅ 𝜌𝑒
𝜎
𝑘−1
/2
(𝜎
𝑘+1

− 𝛼
2
− (1 + 𝛽

2
) 𝜎
𝑘
) ,

𝛾
2

3
𝑒
𝜎
𝑘−1 (1 − 𝜌

2
)) ,

𝑌
𝑘
| 𝑃
𝑘
, 𝑒
2

1
∼ 𝑁(𝑃

𝑘
, 𝑒
2

1
) .

(19)

In this context, we face the problem of simulating
a multivariate density consisting of the parameter 𝜃 =
(𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌) and the unobserved states 𝑃

𝑘
,

𝜙
𝑘
, and 𝜎

𝑘
. Let 𝑌

1:𝐾
= {𝑌
1
, . . . , 𝑌

𝐾
} be the observed asset and

the vectors X
0:𝐾

= {𝑃𝑇
0:𝐾
, 𝜙𝑇
0:𝐾
, 𝜎𝑇
0:𝐾
}𝑇 are unobserved states,

where 𝑃
0:𝐾

= {𝑃
0
, 𝑃
1
, . . . , 𝑃

𝐾
}, 𝜙
0:𝐾

= {𝜙
0
, 𝜙
1
, . . . , 𝜙

𝐾
}, and

𝜎
0:𝐾

= {𝜎
0
, 𝜎
1
, . . . , 𝜎

𝐾
}. By Bayes’ theorem, the joint posterior
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distribution of the unobservable variables given the data is
obtained as
𝑝 (𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌, 𝑃
0:𝐾
, 𝜙
0:𝐾
, 𝜎
0:𝐾

| 𝑌
1:𝐾
)

∝ 𝑝 (𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌, 𝑃
0:𝐾
, 𝜙
0:𝐾
, 𝜎
0:𝐾
)

⋅ 𝑝 (𝑌
1:𝐾

| 𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌, 𝑃
1:𝐾
, 𝜙
1:𝐾
, 𝜎
1:𝐾
) ,

(20)

where the joint prior density is

𝑝 (𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌, 𝑃
0:𝐾
, 𝜙
0:𝐾
, 𝜎
0:𝐾
)

= 𝑝 (𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌) 𝑝 (𝑃

0
)

⋅
𝐾

∏
𝑘=1

𝑝 (𝑃
𝑘
| 𝑃
𝑘−1
, 𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌)

⋅ 𝑝 (𝜙
0
)

⋅
𝐾

∏
𝑘=1

𝑝 (𝜙
𝑘
| 𝜙
𝑘−1
, 𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌)

⋅ 𝑝 (𝜎
0
)

⋅
𝐾

∏
𝑘=1

𝑝 (𝜎
𝑘
| 𝜎
𝑘−1
, 𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌)

(21)

and the likelihood function is
𝑝 (𝑌
1:𝐾

| 𝛼
1
, 𝛽
1
, 𝛼
2
, 𝛽
2
, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝑒
1
, 𝜌, 𝑃
1:𝐾
, 𝜙
1:𝐾
, 𝜎
1:𝐾
)

=
𝐾

∏
𝑘=1

𝑝 (𝑌
𝑘
| 𝑃
𝑘
, 𝑒
1
) .

(22)

A Markov chain is generated by Gibbs sampling and
its stationary distribution is the joint posterior distribution
(21). Under a given prior probability density 𝑝(𝜃) for 𝜃, it
is now possible to efficiently sample the posterior density
𝑝(𝑃, 𝜙, 𝜎, 𝜃 | 𝑌) by the MCMC technique. We develop the
following sampling algorithm for the model (13).

Step 1. Initialize

𝛼
(0)

1
, 𝛽
(0)

1
, 𝛼
(0)

2
, 𝛽
(0)

2
, 𝛾
(0)

1
, 𝛾
(0)

2
, 𝛾
(0)

3
, 𝑒
(0)

1
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
, 𝜎
0

0:𝐾
. (23)

Step 2. Sample 𝛼(1)
1

from

𝑝 (𝛼
1
| 𝛽
(0)

1
, 𝛼
(0)

2
, 𝛽
(0)

2
, 𝛾
(0)

1
, 𝛾
(0)

2
, 𝛾
(0)

3
, 𝑒
(0)

1
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) .

(24)

Step 3. Sample 𝛽(1)
1

from

𝑝 (𝛽
1
| 𝛼
(1)

1
, 𝛼
(0)

2
, 𝛽
(0)

2
, 𝛾
(0)

1
, 𝛾
(0)

2
, 𝛾
(0)

3
, 𝑒
(0)

1
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) .

(25)

Step 4. Sample 𝛼(1)
2

from

𝑝 (𝛼
2
| 𝛼
(1)

1
, 𝛽
(1)

1
, 𝛽
(0)

2
, 𝛾
(0)

1
, 𝛾
(0)

2
, 𝛾
(0)

3
, 𝑒
(0)

1
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) .

(26)

Step 5. Sample 𝛽(1)
2

from

𝑝 (𝛽
2
| 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛾
(0)

1
, 𝛾
(0)

2
, 𝛾
(0)

3
, 𝑒
(0)

1
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) .

(27)

Step 6. Sample 𝛾(1)
1

from

𝑝 (𝛾
1
| 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛽
(1)

2
, 𝛾
(0)

2
, 𝛾
(0)

3
, 𝑒
(0)

1
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) .

(28)

Step 7. Sample 𝛾(1)
2

from

𝑝 (𝛾
2
| 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛽
(1)

2
, 𝛾
(1)

1
, 𝛾
(0)

3
, 𝑒
(0)

1
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) .

(29)

Step 8. Sample 𝛾(1)
3

from

𝑝 (𝛾
3
| 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛽
(1)

2
, 𝛾
(1)

1
, 𝛾
(1)

2
, 𝑒
(0)

1
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) .

(30)

Step 9. Sample 𝑒(1)
1

from

𝑝 (𝑒
1
| 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛽
(1)

2
, 𝛾
(1)

1
, 𝛾
(1)

2
, 𝛾
(1)

3
, 𝜌
(0)
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
, 𝜎
0

0:𝐾
,

𝑌
1:𝐾
) .

(31)

Step 10. Sample 𝜌(1) from

𝑝 (𝜌 | 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛽
(1)

2
, 𝛾
(1)

1
, 𝛾
(1)

2
, 𝛾
(1)

3
, 𝑒
(1)

1
, 𝑃
0

0:𝐾
, 𝜙
0

0:𝐾
, 𝜎
0

0:𝐾
,

𝑌
1:𝐾
) .

(32)

Step 11. For 𝑘 = 0, 1, 2, . . . , 𝐾, sample 𝑃(1)
𝑘

from

𝑝 (𝑃
𝑘
| 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛽
(1)

2
, 𝛾
(1)

1
, 𝛾
(1)

2
, 𝛾
(1)

3
, 𝑒
(1)

1
, 𝜌
(1)
, 𝑃
−𝑘
, 𝜙
0

0:𝐾
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) ,

(33)

where 𝑃
−𝑘
= (𝑃(1)
1
, 𝑃(1)
2
, . . . , 𝑃(1)

𝑘−1
, 𝑃(0)
𝑘+1
, . . . , 𝑃(0)

𝐾
).

Step 12. For 𝑘 = 0, 1, 2, . . . , 𝐾, sample 𝜙(1)
𝑘

from

𝑝 (𝜙
𝑘
| 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛽
(1)

2
, 𝛾
(1)

1
, 𝛾
(1)

2
, 𝛾
(1)

3
, 𝑒
(1)

1
, 𝜌
(1)
, 𝑃
(1)

0:𝐾
, 𝜙
−𝑘
,

𝜎
0

0:𝐾
, 𝑌
1:𝐾
) ,

(34)

where 𝜙
−𝑘
= (𝜙(1)
1
, 𝜙(1)
2
, . . . , 𝜙(1)

𝑘−1
, 𝜙(0)
𝑘+1
, . . . , 𝜙(0)

𝐾
).

Step 13. For 𝑘 = 0, 1, 2, . . . , 𝐾, sample 𝜎(1)
𝑘

from

𝑝 (𝜎
𝑘
| 𝛼
(1)

1
, 𝛼
(1)

2
, 𝛽
(1)

1
, 𝛽
(1)

2
, 𝛾
(1)

1
, 𝛾
(1)

2
, 𝛾
(1)

3
, 𝑒
(1)

1
, 𝜌
(1)
, 𝑃
(1)

0:𝐾
, 𝜙
(1)

0:𝐾
,

𝜎
−𝑘
, 𝑌
1:𝐾
) ,

(35)

where 𝜎
−𝑘
= (𝜎(1)
1
, 𝜎(1)
2
, . . . , 𝜎(1)

𝑘−1
, 𝜎(0)
𝑘+1
, . . . , 𝜎(0)

𝐾
).

Step 14. Repeat the above procedure and stop until the
number of iterations is 𝑀, which must be large enough
to guarantee that the Markov chain reaches stationary
distribution.
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Figure 1: Simulation price data 𝑃
𝑘
made from model (13).
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Figure 2: Simulation data 𝜙
𝑘
, 𝑒𝜎𝑘 made from model (13).

4. Simulation Study

For simulation study of the proposed leverage market
microstructure model by the MCMC algorithm, 1000 obser-
vations from model (13) are generated with the unknown
parameters 𝛼

1
= 0.0013, 𝛼

2
= −0.0035, 1 + 𝛽

1
= 0.98,

1 + 𝛽
2
= 0.97, 𝛾

1
= 0.047, 𝛾

2
= 0.032, and 𝜌 = −0.2 and the

known parameters 𝛾
3
= 1, 𝑒

1
= 1𝑒 − 5. The initial value 𝑃

0
,

𝜙
0
, and 𝜎

0
are taken as 199.3, 0.1489, and 0.1024, respectively.

Figures 1 and 2 show the simulation data made from model
(13).

Meyer and Yu [35] found that the statistical inference
is insensitive to changing in the prior distributions of
the parameters. Hence, the similar prior distributions are
assumed as follows:

𝛼
1
∼ 𝑁(0, 10

−2
) ,

1 + 𝛽
1
∼ Beta (20, 1.5) ,

𝛼
2
∼ 𝑁(0, 10

−2
) ,

1 + 𝛽
2
∼ Beta (20, 1.5) ,

𝛾
−2

1
∼ Gamma (2.5, 0.0055) ,

𝛾
−2

2
∼ Gamma (2.5, 0.00256) ,

𝜌 ∼ 𝑈 (−1, 1) .

(36)

The Beta(20, 1.5) prior distribution for 1 + 𝛽
1
, 1 + 𝛽

2
implies

that the mean and standard deviation are 0.93, 0.0029.

The means and standard deviation of Gamma(2.5, 0.0055)
and Gamma(2.5, 0.00256) are 454.55, 287.48 and 976.56,
617.63, respectively.

In the experiment, a Markov chain is run for 20000
iterations and the initial 6000 iterations are discarded as the
burn-in period to ensure convergence. Figure 3 shows the
sample paths and the posterior densities for each parameter.
After discarding samples in the burn-in period, the sample
paths look stable, indicating that our sampling method
efficiency produces uncorrelated samples. Table 1 gives the
estimates for posterior means, standard deviations, and the
95% credible intervals. All estimated posterior means are
close to the true values and the true values are contained in
the 95% credible intervals. The simulation results show that
Bayes estimates have very good sampling properties.

5. Empirical Study

5.1. Stock Index in China. In this subsection, two stock
indices in China are employed to fit the leverage market
microstructuremodel, namely, the Shanghai composite index
and Shenzhen component index. The sample period is from
January 2, 1997, to June 30, 2004. The sample size is 1801 for
each series. The observation data 𝑃

𝑘
is computed as 𝑃

𝑘
=

100 × log𝑍
𝑘
, where 𝑍

𝑘
denotes the (closing) spot price.

Figure 4 shows the observations. Table 2 summarizes the
descriptive statistics of the two indices. These descriptive
statistics include sample means, standard deviations, skew-
ness, kurtosis, and the Jarque-Bera statistics.
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Figure 3: Path and density estimates of the leverage market microstructure model for simulated data (where 𝑎
1
= 𝛼
1
, 𝑎
2
= 𝛼
2
, 𝑏
1
= 1 + 𝛽

1
,

𝑏
2
= 1 + 𝛽

2
, 𝑐
1
= 𝛾
1
, 𝑐
2
= 𝛾
2
, and luo = 𝜌).

Table 1: Estimation results for simulated data.

Parameter True Mean SD 2.5 percentile Median 97.5 percentile
𝛼
1

0.0013 0.001304 1.002𝐸 − 4 0.001111 0.001304 0.001505

𝛼
2

−0.0035 −0.003494 9.956𝐸 − 5 −0.003688 −0.00349 −0.003296

1 + 𝛽
1

0.98 0.9874 0.006541 0.971 0.9866 0.9968

1 + 𝛽
2

0.97 0.9628 0.02023 0.906 0.9672 0.9861

𝛾
1

0.047 0.04103 0.009441 0.02662 0.03948 0.06083

𝛾
2

0.032 0.03541 0.008835 0.02542 0.03296 0.059

𝜌 −0.2 −0.2182 0.0216 −0.6038 −0.2274 0.2266
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Figure 4: The observation data ((a): Shanghai composite index, (b): Shenzhen component index).

Table 2: Descriptive statistics for Shanghai composite index and Shenzhen component index.

Index Mean Standard deviation Skewness Kurtosis Jarque-Bera statistics
Shanghai composite index 0.0233 1.552 −0.0835 9.172 2859.554
Shenzhen component index −0.0000453 1.705 0.00312 8.362 2156.039

Table 2 shows that the standard deviation is 1.552 for
the Shanghai composite index and 1.705 for the Shenzhen
component index, which indicates that the volatility level of
the latter is higher than that of the former. The skewness
of the Shanghai composite index is negative, while the
Shenzhen component index has slightly positive skewness.
The kurtosis of each index is clearly larger than that of a
normal distribution. Based on Jarque-Bera statistics, the two
indices strongly reject normality hypothesis. So, the statistics
results show the skewness and heavy tailedness of empirical
returns distribution of the data.

We consider model (13) to be fitted to the data. The
prior distributions for the parameters are the same as the
simulation study in Section 4. The parameter estimates for
the leverage market microstructure model based on 100000
iterations after a burn-in of 20000 are given in Table 3.
Figure 5 shows the sample paths and the posterior densities
for each parameter.

It is shown in Table 3 that the posterior means of 1 +
𝛽
2
are close to one, which indicates the well-known high

persistence of volatility in stockmarkets.The posteriormeans
of 𝜌 are −0.3475 and −0.2586, respectively. The 95% pos-
terior credibility intervals for 𝜌 are [−0.4788, −0.2154] and
[−0.4192, −0.108] and do not contain zero, which indicates
the presence of the credible leverage effect in Chinese stock
market. Compared with the Shenzhen component index,
the Shanghai composite index has more significant leverage
effect, which is consistent with the previous statistical results.

According to the estimated parameters, the volatility level
of the two indices can be obtained, respectively, as follows:

𝜇
1
= −

−5.763 × 10−4

0.9251 − 1
= −7.694 × 10

−3
,

𝜇
2
= −

−0.002349

0.9493 − 1
= −4.633 × 10

−2
.

(37)

Obviously, the volatility level of the Shanghai composite
index (−7.694 × 10−3) is lower than that of the Shenzhen

component index (−4.633 × 10−2), which is also coordinated
with the previous statistical results.This ismainly because the
Shenzhen stock is small-cap stocks, while the Shanghai stock
is large stocks.

5.2. Stock Index in U.S. In this subsection, we analyze the
series which contains 2519 observations of the Standard and
Poor’s 500 Composite (S&P500) index from January 2, 2002,
to December 30, 2011. Figure 6 shows the observations,
and Figure 7 gives the probability histogram of stock index
returns. Table 4 lists descriptive statistics of the index. From
Table 4, we can see that the series possesses the characteristic
of excess kurtosis, skewness, and volatility asymmetry, which
prompts us to analyze the data under the assumption of
skewness and volatility asymmetry.

Before we proceed to the estimation of the leverage
market microstructure model on the S&P500 index, the
prior distributions for the parameters are the same as the
simulation study in Section 5.1. To guarantee the convergence
of the parameters, the MCMC algorithm is running for
110000 iterations, and the initial 60000 samples are discarded.
Figure 8 shows the sample paths and posterior densities for
each parameter. Table 5 gives the estimated posterior means,
the standard deviations, and the 95% credible intervals.

From the estimation results of Table 5, it is seen that the
standard deviation and MC error are small and MC error is
1-2 order of magnitude smaller than the standard deviation,
which indicates that the MCMC estimation is accurate. The
estimate of 1 + 𝛽

2
shows the high persistence of volatilities

varying from 0.9795 to 0.9908, and the negative value of
𝜌 (ranging from −0.8650 to −0.6874) implies the credible
existence of leverage effects for the S&P500.

Compared with the estimates of Chinese stock market
in the previous section, American stock market has stronger
leverage effect. This is mainly because there is ±10% increase
in the limit for Chinese stock market; even, on the extreme
condition, the largest decline in daily stock price is only 10%.
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Figure 5: Continued.
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Figure 5: Sample path and density estimates for two indices.

Table 3: Empirical estimation results for two indices.

Index Parameter Mean SD MC error 2.5 percentile Median 97.5 percentile

Shanghai
composite
index

𝛼
1

−3.588𝐸 − 4 0.002697 1.124𝐸 − 4 −0.00591 −3.112𝐸 − 4 0.004956

𝛼
2

−5.763𝐸 − 4 0.02449 0.001346 −0.04714 4.838𝐸 − 4 0.04552

1 + 𝛽
1

0.9304 0.04995 0.002694 0.7924 0.9443 0.9787

1 + 𝛽
2

0.9251 0.01689 7.082𝐸 − 4 0.8887 0.9264 0.9543

𝛾
1

0.05965 0.01763 9.719𝐸 − 4 0.03364 0.05658 0.1036

𝛾
2

0.3679 0.03929 0.001917 0.2996 0.3663 0.4496

𝛾
3

1.199 0.18 0.01056 0.9034 1.177 1.57

𝑒
1

0.008126 0.004677 2.736𝐸 − 4 0.002771 0.006927 0.02006

𝜌 −0.3475 0.06774 0.002665 −0.4788 −0.3478 −0.2154

Shenzhen
component
index

𝛼
1

−0.004039 0.005084 1.77𝐸 − 4 −0.01513 −0.003641 0.005447

𝛼
2

−0.002349 0.008672 3.799𝐸 − 4 −0.0188 −0.002569 0.01492

1 + 𝛽
1

0.8445 0.08805 0.004545 0.6134 0.8668 0.951

1 + 𝛽
2

0.9493 0.01366 6.03𝐸 − 4 0.9185 0.9508 0.9721

𝛾
1

0.1083 0.03612 0.001988 0.06241 0.1003 0.2082

𝛾
2

0.2973 0.0369 0.001955 0.2318 0.2947 0.3778

𝛾
3

1.36 0.1379 0.007978 1.099 1.356 1.639

𝑒
1

0.008615 0.004806 2.822𝐸 − 4 0.002938 0.007354 0.02097

𝜌 −0.2586 0.0791 0.003338 −0.4192 −0.2576 −0.108

However, the stock market in the United States has no such
restrictions, and the fall in the extreme case far exceeds 10%.

6. Model Comparison

In order to compare the competing leverage SV model and
the leverage market microstructure model in terms of the
Deviance Information Criterion (DIC), the above three sets

of stock indices were fitted by the leverage stochastic volatility
model. The leverage stochastic volatility (SV) model can be
formulated as follows [6, 35]:

𝑦
𝑡
= 𝑒
ℎ
𝑡
/2
𝜉
𝑡
,

ℎ
𝑡
= 𝜇 + 𝜑 (ℎ

𝑡−1
− 𝜇) + 𝜏𝜂

𝑡
,

(38)

where 𝑦
𝑡
is the asset return, ℎ

𝑡
is the unobserved log-

volatility, 𝜇 represents the intercept, |𝜑| < 1 is the persistence
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Table 4: Descriptive statistics for S&P500.

Index Mean Standard deviation Skewness Kurtosis Jarque-Bera statistics
S&P500 0.003391 1.3883 −0.1832 11.1175 6927.3851

Table 5: Estimation results for S&P500.

Parameter Mean SD MC error 2.5 percentile Median 97.5 percentile
𝛼
1

0.004191 0.006326 3.599𝐸 − 4 −0.007307 0.003335 0.01872

𝛼
2

0.00771 0.003923 1.984𝐸 − 4 1.37𝐸 − 4 0.007663 0.01572

1 + 𝛽
1

0.6338 0.1335 0.00753 0.3478 0.6494 0.8401

1 + 𝛽
2

0.9857 0.002876 1.337𝐸 − 4 0.9795 0.9858 0.9908

𝛾
1

0.04162 0.01056 6.432𝐸 − 4 0.0253 0.04027 0.06742

𝛾
2

0.1584 0.01493 9.303𝐸 − 4 0.1311 0.1569 0.1892

𝛾
3

0.7655 0.05411 0.003546 0.6723 0.7633 0.8815

𝑒
1

0.0082 0.004425 2.93𝐸 − 4 0.003277 0.006704 0.01882

𝜌 −0.7805 0.04531 0.002657 −0.8650 −0.7833 −0.6874
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Figure 6: S&P500 time series 𝑃
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Figure 7: The probability histogram of S&P500.

in the volatility, 𝜏 is the log-volatility conditional standard
deviation, and 𝜉

𝑡
, 𝜂
𝑡
are iid 𝑁(0, 1) and corr(𝜉

𝑡
, 𝜂
𝑡+1
) = 𝜌.

The leverage effect measured by the correlation coefficient 𝜌
is expected to be negative.

For the leverage SV model, the prior distributions for
(𝜇, 𝜑, 𝜏2, 𝜌) are set as 𝜇 ∼ 𝑁(0, 10), (𝜑 + 1)/2 ∼ Beta(20, 1.5),
1/𝜏2 ∼ Gamma(2.5, 0.025), and 𝜌 ∼ 𝑈(−1, 1), which are the
same asMeyer andYu [35].Thenumbers ofMCMC iterations
for the three indices are the same as Section 5. Table 6 reports
the parameter estimates of the leverage SVmodel for the three
indices, and Table 7 lists DIC together with𝐷 and 𝑃

𝐷
for the

two models.
First, the 𝜌 values of the three indices evaluated from

the leverage SV model are significantly negative and close to
the estimation of the leverage market microstructure model,
which is in agreement with the fact that there exists the
leverage effect in stock return data. Also, the leverage effect
is more significant in the United States stock market (𝜌 =
−0.5942) than that in Chinese stock market (𝜌 = −0.3053
and −0.2532), which is consistent with the previous statistical
results. Second, for both two models, the posterior means 𝜑
and 1 + 𝛽

2
are close to one, which implies a well-known high

persistence of volatility on stock returns. Third, as shown in
Table 7, the proposed leverage market microstructure model
has theminimumDIC vales, which confirms that the leverage
market microstructure model is superior to the leverage SV
model for all three stock indices.

7. Conclusion

This paper is concerned with the specification for modeling
financial leverage effect in the context of market microstruc-
ture model. With the new representations, it is easy to inter-
pret the leverage effect in the model. The proposed model is
validated by using simulated and real financial data series. A
Bayesian Markov Chain Monte Carlo approach is developed
for the generalized leverage market microstructure model.
The results show that stock markets in China and the United
States have obvious leverage effects, and the latter has stronger
leverage effect than the former.Marketmicrostructuremodel
which allows for such an asymmetric property not only
improves the ability to describe the dynamics of measurable
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Figure 8: Sample path and density estimates for S&P500.

market price but also provides more accurate price, which
is important in practical application. Compared with the
classical leverage SVmodel in terms of DIC, empirical results
suggest evidence in favor of the proposed leverage market
microstructure model.

Appendices

A. The Proposal Density

The most commonly used MCMC methods are the Metrop-
olis-Hastings algorithm [36] and the Gibbs sampling algo-
rithm [37].

The Gibbs sampling is a special case of the Metropolis-
Hastings algorithm, which generates iterative samples from
all the full conditional distributions. It can be justified by
the Clifford-Hammersley theorem [38]. WinBUGS provides
an easy and efficient implementation of the Gibbs sampling
and has been widely used to estimate latent variables model.
Also, it does not require the programmer to know the precise
formulae for any prior density or likelihood. Itsmain strength
lies in the ease with which any changes in the model, such
as different autoregressive structures or polynomial state
transitions, the choice of different prior distributions for
the parameters, and the change from Gaussian to heavy-
tailed observation error distributions. In this paper, we



Discrete Dynamics in Nature and Society 13

Table 6: Estimation results of the leverage SV model for three indices.

Index Parameter Mean SD MC error 2.5 percentile Median 97.5 percentile

Shanghai
composite
index

𝜇 −4.366 0.1432 0.008468 4.583 −4.38 −3.998

𝜑 0.9981 0.001106 1.803𝐸 − 5 0.9956 0.9982 0.9997

𝜏 0.2792 0.02763 0.001367 0.2273 0.2785 0.3358

𝜌 −0.3053 0.06265 0.002197 −0.4257 −0.3061 −0.1794

Shenzhen
component
index

𝜇 −4.277 0.2668 0.01585 −4.629 −4.212 −3.802

𝜑 0.9985 9.161𝐸 − 4 1.424𝐸 − 5 0.9964 0.9986 0.9998

𝜏 0.239 0.02661 0.001095 0.3182 0.3677 0.4223

𝜌 −0.2532 0.06992 0.002974 −0.3839 −0.2555 −0.107

S&P500

𝜇 −4.953 0.04702 0.003105 −5.029 −4.96 −4.838

𝜑 0.9987 5.776𝐸 − 4 9.238𝐸 − 6 0.9975 0.9988 0.9997

𝜏 0.1754 0.01317 7.608𝐸 − 4 0.1494 0.1752 0.2029

𝜌 −0.5942 0.05411 0.002845 −0.6917 −0.5972 −0.4822

Table 7: DIC vales of two models for three indices.

Model Index 𝐷 𝑃
𝐷

DIC

The leverage SV
model

Shanghai
composite index −10944.0 285.6 −10658.4

Shenzhen
component index −10501.2 202.7 −10298.5

S&P500 −17170.7 965.4 −16205.3

The leverage
market
microstructure
model

Shanghai
composite index −12703.9 1313.4 −11390.5

Shenzhen
component index −13257.3 1560.0 −11697.3

S&P500 −18952.9 1936.0 −17016.9

use the freely available and user-friendly Bayesian software,
WinBUGS, to do the single-move Gibbs sampling.

The Metropolis-Hastings sampling algorithm is appro-
priate for difficult full conditional distributions. In applying
Metropolis-Hastings algorithms, it is necessary to choose the
proposal density 𝑞(y | x). There are two common types of
the proposal density. (i) In independence sampling, 𝑞(y | x)
does not depend on x; namely, 𝑞(y | x) = 𝑞(y). (ii) In
the symmetric proposal density, 𝑞(y | x) = 𝑞(x | y). An
important special case of the symmetricMetropolis-Hastings
method is the random-walk Metropolis algorithm, where
𝑞(y | x) = 𝑞(y − x). A usual choice is to let 𝑞(y | x)
be a symmetric Gaussian distribution centered at x; namely,
y = x + 𝜎𝜀, where 𝜀 is a random perturbation of Gaussian
distribution and 𝜎 is a scale parameter.

B. The Posterior Density Distributions
for the Parameters

Consider the following
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