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Indoor intelligent vehicles have been applied widely in restaurant service, where they are usually demanded to work for long period
for multiple tasks and face the challenges of uncertainty, efficiency, and working online. In this paper, we propose an approach
of multitasking planning and executing by networking for intelligent vehicles working for restaurant service. As to increase the
efficiency of accomplishing multiple tasks, traditional HTNmodel is adapted to present the property of executing in parallel for the
plan. As working online, the new inserted task is decomposed to get its individual plan, which is thenmerged into the global plan by
optimization modelled as a maximal weight clique problem through evaluating the relations among actions and optimizing based
on maximal cost saving first. Additionally, the protected states and goal states of an action are monitored in execution monitoring
while action executing. Once exception occurs, the replanning based on partially backtracking would repair it. Moreover, with the
mechanism of cooperation by networking, vehicles can allocate tasks, share information, and cooperate for execution monitoring.
Finally, the test and demonstration of the experiment for drink service in restaurant environment show the feasibility and the
improvement on the efficiency of multitasking.

1. Introduction

Today, indoor intelligent vehicles, sometimes also, namely,
robots, have been applied more and more widely not only in
logistics warehouses [1], but also in other public areas, that
is, restaurant [2–4], official building [5], and hospitals [6], for
delivery, surveillance, and information inquiry. Particularly
in restaurant domains, shown in Figure 1, the vehicles are
always demanded to deal with multitask in a long period,
where multiple tasks are performed concurrently and effi-
ciently.

Since the tasks may be too complex and the scale of the
world is too large [7, 8], they may also work by distributed

networking as multiagent system with heterogeneity, where
each of them can work as an individual equipped with
different capability for different job with others, and share
information with each other via network communication.
Additionally, the working environments are usually uncon-
structed and dynamic in these domains; in this condition,
planning and executing for multitasking of the vehicles turns
to be too complex under uncertainty. And there are two
challenges to be taken up.

One is that the vehicles have to plan multiple tasks
in the world with partially observable information. In an
unconstructed and dynamic world, the vehicles may hardly
acquire complete information required for tasks planning
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Figure 1: Intelligent vehicle serving in restaurant.

with its own sensors; for example, to deliver a specified
object, the location of the target object may be unknown
since it is not inside the searching range or has been moved.
Unfortunately, some unreachable informationmay be the key
for the planning, and the planner cannot get a feasible and
efficient plan for the task without it.

Another challenge is that the vehicles have to plan and
execute online in dynamic world. In the real application, for
example, restaurant, the tasks for the vehicles normally can-
not be preset in advance, and they may come stochastically at
any time.When a new task comes, the vehiclemay beworking
for other tasks; at this time, the new task has to be inserted
into the current task list and treated properly to get a more
efficient plan rather than waits until the current tasks are
finished. Additionally, since the states of world may change
dynamically by external events, exception may rise and lead
to failure of the task when executing the plan. To recover the
failure, vehicles usually have to reconfigure its status, make a
new plan, and maintain it online.

In the literatures, many studies have put their effect to
rise to the challenges. On the one side, to figure out the
uncertainty, previous works have shown their methods in
information gathering, planning with incomplete informa-
tion [9, 10]. Moreover, Markov decision processes (MDP)
[11] and its expansion partially observable MDP (POMDP)
[12, 13] are applied to predict the states of the world andmake
decision during planning. In [14], Kaelbling and Lozano-
Pérez described an integrated strategy for task and motion
planning based on planning in belief space and showed
its robustness and flexibility in the mobile manipulation
problems with substantial uncertainty. On the other side, for
planning and executing online, the methods of execution
monitoring and replanning have been developed in [15, 16].
As an alternative view, continuous planning [17] provides a
practical approach to planning online in dynamic world [18].
In [19, 20], an approach based on continual planning was
proposed to enable the agents planning and acting in dynamic
environment, where the concept of assertions is introduced
to describe why and when an agent should switch between
planning and acting.

Indeed, probability theory minimizes the uncertainty of
the world, and the mechanism of both execution monitoring
and continual planning guarantees the achievement of the
task. However, the probability approaches are with high
computational cost. In an alternative opinion, if the future
always cannot be predicted precisely by applying probability

inference, then the simplified way is to make the uncertainty
under the monitoring of sensors.

Thanks to the development of the sensor networking,
sensor communication technology has been employed for
intelligent vehicles. In [21–23], the authors provided the
low-cost solutions for indoor localization, especially for
colocalization in a networking environment. In these studies,
sensor networking plays an efficient role in extending the
reachability and enhancing the robustness of the vehicles.
However, in thesemethods, the sensor network has to be built
by deploying the sensors distributed in thework environment
which would be a tough work in an unconstructed world.

Instead of building a distributed sensor network in the
environment, cooperating in multiagent system provides an
alternative view to plan under uncertainty. Micalizio and
Torasso presented a distributed approach for monitoring and
diagnosing the execution of a multiagent plan in partially
observable environment [24]. However, the approach mostly
aimed at recovering the exception of plan execution rather
than preventing the failure of planning.

In this paper, aiming for multitasking problem of intelli-
gent vehicles in restaurant environment, it is assumed that the
vehicles can share information in a multiple vehicles network
with heterogeneity, and the main idea is to handle the
uncertainty and planning online through the cooperation of
networking. Based on this idea, we propose a novel approach
to enhance the robustness and improve the efficiency of
multitasking by integratingmultitasking planning, executing,
and networking. The features of the approach and our
contributions are summarized as the following:

(i) extending the model of HTN planning for multi-
tasking planning under uncertainty and adapting the
decomposing algorithm for the extended model,

(ii) developing the optimizer for parallelizing plans for
multiple tasks, in which the actions optimization is
modelled as a maximum weighted clique problem by
evaluating the relations among actions and searching
the action clique with maximal cost saving,

(iii) Presenting the method for integrating executing,
monitoring, and replanning in dynamic environ-
ment, with which the execution can be monitored
with the protected states, which must be kept from
changing during the action execution, and goal states.
In addition, the algorithm of replanning based on
partially backtracking is developed.

The paper is structured as follows: Section 2 introduces
the overall approach. In Section 3, task decomposing is
introduced. Followed with Section 4, the optimization for
plan parallelizing is presented. After that, in Section 5, the
method for plan executing and monitoring is introduced. At
last but not least, the experiments for restaurant service are
demonstrated and the result is discussed in Section 6 and the
conclusion and future work are summarized in Section 7.

2. Overall Approach

2.1. Control Architecture. The design of the control architec-
ture for intelligent vehicles networking has a very important



International Journal of Distributed Sensor Networks 3

impact on the robustness of the system, and several different
architectures have been described in [25]. However, different
from most traditional multiagent systems, in this study,
each vehicle in the network is supposed to be responsible
for particular tasks and equipped with specified capabilities
different from others. At the meantime, each vehicle is
expected to have more authorization of local control so that
new team members are facilitated to join in network. For
example, in an automated restaurant, there are two vehicles or
more; particularly, one is a waiter working for menu service,
another one is for delivering food and clearing tables, and
if there are others, they may provide reception service, or
even others. Each vehicle may take on responsibility for
different jobs in serving for guests and work as individual
with high autonomy, as well as communicating with others
when necessary.

To realize both robustness and flexibility of the system,
as a hybrid architecture, the distributed robot architecture
(DIRA) [26] is adapted to our system. Besides allowing
autonomy in individual, the DIRA also facilitates explicit
coordination among robots and employs the layered archi-
tectures which are popular with single vehicle systems. Based
on DIRA, the control architecture is shown in Figure 2.

In this architecture, intelligent vehicles connected in net-
work can interact with each other via their own networking
interface, with which cooperation requests are published and
subscribed, and each vehicle has a complete layered archi-
tecture with a loop of planning, executing, and monitoring
on task level (see in the blue dashed line). Taking the vehicle
for delivery service as an example, the vehicle works online
and waits for recalling. Once a new task is generated by task
service and inserted to task list, five processing phases are
involved to accomplish it.

In task decomposing (TD) phase, the initial states will be
checked whether there is complete information for planning.
Due to the partially observability of the world, information
may be incomplete and undetermined. In this case, the vehi-
cle hands out a request of state acquisition to the interface,
where the request is published to the network. Then, the
undetermined states would be acquired by the cooperation
from other vehicles. If the known states are sufficient for
planning, TD is recalled to decompose the inserted task by
using hierarchical task net (HTN) and its individual plan is
obtained.

In plan parallelizing (PP) phase, the individual plan of the
inserted task is merged into the global plan for all processing
tasks, and the actions from each individual plans will be
paralleled for multitasking. However, plan parallelizing will
process only one layer each time and generate a combined
action. Only if the combined action is successfully executed
or new task is inserted, the parallelization will go ahead to
next layer. This will save the computation consumption and
increase the real-time performance.

In plan executing (PE) phase, the combined action in the
global plan will be performed in parallel, where the actions
are transformed into executing commands and sent to the
controllers; at the same time, the protected states and the goal
states are delivered to the execution monitoring.

Menu service
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Task service State service
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Figure 2: The control architecture.

In execution monitoring (EM) phase, the protected states
and goal states will be monitored on semantic level with
the sensors. Likewise, those states are also published to
the state service, so that other vehicles can cooperate for
monitoring them. If there is no destroyed protected state and
all goal states of an action are achieved, the action execution
is successful and PE is recalled to execute next actions.
Otherwise, if either any protected state is destroyed, or the
goal states cannot be achieved in regular time, the execution
fails and the replanning tries to repair it. As to increase the
efficiency for replanning, a partially backtracking algorithm
is applied to minimize the cost of replanning.

Furthermore, the controllers and the sensors together
constitute a route of reactive control for action execution in
behavior layer. The controllers include the mobile control,
robot arm control, and pan-unit control, while the sensors
include the laser, binocular vision, camera, and gyroscope.
And the geometric planners, including motion planning and
path planning, are supposed to be implemented in behavior
layer.

2.2. Cooperating by Networking. The cooperation among
intelligent vehicles by networking includes two capacities:
task service and state service, as shown in Figure 2.There, task
service allocates the tasks for the vehicles in network, while
the state service provides the sharing states and publishes the
request of state acquiring and monitoring.

For long term service, the vehicles in a restaurant have to
work online. Through task service, a vehicle can publish new
tasks to other vehicles as well as receiving new tasks published
from others. For example, when the vehicle for menu service
gets an order from guest, then it will publish a new task to
task service, and others will receive and check whether the
new task is suited for performing. If the new task is suited for
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a vehicle, it will be inserted to the task list of this vehicle, and
others will ignore it.

On the other hand, as discussed previously, the world
the vehicles are working in is usually under uncertainty
and dynamic, so that the information for TD and EM
is often incomplete for individual vehicle. To handle this
problem, the state service enables the cooperation among the
vehicles in network to share new states and publish request
of state acquiring. On one side, in TD, before the task is
decomposed, the current states have to be checked whether
they are sufficient to decompose the task; if there is lack
of information, the request of acquiring this information is
published to state service and others can help to complete
this information; once the information is obtained, it will be
shared to state service, and the vehicle that needs it will be
able to continue working. On the other side, in EM, during
execution monitoring, the protected states and goal states
have to be monitored online. For an individual vehicle, to
monitor the change of the environment and execute an action
at the same time, sometimes, it is tough and inefficient. In this
situation, with the state service, other vehicles can be involved
to monitor these states.

2.3. Action Knowledge of Restaurant Domain. To model the
domain of restaurant service, theHTNmodel [11] is expanded
and the SHOP2 syntax [27] is employed to described the
knowledge of the restaurant domain. As one of the most
famous planning method, HTN model provides a syntax
of defining the methods by controlling the decomposing of
tasks and avoiding the irrelevant searching branches, and this
speeds up significantly the task decomposition [28].However,
for cooperating and monitoring of the execution, the action
knowledge should be able to present how to cooperate and
what tomonitor, and it can be formalized as planning domain
as follows.

Definition 1 (planning domain). A planning domain 𝐷 is a
tuple 𝐷 = (𝑆, 𝑂,𝑀), where 𝑆 = (𝑠

0
, 𝑠
1
, 𝑠
2
, . . .), 𝑂 = (𝑜

0
, 𝑜
1
,

𝑜
2
, . . .), and 𝑀 = (𝑚

0
, 𝑚
1
, 𝑚
2
, . . .) are the limited sets,

respectively, of states, operators, and methods.

Similar with the traditional definition, planning domain
includes the states, operators, and methods. And the three
elements are defined, respectively, as Definitions 2–4.

Definition 2 (state). A state 𝑠 is an atomic sentence as the form
of (predicate, term, etc.) which describes a fact of the world.

Even though the traditional HTN model is weak for
handling uncertainty by assuming the knowledge about
the working world is complete, we keep this property to
guarantee the high performance on planning efficiency and
figure out the uncertainty through an exertional modular of
state acquisition, detailed in the following section. Different
from the belief state, the determined state indicates a fact.
For instance, (at, vehicle1, waypoint1) indicates that a vehicle,
namely, vehicle1 is at a way point namely waypoint1, and
(vehicle, vehicle1) indicates that vehicle1 is a vehicle.

Definition 3 (operator). An operator 𝑜 is a 5-tuple

𝑜 = (name (𝑜) , precond (𝑜) , add (𝑜) , delete (𝑜) ,

protected (𝑜)) ,

(1)

in which name(𝑜), precond(𝑜), add(𝑜), delete(𝑜), and
protected(𝑜) are, respectively, the set of the name, precondi-
tions, positive effects, negative effects, and protected states.

As the introduction of what should be monitored during
action execution, the protected(𝑜) describes the states that
have to be protected and cannot be changed while executing
the action. In Box 1, an example of operator (!move base,
?from, ?to) is given. There, the head contains the name
!move base and parameters “?from” and “?to” which is with
a question symbol to distinguish from instance. The other
elements of operator are listed follow the head, particularly,
the protected states (available, ?to) and (passable, ?from, ?to)
indicate that to guarantee the execution of (!move base, ?from,
?to), the target location ?to must be available and the way
between ?from and ?tomust be passable during the execution.

Definition 4 (method). A method 𝑚 is a 4-tuple

𝑚 = (name (𝑚) , task (𝑚) , precond (𝑚) , subtask (𝑚)) , (2)

in which name(𝑚) is the name of the method, task(𝑚) is the
generalization of nonprimitive task, precond(𝑚) is a set of
literals for the preconditions of the method, and subtasks(𝑚)

are a set of ordered subtasks of 𝑚.

A method describes the prescription of decomposing a
nonprimitive task into subtasks. And an example method,
namely (serve drink, ?drink ?guest), is defined in Box 2.

In Figure 3, the plan hierarchy for the task of
serve drink(drink1, guest1) is shown, in which 5 methods
and 2 operators are involved. There, the red arrows indicate
the executing order for the subtasks in the same layer, and
the grown boxes present the protected states of respective
primitive action.

3. Task Decomposing

3.1. Problem Modelling. Similar to traditional HTN, a plan-
ning problem for multitasking is defined as Definition 5.

Definition 5 (planning problem). A planning problem 𝑃 is
modelled as a 3-tuple

𝑃 = (𝐷, 𝑆
0
, 𝑇) , (3)

in which𝐷 is the planning domain, 𝑆
0
= (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
) is a set

of initial states, and 𝑇 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) is a list of target tasks.

A planning problem provides the action knowledge, ini-
tial states, and the target tasks for the planner, and with them,
the solution will be found, if there is one. In traditional HTN
planning, the solution is defined as plan 𝜋 = ⟨𝑎

0
, 𝑎
1
, 𝑎
2
, . . .⟩,

where 𝑎
𝑖
is a primitive action and 𝜋 is a sequence of total

ordered actions. In the definition, the actions in 𝜋 can only be



International Journal of Distributed Sensor Networks 5

Serve_drink
(drink1, guest1)

Get_drink
(drink1, servicedesk)

Put_drink
(drink1, table1)

Drive_to
(servicedesk)

Drive_to
(table1)

Navigate_from_to
(stoparea, servicedesk)

Navigate_from_to
(servicedesk, table1)

Navigate_from_to
(table2, table1)

!grasp_place
(drink1, servicedesk, tray1)

!grasp_place
(drink1, tray1, table1)

!move_base
(stoparea, servicedesk)

Protected
(available, servicedesk)
(passable, stoparea,
servicedesk)

!move_base
(servicedesk, table2)

Protected
(available, table2)
(passable, servicedesk,
table2)

!move_base
(table2, table1)

Protected
(available, table1)
(passable, table2, table1)

Protected
(at, servicedesk)
(available, tray1)
(on, drink, servicedesk)

Protected
(at, table1)
(in, drink, tray1)
(available, table1)

Figure 3: Plan hierarchy for serving a drink.

(:operator (!move base, ?from, ?to)
( ; precondition

((location, ?from), (location, ?to), (passable, ?from, ?to),
(at vehicle, ?from), (available, ?to))
;delete
((at vehicle, ?from), (available, ?to))
;add
((at vehicle, ?to), (available, ?from))
;protected
((available, ?to), (passable, ?from, ?to))

)

Box 1: An example of operator.

executed one by one correspondingwith the orders.However,
formultitasking, it cannot represent the situation of executing
actions in parallel. To provide a plan feasible formultitasking,
a concept of action clique and the new definition of plan are
introduced.

Definition 6 (action clique). An action clique is a pair

AC = (𝐴, 𝐶) , (4)

in which 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑖
} is a set of actions 𝑎

𝑖
partially

ordered and 𝐶 is a set of constraints among actions.

(:method (serve drink, ?drink ?guest)
( ; preconditions
(drink, ?drink), (guest, ?guest),
(at, ?guest, ?table1), (on, ?drink, ?table2)
; subtasks
(get drink, ?drink, ?table2), (put drink, ?drink, ?table1)]

)

Box 2: An example of method.

Definition 7 (plan). A plan is

𝜋 = ⟨AC
1
,AC
2
, . . . ,AC

𝑛
⟩ , (5)

which is a total ordering sequence of action clique AC
𝑖
.

A plan is a hybrid construct, in which actions are ordered
in two layers. In the plan layer, the action cliques are total
ordered; there, an action clique AC

𝑖
is available only if the

preconditions of all actions inside are satisfied after the
performance of AC

𝑖−1
. However, in clique layer, actions are

partial ordered and can be executed in parallel.
In the whole planning process, the plan will appear in two

different forms; to store and reuse them, the task tree and plan
tree are defined.
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Definition 8 (task tree). A task tree, TaskTree(𝑇
𝑖
), is a hier-

archical tree presenting the decomposing architecture of task
𝑇
𝑖
.

A task tree shows how a task is decomposed into subtasks
recursively until the primitive tasks are achieved. There, each
node stands for task which may be a primitive task or a
nonprimitive task, and the children nodes are its subtasks.

Definition 9 (plan tree). A plan tree, PlanTree(𝑃), is a reach-
ability tree representing the action paths to achieve the goals
of the tasks.

A plan tree shows how to accomplish the tasks by
executing the plan. In a plan tree, each node is an action or
action clique. Normally, the initial plan tree containsmultiple
branches, and each branch, from the root to the leaf, is an
action path to achieve the goals of respective tasks. Since the
plans will be paralleled layer by layer in plans parallelizing,
the actions distributed in each branch will be insisted into
action cliques by optimizing. Finally, if the tree shrinks into a
single branch, it is the final plan tree for all tasks.

3.2. Algorithm for Task Decomposing. The goal of TD is to
generate the individual task tree and the individual plan tree
for the tasks. As initialization, a global task tree rooted as
“TaskTree” is created to store the task tree for each inde-
pendent task, which is attached as the subtree of “TaskTree.”
Similarly, a global plan tree rooted as “PlanTree” is created,
and every plan tree of each independent task will be attached
to the current action clique as a new child tree.

To plan online, the planner listens to task service and
waits for new task insertion. Once a new task 𝑡

𝑛
is inserted,

it will be the initial member of tasklist and decomposed
independently to get the task tree and plan tree by the
function of decompose task(), shown in Algorithm 1.

The decompose task() performs a recursive process to
decompose the inserted task. At the beginning, the ending
condition is checked, and once the tasklist is empty, it returns
the tasktree and the plantree. Otherwise, the activetask, which
is always the first element of tasklist, is treated in two ways.
(1) If activetask is an instance of operators, a circle block
repeats the acquiring of sharing state and check precondition.
There, check precond() checks whether all preconditions of
activetask are ready in renewed 𝑆

0
. If not, it publishes the

preconditions which are lacking to state service; or else, the
preconditions are sufficient; it breaks the circle. And then
𝑆
0
is renewed as 𝑆

 by applying activetask. And if 𝑆
 is not

false, activetask is added to plantree, and decompose task()
is recalled to decompose next task in tasklist under 𝑆

.
(2) If activetask is an instance of methods, the function
check precond() is implemented as it does in the first con-
dition. While the preconditions of activetask are met, the
subtasks of activetaskwill be added to the node of activetask as
its children and inserted to the front of tasklist after deleting
activetask from tasklist; after that, the decompose task() is
recalled with the new tasklist. And this process will be
implemented until the ending condition is satisfied.

4. Plan Parallelizing

4.1. Process of Plan Parallelizing. The objective of PP is to
parallelize all the individual plans for target tasks, so that
the tasks can be executed more efficiently in parallel, and the
process is shown in Figure 4, and the subprocesses are listed
as follows.

Description of the Subprocesses

𝑇𝑟
1
: new task is inserted and decomposed.

𝑇𝑟
2
: the active AC is executed successfully.

𝑇𝑟
3
: the execution for the active AC fails.

𝑇𝑜
1
: append the new plan tree to global plan tree.

𝑇𝑜
2
: activate the next layer of the global plan tree.

𝑇𝑜
3
: replace the failing branches with repaired plan tree.

𝑇𝑜
4
: insert the new AC and delete the actions of AC from
respective branches.

There, PP will be activated by three triggers and its
respective operations of plan tree; after activating the new
layer, the relations among the actions in active layer, as well
as the relations between the actions and the executed AC,
are analyzed in relation analyzing. With the relations, the
optimization is performed to select actions into new AC, and
then it will be inserted into the global plan tree by 𝑇𝑜

4
.

In the following, we introduce the details for relation
evaluating and actions optimizing.

4.2. Action Relations. As the definition of action clique, the
actions in an action clique must be compatible for execution
in parallel; hence, the relations among actions must be
evaluated. In literatures, the analyzing technique of action
relations has been introduced in Graphplan [29] and LCGP
[30]; inspired by these works, three relations are defined as
follows.

Action Relations

Relation 1 (independence). Consider

{del (𝑎
𝑖
) ∩ [pre (𝑎

𝑗
) ∪ add (𝑎

𝑗
)]}

∪ {del (𝑎
𝑗
) ∩ [pre (𝑎

𝑖
) ∪ add (𝑎

𝑖
)]} = 0.

(6)

Relation 2 (allowance). Consider

[del (𝑎
𝑖
) ∩ pre (𝑎

𝑗
)] ∪ [add (𝑎

𝑖
) ∩ del (𝑎

𝑗
)] = 0,

[pre (𝑎
𝑖
) ∩ del (𝑎

𝑗
)] ∪ [del (𝑎

𝑖
) ∩ add (𝑎

𝑗
)] ̸= 0.

(7)

Relation 3 (retraction). Consider

del (𝑎
𝑖
) = add (𝑎

𝑗
) or add (𝑎

𝑖
) = del (𝑎

𝑗
) . (8)

The relations are defined by the interplay between actions
as the equations in Action Relations. As the definition
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decompose task(𝑆
0
, tasklist, tasktree, plantree)

if tasklist is empty:
return(tasktree, plantree)

activetask ← tasklist(0)
if activetask is an instance of operator:

while 1:
get sharing states and renew 𝑆

0

check precond(𝑆
0
, activetask.precond)

if there are preconditions not ready:
publish the preconditions which are not ready

else: break
𝑆

← 𝛾(𝑆

0
, activetask)

if 𝑆is not False:
plantree.add child(activetask)
tasklist.remove(activetask)
tasktree, plantree ← decompose task(𝑆, tasklist, tasktree, plantree)

if activetask is an instance of method:
while 1:

get sharing states and renew 𝑆
0

check precond(𝑆
0
, activetask.precond)

if there are preconditions not ready:
publish the preconditions which are not ready

else: break
subtasks ← method(𝑆

0
, activetask).subtask

tasklist.remove(activetask)
tasklist ← insert subtasks in the front of tasklist
tasktree.add children(subtasks)
tasktree, plantree ← decompose task(𝑆

0
, tasklist, tasktree, plantree)

Algorithm 1: Decomposing task based on hierarchical decomposing.
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Figure 4: Process of plan parallelizing.

shown, the relation between actions is dependent on their
precondition resource and output effect. There, 𝑎

𝑖
and 𝑎
𝑗
are

independentwith each otherwhile the performance of 𝑎
𝑖
does

not delete the preconditions and positive effects of 𝑎
𝑗
, and at

the meantime, the performance of 𝑎
𝑗
does not delete those of

𝑎
𝑖
either. And if the performance of 𝑎

𝑖
will neither delete the

preconditions of 𝑎
𝑗
nor produce the negative effects of 𝑎

𝑗
and,

at the meantime, the performance of 𝑎
𝑗
will either delete the

preconditions of 𝑎
𝑖
or produce the negative effects of 𝑎

𝑖
, we

say 𝑎
𝑖
allows 𝑎

𝑗
. Furthermore, a retraction relation between

𝑎
𝑖
and 𝑎
𝑗
is met while the positive effects of 𝑎

𝑖
is equal to the

negative effects of 𝑎
𝑗
, or vice versa.

The criteria to justify whether certain actions or tasks are
parallelizable can be summarized as two relations: indepen-
dence and allowance. However, the independence is more

restricted than the allowance. Different from the definition
in LCGP, our definition of allowance is more strongly
constrained and divided into two cases: 𝑎

𝑖
allows 𝑎

𝑗
and 𝑎

𝑗

allows 𝑎
𝑖
. But in LCGP, the allowance means only 𝑎

𝑖
and 𝑎

𝑗

are with allowance relation, and this definition includes the
independence. The advance of our criteria is that the actions
with allowance relation are ordered and are more appropriate
for actions execution.

There, the independence and allowance relations are
checked among the actions in the same layer of the plan tree,
while the retraction relation is checked between an action in
current layer and the actions in the latest action clique. And
the respective rules for assembling them in an action clique
are listed as follows.

(i) If actions are independent of each other, they can
be put together in an action clique and executed
simultaneously.

(ii) If two actions 𝑎
𝑖
and 𝑎

𝑗
are with allowance relation,

they can be put in the same action clique and in case of
independence relation, but with an allowance order,
which indicates that 𝑎

𝑖
can be executed before 𝑎

𝑗
if 𝑎
𝑖

allows 𝑎
𝑗
.

(iii) If there is any action in active layer with a retroaction
relation, it should be excluded from the candidates for
the optimization.
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Besides, actions are not with any one of above relations;
they are mutually exclusive and cannot appear in the same
action clique.

4.3. Optimizing as Maximum Weight Clique Problem. After
the preselection by analysing the relations among actions,
the actions with independence and allowance relations will
be optimized. And we model the optimization as a MWCP
(maximum weight clique problem) [31, 32], as

𝐺 = (𝐴,𝑊, 𝐸) , (9)

where

(i) 𝐴 = {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
} is a set of vertices representing

action candidates for action clique,
(ii) 𝑊 = {𝑤

𝑎𝑖
| 𝑎
𝑖

∈ 𝐴} is a set of combined weights
𝑤
𝑎𝑖
valued with the time cost for the execution of the

according action and the number of times that this
action has shown in current layer,

(iii) 𝐸 = {(𝑎
𝑖
, 𝑎
𝑗
) | 𝑎
𝑖
, 𝑎
𝑗

∈ 𝐴, 𝑖 ̸= 𝑗} is a set of edges
connecting the relative actions 𝑎

𝑖
and 𝑎
𝑗
.

In a MWCP, the vertices are the actions with indepen-
dence relation or allowance relation in the active layer of plan
tree. An edge indicates the relation between two connected
actions, where an undirected edge presents an independence
relation and a directed edge presents an allowance relation.
An example graph of MWCP is shown in Figure 5, where
the vertices are named with actions and their weights are
noted on the nodes. In the example, one independence and
six allowances are included.

Since the goal of optimization is to find an action clique
to reduce the time consumption for multitasking and the
global optimization is always complicated and needs a huge
consumption of computation, the second best thing is to find
the local optimum. As this, the rule of the optimization is
set asmaximal-cost-saving-first compared with the total time
cost to execute all actions involved in the action clique one by
one, and the formula is as (10), where 𝑛

𝑎𝑖
is the amount of that

𝑎
𝑖
appearing in the active layer of plan tree, and 𝑊(𝑐

𝑥
) is the

cost of action clique 𝑐
𝑥
:

𝑓max (𝑤
𝑎𝑖
, 𝑐
𝑥
) = max(∑

𝑐𝑥

(𝑤
𝑎𝑖

∗ 𝑛
𝑎𝑖

| 𝑎
𝑖
∈ 𝑐
𝑥
) − 𝑊(𝑐

𝑥
)) .

(10)

However, since an action clique may contain allowance
relations, the actions in clique have to be sorted by allowance
order. And 𝑊(𝑐

𝑥
) is equal to the maximum weight for all

action paths in 𝑐
𝑥
, shown in

𝑊(𝑐
𝑥
) = max(∑

𝑎𝑝
𝑘

(𝑤
𝑎𝑖

| 𝑎
𝑖
∈ 𝑎𝑝
𝑘
) | 𝑎𝑝

𝑘
∈ 𝑐
𝑥
) . (11)

In particular, if there is neither independence nor
allowance relation among actions in the active layer, the
optimization is simplified as

𝑓max (𝑤
𝑎𝑖
, 𝑎
𝑖
) = max (𝑤

𝑎𝑖
∗ (𝑛
𝑎𝑖

− 1) | 𝑎
𝑖
∈ 𝐴) . (12)

15, 1

11, 3

4, 1

7, 2

6, 1

g122

m21

m25

m24

g232

m21: (move_base, table2, table1)
m25: (move_base, table2, table5)
m24: (move_base, table2, table4)
g122: (grasp_place, drink1, tray2, table2)
g232: (grasp_place, drink2, tray3, table2)

Figure 5: An example graph of MWCP.

As the rule of optimization, the selected actions clique
of the example in Figure 5 will be AC = {(𝑔122, 𝑔232,

𝑚21), independence (𝑔122, 𝑔232) , allowance (𝑔122, 𝑚21),

allowance (𝑔232,𝑚21)}.

5. Plan Executing and Execution Monitoring

5.1. Plan Executing. After a planned action clique is generated
by plan parallelizing, it is executed in PE. As an action clique
consisted of the actions executable in parallel, PE should play
two roles during the execution: (1) to manage and allocate the
actions in action clique and (2) to transform the actions into
executing command.

Algorithm2 shows themain algorithm for executing plan.
There, PE works online and waits for the trigger until a new
AC is generated in PP through wait for ac(). Once an AC is
got, the actions in AC will be executed iteratively until it is
empty. Since the actions in an AC is executable in parallel but
with allowance constrain, in which an action can only be exe-
cuted immediately when there is no prefix action of it, all the
free actions, without prefix action for them, are transformed
to controllers, respectively, by tramsform to control (actioni)
at once. At the meantime, their protected states and effected
states, including the positive effect and negative effect, are
published to EM by publish to monitor (actioni) and then the
free actions will be removed from current AC as well.

In tramsform to control (actioni), actioni is transformed
to control function by recalling the respective controller. For
example, an action !move base (Table1, Table2) is to move
the vehicle from Table1 to Table2, where Table1 and Table2
will be mapping to the corresponding positions in the map
and assigned to the navigation function as its parameters, in
which path planning is called to find a path way and drive the
vehicle from the position of Table1 to the position of Table2.
Likewise, the protected states of actioni are published to EM,
where they will be monitored.

After transforming the free actions to control, PE will
wait for the response of EM. Once an action is successfully
executed, it is returned as consummator and removed from
the prefix list of other actions to free them for executing
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execute plan()
AC ← wait for ac()
while AC is not empty:

for each 𝑎𝑐𝑡𝑖𝑜𝑛
𝑖
in AC:

if prefix of (𝑎𝑐𝑡𝑖𝑜𝑛
𝑖
) is empty:

tramsform to control(𝑎𝑐𝑡𝑖𝑜𝑛
𝑖
)

publish to monitor(𝑎𝑐𝑡𝑖𝑜𝑛
𝑖
)

AC.remove(𝑎𝑐𝑡𝑖𝑜𝑛
𝑖
)

consummator ← wait for monitor()
for each 𝑎𝑐𝑡𝑖𝑜𝑛

𝑖
in AC:

if consummator in prefix of (𝑎𝑐𝑡𝑖𝑜𝑛
𝑖
):

remove consummator from prefix of (𝑎𝑐𝑡𝑖𝑜𝑛
𝑖
)

activate PP to parallel next layer

Algorithm 2: Plan executing.

immediately. When all actions in AC are executed, PE will
send a trigger to activate PP to parallel next layer of the global
plan tree.

5.2. Execution Monitoring. In EM, the plan execution is
monitored by two ways: (1) the protected states have to be
kept and never be tampered until the execution is finished; (2)
the goal states are expected to be realized, where the positive
effect states are shown in current states and the negative
effected states are deleted from current states.

Each state of protected states and goal states is monitored
by a process of the involved sensor, in which the sensor
acquires the information and confirms the states. EM man-
ages the processes by calling or killing them and compares the
confirmed states with the monitoring states of each action.
There are three cases.

(i) If any protected state of an action has been confirmed
to be tampered during executing the action, the exe-
cution fails, and the relative plan must be replanned.

(ii) If the goal states are all confirmed to be achieved
and the protected states are all kept well during the
execution of an action, then the action is executed
successfully. At this time, the action is sent to PE as
a consummator, and this would activate the process
of PE to go ahead to execute the next batch of free
actions.

(iii) If the goal states cannot be confirmed in expected
time, then the execution of this action would be
considered as failure, and it will be replanned also.

While the execution fails, the replanning is activated to
recover it. As to improve the performance, an algorithm
based on partially backtracking is designed to restrict the
replanning depth. As the basic principle, the replanning
always and iteratively tries to replan the nearest upper task of
the failure action or task until the new solution is obtained.

As shown in Algorithm 3, the corresponding action in
task tree can be achieved by Action2Task(), in which a dic-
tionary maps the actions between plan tree and task tree.The
parent task is then replanned. If the replanning is successful,

K2
1

2

3

Kitchen

Entrance

Figure 6: Map for the experiment.

the repairedplan is got and replaces the failure one waiting for
next process of plan parallelizing by renew plantree(), and the
repairedtask repairs the failure task tree by renew tasktree().
If not, the upper parent task is got and replanned recursively
until solution is found or the root is reached with returning
false.

6. Experiment and Result

6.1. Experiment Environment and Setting. The experiment is
tested in a dynamic environment setting with one entrance
and three tables distributed in a laboratory, shown in Figure 6,
which simulates the scenario of drink service in auto-
mated restaurant. Three facilities, two intelligent vehicles,
and settled Kinect are involved in the networking of the
experiment; each of them has the individual responsibility,
but cooperating with each other for acquiring information
and monitoring execution.

For details, each facility has the following capability: (1)
K1, Kinect for surveillance settled at the door way of the
entrance, can detect and recognize the guest who enters
the service area or goes out from the entrance; (2) K2, a
pioneer intelligent vehicle equipped with Kinect for menu
service, can detect and recognize which table the identified
guest is sitting by and get his or her order for drink; (3)
K3, another intelligent vehicle equipped a 7 DOF arm and a
gripper for deliver service, can serve the ordered drink to the
corresponding table and recycle the empty drink boxes after
guests leave.

To cooperating in network, due to the convenience for
communicating among distributed machines in local area
network [33], ROS (robot operating system) is employed for
the development of control systems. In addition, to enhance
the robustness of the networking, we construct a hybrid
network environment by using wireless data transmission
modules as the supplement. In the experiment, communi-
cation among all facilities is through one shared “roscore”
in ROS, shown as Figure 7, while K2 and K3 communicate
through wireless data transmission.

In Figure 8, we can see the flowchart of multiple sensors.
On the left top, K1’s and K2’s computers are connected in the
same local area network; among them, K2’s laptop is running
as a ROS master, and other computers are running connect
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repaire plan(𝑆, fAction, preAction)
fTask ← Action2Task(fAction)
solution ← False
while solution = False:

fParent ← fTask.up
if fParent is the root of TaskTree:

return False
repairedtask, repairedplan ← decompose task(𝑆, fParent, repairedtask, repairedplan)
if repairedtask, repairedplan is not False:

solution ← True
renew tasktree(repairedtask)
renew plantree(repairedplan)

Algorithm 3: Repair the failure plan by replanning based on partial backtracking.
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Figure 7: ROS computation graph for K2.
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Figure 8: The flowchart of multiple sensors.

with it, so that the K1’s and K2’s computers can share ROS
topic with each other. They are assembled as a group. K1
sends topic of “/face name” to the group by using its Kinect
sensor to detect guests and record their ID. And then K2’s
Kinect sensor can detect guests and recognizes their names,
at the same time; K2’s vehicle sensors send back a topic of
“/position” to the group. Using all these topics, K2’s laptop can
know the guests and their sitting tables; then it sends a topic
message using K2’s wireless data transmission module to K3.
K3’s planner receives the messages and works with them.

In experiment, K1 monitors the entrance to detect and
acquire training images for every new guest. Human detec-
tion is realized by the skeleton tracking, which is the best
known application of Kinect, and the joint positions of a
person standing in front of the camera can be detected and
tracked through using the ROS package of openni tracker
[34]. If a new guest stares at the camera for couple of seconds,
the desired number of training images is obtained from the
video stream, and the ID for the new guest is then assigned
[35]. Finally, the acquired images are stored and added to the
list of training imaged and shared with others. The process is
shown in the images of Figure 9.

As a pioneer vehicle, K2 is capable of SLAM (simultane-
ous localization and mapping), communicating with K1 by
“roscore” and exchanging information with K3 by wireless
data transmissions. Equipped with the navigation stack of
ROS, it is able to plan path, create a map from laser scan data,
locate itself in a map, and so forth. In Figure 9, K2 starts to
routine patrol to detect and recognize every guest (as shown
in Figure 10), confirm their table number through its current
location and pose, acquire the orders of drink, and publish
them to K3. If the K2 detects the drink only but no person is
near the table, it will infer whether the guest has gone by the
K1’s information.

Figure 9: Guest lzh1 is detected and recognized by K1.

Moreover, as to make the experiment easy going, but not
the key point of our experiment, we design SURF detector
to detect the images pasted on the drink box to classify the
drinks, shown in Figure 11. The red circles on the images are
generated by SURF detector.

And as the delivery vehicle, K3 is able to execute the
drink identification, autonomous moving, grasping, and
place actions, and the tray on K3 is with themaximal capacity
of carrying three drinks. With multitasking planning, K3
can treat the multiple tasks as a whole to save the cost
for task execution. When a new task is requested, it will
be inserted to the current task list, and the individual
plan for it will be parallelized into the global plan. As
an example, if two persons are coming or leaving at the
same time, K3 could serve them in parallel and carry two
drinks at once and deliver to them, respectively, shown in
Figure 12.
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Figure 10: K2 has detected and recognized Guest lzh1 and cc and
provided their location.

Figure 11: Different drink box at different position is detected
precisely.

6.2. Testing and Result. To verify the feasibility and the
improvement on the efficiency of the approach proposed, the
comparable testing and results are presented in two cases.

Case 1 (serving two guests in parallel by networking). In
this case, K3, working with networking, receives a new task
that Guest lzh1 orders Drink2, while grasping and placing the
Drink1 on the tray for serving it to Table1 for Guest cc. At this
time, the new task is inserted and paralleled into the global
plan.As the result of parallelization, two tasks can be executed
in parallel, and K3 would bring Drink1 together with Drink2
and serve them to Table1 and Table2, respectively. The plan
and the executing time are shown in Figure 13, and thewaiting
time of drink service for Guest lzh1 is 217 s.

Case 2 (serving two guests by single vehicle). In Case 2, K3 is
working as a single vehicle, and it may not be able to detect
the coming of new guest in first time, and new service task
has to wait until the current task is finished. This takes much
more time for the new guest to wait. With the same setting
and variables of Case 1, the plan and the executing time are
shown in Figure 14, and the waiting time for Guest lzh1 is
389 s.

As the comparison between Cases 1 and 2, the testing
which is based on the proposed approach and networking
saves 172 seconds for Guest lzh1 to get the drink service.

Figure 12: K3 is serving two drinks for two guests in parallel.
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!grasp_place
(drink2, table2)
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Wait for lzh1’s order
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Figure 13: Result of Case 1.
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Figure 14: Result of Case 2.

The different bounding colors, red and green, highlight
the differences actions between two cases. There, the red
color presents the actions which are involved in both cases
but with different time costs. In two cases, the time cost
for !detect recognize (lzh1), colored with red, is different.
Because in Case 1, K2 can use the shared data of lzh1’s face
from K1 during executing !detect recognize (lzh1), while in
Case 2, K3 has to obtain this data by itself. At this point,
it shows the advance of our method that the networking
improves the efficiency on acquiring information. And the
green presents the actions that are involved in either of
two cases. The actions of !move base (Table2, Kitchen) and
!move base (Kitchen, Table2) in Case 2 are not appear in Case
1 because K3 has paralleled the two tasks as a global plan. And
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it shows the improvement of our approach on the efficiency
of multitasking.

7. Conclusion and Future Work

In this paper, we proposed an approach for multitasking in
restaurant service of intelligent vehicles by networking. We
presented the adapted method of hierarchical decomposing
based on traditional HTN planning and the optimization
modelled as maximal weight clique problem for optimizing
the efficiency of multitasking. And by integrating the plan
executing and execution monitoring, the vehicles can work
online in dynamic environment. Additionally, as the vehicles
are working in network, the mechanism for cooperating by
sharing information and allocating task help the vehicles to
handle partially observability and uncertainty in dynamic
world. As shown in the experiment of restaurant service,
three facilities cooperated with each other in a hybrid
network and the comparing results between working by
networking and working as individual support that the
proposed approach has made obvious progress on improving
the efficiency and robustness of the vehicles.

Even though the feasibility of the proposed approach is
verified, the uncertainty is not really figured out yet. The
future works will focus on the deeper integration with the
capability for predicting the change of the environment in real
world with much more uncertainty, to find the way to endow
the indoor intelligent vehicles with more robustness so that
it can work more unaffectedly and friendly in a human-robot
coexisting world.
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