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We propose a new algorithm based on cellular automation (CA) for preserving 𝑛-connectivity, 𝑛 > 1.The CA algorithm transforms
an initial grid configuration in a grid with same number of holes but without 1-connected components. Also, maximal thinning
of 𝑛-connected components, 𝑛 > 1, is achieved. The grid can be used as initial for investigating properties of initial grid.
Computational performances are evaluated and measured on real cases. The obtained results indicate that the proposed approach
achieves comparable complexity as standard approaches; however, the speed-up and scalability of the proposed algorithm are not
limited by the number of processing nodes.

1. Introduction

The cellular automata (CA) can be considered as an alterna-
tive way of computation based on local data flow principles.
The concept of CA was first proposed by Neumann in 1950s
through self-reproducing systems [1]. Later, the formalization
was improved by different authors [2–5] emphasizing differ-
ent perspectives. The application areas of CA become very
different, ranging from biology [6, 7], sociology [8], image
processing [9], diffusion of soil pores [10], and so forth.

A CA can be informally represented as a set of regularly
and locally connected identical elements. The elements can
be in a finite set of states. The CA evolves in discrete time
steps, changing the states of elements according to a local
rule, which is the same for all elements. The new state of
each element depends on its previous state and on the state
of its neighbourhood.The neighbourhood is composed of all
directly connected elements. The characteristic properties of
CAs are therefore locality, discreetness, and synchrony.

Identification of isolated regions in binary images is
important problems in image processing, machine vision,
porous materials analysis, and many other fields of science.
The shrinking of binary picture patterns, which is a step

towards the recognition of image objects, has been first
investigated, using CAs, by Neumann [1], Thatcher [2], and
Levialdi [11]. Parallel versions of these algorithms have been
developed in [3, 12]. An improved algorithm with a linear
complexity has been proposed in [4, 13].

In this paper we propose a new algorithm for thinning of
an arbitrary binary rectangular grid.The algorithm preserves
2 or more levels of connectivity of all components on the
grid. Hence, the number of isolated parts is preserved. Also,
the thinning is maximal in sense of 𝑛-connectivity of all
components in initial grid, 𝑛 > 1.

The rest of the paper is organized as follows. In Section 2,
basic definitions of 𝑛-connectivity and CAs are introduced.
In Section 3, our CA is defined with its properties. Section 4
is devoted to implementation and performance analysis.
Finally, the work is summarized in Section 5.

2. Definitions

We consider a cellular automation (CA) as a 2-dimensional
lattice network of square cells (grid). Each cell can exist in
two different sates, 0 or 1. Usually, state 0 is commonly called
“white” and state 1 is commonly called “black.”
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Figure 1: Moore neighbourhood and its enumeration.
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Figure 2: (a) A configuration 𝐶
0
, (b) conf

𝐴1
(𝐶
0
, 1), and (c) conf

𝐴1
(𝐶
0
, 7), 𝑡 > 7.

Cells of the lattice network change their states in discrete
moments in time, time steps. Cell’s next state is defined
by local transition function (rule). Local transition function
manages with altering state of each cell, based on the present
state and states of neighbourhood’s cells. We use Moore
neighbourhood (Figure 1(a)) and typical enumeration for the
rectangular array (Figure 1(b)). We denote state of the central
cell (𝑖, 𝑗) in a moment 𝑡 ≥ 0 by 𝑐

(𝑖,𝑗)
(𝑡). Arguments of

a local transition function are ordered collections 𝑐(𝑡) =

(𝑐
(𝑖+1,𝑗−1)

(𝑡), 𝑐
(𝑖+1,𝑗)

(𝑡), 𝑐
(𝑖+1,𝑗+1)

(𝑡), 𝑐
(𝑖,𝑗−1)

(𝑡), 𝑐
(𝑖,𝑗)

(𝑡), 𝑐
(𝑖,𝑗+1)

(𝑡),
𝑐
(𝑖−1,𝑗−1)

(𝑡), 𝑐
(𝑖−1,𝑗)

(𝑡), 𝑐
(𝑖−1,𝑗+1)

(𝑡)) of the neighbourhoods cell’s
states in time step 𝑡. We use graphical notation for this (e.g.,
in Figure 3). This alternation of cell states is synchronous.

Configuration conf
𝐴

(𝑡, 𝐶
0
) of the cellular automation 𝐴

is the assignment of states to all cells in the grid in a moment
𝑡 ≥ 0 starting from an initial configuration 𝐶

0
. CA is

often simulated on a finite grid. In our simulation, boundary
cells are in fixed state and remain constant throughout the
simulation.

Two cells (𝑖
1
, 𝑗
1
) and (𝑖

2
, 𝑗
2
) are (weakly) adjacent if

(max{|𝑖
1

− 𝑖
2
|, |𝑗
1

− 𝑗
2
|} ≤ 1) |𝑖

1
− 𝑖
2
| + |𝑗
1

− 𝑗
2
| ≤ 1. Two

black (white) cells (𝑖
1
, 𝑗
1
) and (𝑖

𝑛
, 𝑗
𝑛
) are connected if there

exists a sequence of black (white) cells (𝑖
𝑘
, 𝑗
𝑘
), 2 ≤ 𝑘 ≤ 𝑛,

such that each pair (𝑖
𝑘−1

, 𝑗
𝑘−1

) and (𝑖
𝑘
, 𝑗
𝑘
) is adjacent. That

sequence (𝑖
𝑘
, 𝑗
𝑘
), 1 ≤ 𝑘 ≤ 𝑛, is a path which connects cells

(𝑖
1
, 𝑗
1
) and (𝑖

𝑛
, 𝑗
𝑛
). Length of the path is 𝑛 − 1. Cell (𝑖

1
, 𝑗
1
) is

start cell and (𝑖
𝑛
, 𝑗
𝑛
) is end cell of the path.Cycle or closed path

is a pathwith same start and end cell. 𝑛-cycle is a closed path of
length 𝑛. According to the adjacency, we do not have 3-cycle.
2-cycle is a “column” or “row” with two cells. A maximum
connected region of black cells is called a component.

Similary, black (white) cells (𝑖
1
, 𝑗
1
) and (𝑖

𝑛
, 𝑗
𝑛
) are weakly

connected if there exists a sequence of black (white) cells
(𝑖
𝑘
, 𝑗
𝑘
), 2 ≤ 𝑘 ≤ 𝑛, such that each pair (𝑖

𝑘−1
, 𝑗
𝑘−1

) and (𝑖
𝑘
, 𝑗
𝑘
) is

weakly adjacent. A maximum weakly connected region of
white cells is called a hole. Always there is a single external
(infinite) hole. Amaximumweakly connected region of black
cells is called a weakly component.

For the moment, suppose that we have just one compo-
nent 𝐾 on the grid. Then, we say that component 𝐾 is k-
connected if its complement𝐾 has (𝑘−1) finite holes. Number
𝑘 is the level of connectivity of the component 𝐾. Now, on
the same way we can find the level of connectivity for all
other components in the grid. For example, in configuration
𝐶
0
from Figure 2(a), we have three components (one is

3-connected (𝐶
1
), one is 2-connected (𝐶

2
), and one is 1-

connected (𝐶
3
)) and three finite holes (𝐻

1
, 𝐻
2
, and 𝐻

3
).

Let 𝑎 be a cell. Two black (white) cells are (weakly)
connected in neighbourhood of 𝑎 if there exists a black (white)
connected path of cells from the neighbourhood which
(weakly) connect these two cells.

We solve the problem of thinning an initial configuration
to a configuration with the same number of holes.
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Figure 3: Local states which define local transition function for CA
𝐴
1
, 𝑥 ∈ {0, 1}.

3. Cellular Automation 𝐴
1

and Its Properties

Define a CA 𝐴
1
with a local transition function 𝜑

𝐴
1

which is
defined by

𝑐
(𝑖,𝑗) (

𝑡 + 1) =

{
{

{
{

{

0, 𝑟
1

∨ 𝑟
2

∨ 𝑟
3

∨ 𝑟
4

∨ 𝑟
5
,

0, 𝑟
𝑝

6
∨ 𝑟
𝑝

7
∨ 𝑟
𝑝

8
, 𝑝 = (𝑡 + 1) mod 4,

𝑐
(𝑖,𝑗)

(𝑡) , otherwise,

𝑡 ≥ 0,

(1)

where 𝑟
𝑖
or 𝑟
𝑝

𝑗
, 1 ≤ 𝑖 ≤ 5, 6 ≤ 𝑗 ≤ 8, 0 ≤ 𝑝 ≤ 3, presents

local states of the central cell and its neighbourhoods in some
moment 𝑡 ≥ 0 from Figure 3.

Applying the local transition function to all cells of an
configuration simultaneously, we get the sequence of con-
figurations conf

𝐴
1

(𝑡, 𝐶
0
), 𝑡 ≥ 1, started from some initial

configuration 𝐶
0
. For example, if 𝐶

0
is the configuration

from Figure 2(a), then in Figures 2(b) and 2(c) we have
conf
𝐴
1

(1, 𝐶
0
) and conf

𝐴
1

(𝑡, 𝐶
0
), 𝑡 > 7.

Theorem 1. Let𝐶
0
be a configuration. CA𝐴

1
has the following

properties.

(1) A finite number of time steps 𝑡 > 0 exist in which each
1-connected component in 𝐶

0
vanishes after 𝑡 steps.

(2) For each 𝑡 > 0 and for each 𝑛-connected component, 𝐾

in 𝐶
0
, 𝑛 > 1, component 𝑐𝑜𝑛𝑓

𝐴
1

(𝑡, 𝐾) is 𝑛-connected
in 𝑐𝑜𝑛𝑓

𝐴
1

(𝑡, 𝐶
0
).

(3) There is 𝑡 = 𝑡
𝑠
for which 𝑐𝑜𝑛𝑓

𝐴
1

(𝑡 + 𝑘, 𝐶
0
) =

𝑐𝑜𝑛𝑓
𝐴
1

(𝑡
𝑠
, 𝐶
0
), for all 𝑘 > 0.

(4) Let the configuration 𝑐𝑜𝑛𝑓
𝐴
1

(𝑡
𝑠
, 𝐶
0
) have components

𝐾
1
, 𝐾
2
, . . . , 𝐾

𝑚
, 𝑚 > 0. Let a component 𝐾

𝑗
be 𝑛
𝑗
-

connected, 𝑛
𝑗

> 1, 1 ≤ 𝑗 ≤ 𝑚. Let 𝑑 ∈ 1, 2, . . . , 𝑚.
For any black cell (𝑖, 𝑗) ∈ 𝐾

𝑑
, if the cell changes its state

to white (𝑐
(𝑖,𝑗)

= 0), then the obtained component 𝐾


𝑑
is

𝑙-connected, where 𝑙 < 𝑛
𝑑
or the obtained configuration

𝑐𝑜𝑛𝑓


𝐴
1

(𝑡
𝑠
, 𝐶
0
) has > 𝑚 components.

Proof of Theorem 1. Notice, those white cells remain always
white (𝑟

5
in Figure 3). From this fact, it follows that CA

𝐴
1
cannot connect two disconnected components. So, each

component can be observed independently and for each
component we can assume that its complement has all white
cells.

Let 𝐾 be 1-connected component. For the component 𝐾

we will prove that in any time step there are one or more
black cells that are transformed in white. Hence, because of
finiteness, after some time steps, the component will vanish.

Let 𝐾
𝑛,𝑚

be circumscribing rectangle of dimensions 𝑛 × 𝑚

for 𝐾, 𝑛, 𝑚 ≥ 1.
If 𝑛 = 1 or 𝑚 = 1, component 𝐾 is “column” or “row”

and 𝐾 has two ends which are transformed in white cells
according to 𝑟

1
, 𝑟
2
, 𝑟
3
, or 𝑟
4
from Figure 3.

Suppose that 𝑛 > 1 and 𝑚 > 1. If component 𝐾 has a cell
with 3 or 4 adjacent white cells, then according to 𝑟

1
, 𝑟
2
, 𝑟
3
, or

𝑟
4
from Figure 3 this cell is transformed in white.
So, we suppose that all cells have no more than 2 adjacent

white cells. Traversing boundary cells in negative direction
(component is always on the left side), we create a closed
path 𝑃

𝐾
: V
1
, V
2
, V
3
, . . . , V

𝑘
, V
𝑘+1

, . . . , V
𝑙
, V
1
, 𝑙 > 3, shown in

Figure 4(b).
Supose that we observe a time step 𝑡, where (𝑡 + 1) mod

4 = 0. Denote by V
1
and V
𝑘
, 𝑘 ∈ 2, 3, . . . , 𝑙, the bottom rightest

and top rightest cells in the component, respectively. Similar,
we can observe time steps 𝑡, where (𝑡 + 1) mod 4 ∈ {1, 2, 3}.

We consider two cases:

(1) cells V
1
, V
2
, V
3
, . . . , V

𝑘
, V
𝑘+1

, . . . , V
𝑙
are all different,

(2) some of cells V
1
, V
2
, V
3
, . . . , V

𝑘
, V
𝑘+1

, . . . , V
𝑙
are equal.

In case 1, cells V
1
, V
𝑘
have the neighbourhoods as 𝑟

0

7
, 𝑟
0

6

from Figure 3. If this is not case, then one of them, for exam-
ple V
1

= (𝑖, 𝑗), has the neighbourhood (𝑥, 0, 𝑥, 0, 1, 1, 𝑥, 1, 0).
Then, the white cell in (𝑖 − 1, 𝑗 + 1) position surrounded by
the path 𝑃

𝐾
which is in contradiction with 𝐾 is 1-connected

(path 𝑃
𝐾
surrounds a finite hole).

In case 2, there exists a closed path 𝑆 (see Figure 4):
V
𝑖
, V
𝑖+1

, V
𝑖+2

, . . . , V
𝑖+𝑘

, V
𝑖
in 𝑃
𝐾
with length 𝑘 + 1 > 3, in which

all cells are different, except ends. In the closed path 𝑆, as we
already proved in the previous paragraph, there exists a cell
with neighbourhood as 𝑟

0

6
or 𝑟
0

7
from Figure 3.

With this we provedTheorem 1, property 1.
All neighbourhoods from Figure 3 are such that if central

cell changes its black state to white, then connectivity of its
neighbouring black cells is preserved or “new” central white
cell connects already weakly connected neighbouring white
cells. So, local transition function of the CA 𝐴

1
preserves the

level of connectivity for each component.With thiswe proved
Theorem 1, property 2.

Because of finiteness of components and deterministic
rules, Theorem 1, property 3 is obvious.

Suppose that black cell 𝑎 = (𝑖, 𝑗) ∈ 𝐾
𝑑
. We will prove that

the cell 𝑎 has at least two white cells in its neighbourhood.
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Figure 4: (a) Component 𝐾 with its circumscribing rectangle; (b) boundary path 𝑃
𝐾
of the 𝐾.

So, we can suppose that

(1) cell 𝑎 has no neighbouring white cells,
(2) cell 𝑎 has one neighbouring white cell.

If we have case 1, then cell (𝑖 − 2, 𝑗) is also black (𝑟0
8
from

Figure 3). Because of symmetry, this holds for cells (𝑖 + 2, 𝑗),
(𝑖, 𝑗+2), and (𝑖, 𝑗−2), also. Further, cell (𝑖−2, 𝑗+1) is also black
(𝑟0
6
or 𝑟
0

8
from Figure 3). Because of symmetry, this holds for

cells (𝑖−1, 𝑗+2), (𝑖+1, 𝑗+2), (𝑖+2, 𝑗+1), (𝑖+2, 𝑗−1), (𝑖+1, 𝑗−2),
(𝑖 − 1, 𝑗 − 2), and (𝑖 − 2, 𝑗 − 1), also. Continuing, we have
that all cells in conf

𝐴
1

(𝑡
𝑠
, 𝐶
0
) are black. Because of boundary

condition and finiteness, there is a cell which changes its state
in the configuration which is in contradiction that 𝐾

𝑑
is a

component in conf
𝐴
1

(𝑡
𝑠
, 𝐶
0
) (property 3).

Same consideration holds for case 2.
Now, we will prove that cell 𝑎 has at least two nonweakly

connected, in the neighbourhood, white neighbours. Because
cell 𝑎 has at least two connected black neighbours (𝑟

1
, 𝑟
2
, 𝑟
3
, 𝑟
4

from Figure 3), we have three cases.

(1) Cell 𝑎 has exactly two connected black neighbours.
We can suppose that black cells are

(a) (𝑖 + 1, 𝑗) and (𝑖, 𝑗 − 1) or
(b) (𝑖 − 1, 𝑗) and (𝑖 + 1, 𝑗).

In case (a), cell (𝑖 + 1, 𝑗 − 1) must be white (𝑟0
6
from

Figure 3). Case (b) is obvious.
(2) Cell 𝑎 has exactly three connected black neighbours.

We can suppose that the tree black cells are (𝑖 + 1, 𝑗),
(𝑖, 𝑗−1), and (𝑖, 𝑗+1).Then, cells (𝑖+1, 𝑗+1), (𝑖+1, 𝑗−1)

cannot be black at the same time (𝑟0
8
from Figure 3).

(3) Cell 𝑎 has exactly four connected black neighbours.
This case is obvious.

Hence, in every case we have two white cells in the
neighbourhood of the cell 𝑎 which are nonweakly connected,
in the neighbourhood.

If these two neighbours are weakly connected in the
configuration conf

𝐴
1

(𝑡
𝑠
, 𝐶
0
), then they are from the same

hole. Changing state of the cell 𝑎 will increase the number
of components in conf

𝐴
1

(𝑡
𝑠
, 𝐶
0
).

If these two neighbours are not weakly connected in
the configuration conf

𝐴
1

(𝑡
𝑠
, 𝐶
0
), then they are from different

holes. Hence, changing state of the cell 𝑎 will decrease the
number of holes in conf

𝐴
1

(𝑡
𝑠
, 𝐶
0
).

Now, we consider the theoretical complexity of the
algorithm bymeans of the required number of time steps. Let
𝐶 be a configuration. Let 𝐶 have components 𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑝
,

𝑝 ≥ 1. Suppose that dimension of circumscribing rectangle
of component 𝐾

𝑖
is 𝑛
𝑖

× 𝑚
𝑖
, 1 ≤ 𝑖 ≤ 𝑝. From the proof of the

Theorem 1 we have the following.

Corollary 2. The worst case complexity of the CA 𝐴
1
for the

configuration 𝐶 ismax{𝑛
𝑖

⋅ 𝑚
𝑖

| 1 ≤ 𝑖 ≤ 𝑝}.

4. Implementation and Experimental Results

Implementations of the algorithm are made in NetLogo
5.0.4 (agent-based programming language and integrated
modelling environment). The CA model is represented by
2-dimensional grid of square cells and each cell can exist
in two different sates, white or black. Any cell is coloured
black with probability 𝑝 and white with probability 1 𝑝.
These probabilities are independent for every cell. Within
an iteration, the whole grid is processed at once; namely,
each cell is transformed to a new state without affecting the
other cells. After the update, algorithm proceeds to a new
iteration. The iteration takes place as long as at least one cell
is changed. The global operations in the algorithm are the
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(a) Probability for black cell is 0.55

(b) Probability for black cell is 0.60

(c) Probability for black cell is 0.65

Figure 5: Examples of grids with resolution 201 × 201. Left is original and right is after CA 𝐴
1
implementation.

steady state checking and alternating numbers from 0, 1, 2, 3.
However, here we emphasize that the alternation of numbers
from 0, 1, 2, 3 is possible to substitute by randomly choosing a
number from 0, 1, 2, 3. With this we obtain nondeterministic
CA with no need for the global operation.

In Figure 5 we present examples of the implementation.
In all examples 201 × 201 grid is used. Differences are
in generating initial grid. In Figures 5(a), 5(b), and 5(c)
random grid with densities 0.55, 0.50, and 0.65 is used,
respectively.
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5. Conclusions

We proposed a new CA algorithm for thinning with property
of preserving 𝑛-connectivity, 𝑛 > 1, of all components in
any random binary grid. Simple definition of used CA has
several advantages; for example, CA is not limited by the
number of elements, its evolution is inherently parallel, it
has a strong resemblance to the important approaches in
the nature like principles of cells that are building blocks
for large systems or elementary particles, and so forth.
However, several drawbacks can also be identified, for exam-
ple, lack of global communication, which implies problems,
related to global synchronization, inability for calculation of
complex mathematical operations, and so forth. However,
the heterogeneous computing, supported today with data
flow approaches, field programmable gate array (FPGA),
and graphic processing unit (GPU) systems, systems on
chips, are promising platforms for the implementation of the
efficient CA algorithms. Finally, further work is also in the
investigation of necessary extensions of the algorithm for 3D
grids.
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