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ABSTRACT. The definition and basic properties of Legendre Numbers are reviewed here.
We then develop some new properties and identities involving sums of Legendre Numbers,

including clarification of a statement in the paper of Haggard [I].
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NTRODUCT ON

Recently P. W. Haggard [I] introduced Legendre Numbers, discussed various of

their properties, and evaluated certain related infinite series and integrals. In
this note we review some of these ideas and discuss some further results.

I. LEGENDRE NUMBERS.

The Legendre polynomials Pn(X) are defined [2] by the generating function

(l 2xt + t2)-1/2 tn}-: Pn(X)
n--O

and the Associated Legendre functions are defined by

m

pm(x) (l-x2) Dm(p (x)) (l 2)n n

Recently P. W. Haggard [1] defined the Legendre Number, Pmn, to be P(O) and

studied some of their basic properties. By the well-known Rodrigue’s formula [2]

Dn((x2- 1)n), (].3)Pn(X)
2n "n

we see that m

P(x) (l x2) 2 n

2n n
Dm+n (x ])

and consequently

pm= pm) (0)

where vn(m)(O) is the value of the ruth derivative of Pn(X) at x O.

deduced the following explicit formula from (1.4).

(1.4)

(.s)

Haggard [1]
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0 m + n odd
pm 0 m > n andn

n-m

(-1) 2 (n+m) m+n even, m < n.

He also gave a table of pm for 0 m n 8n

We note that (1.6) follows dlrectly from (1.1). In fact by (1.1) and the
Bi nomi a theorem

Pn(x)tn {I t(2x-t)} -I/2 , 1"3’5.’.(2n- !) tn(2x_ t) n
n=O n= 2n n’.

+
n=l 2--E2n)’2(n’.) k--Of: (-1)kc)(2x)n-k tn+k

so that

+ , tm (-l)_m-n__(Zn) x2n-m
m=1 _m<n<m 2 mn

2

n/2 Cn;ll ;2(n_l)Pn(X) 2-n (-I)i xn-2i
\n-|i=O

Writing m for n-2i in this, we get

n fn+mPn(X) 2-n (-I) 2 n + m)/ m

m=O n m)/ (n / m) x

m+n even

n p(m)(0)
Now since Pn(X) z n xmm’. we get (1.6).

m=O

2. INTEGER VALUES OF pm
n

In this section we prove that for pm! O, then pm is an integer iff m n. Forn n
this, let Ix] denote the largest tnteqer

_
x, and for prime p and n _> 1, let H(p,n)

denote the highest power of p dividing n. Then it is well known, due to Legendre

(cF. [3], p. 67), that

(,n’). : n (.)

THEOREM 2.1 The highest power of 2 dividing the denominator of pn-2k
n

n -> and k -> O, when expressed in its lowest terms, is k + H(2,k’.). In partlcular,
m is an integer Iff m na non-zero Legendre nung)er Pn

PROOF. By 1.6 and 2.1, letting m n-2k, we see that the highest power of 2

the denominator of p_n-2k (in its reduced form) isdividing given by
II
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H(2 2n(n+n-2k) =,n-n+2k),.

n + z + (n-"-2k) +
-r+i

+

r=1 2r + rll E J rI=1
=n+ x z +

r= r=0 r

n (n-k) / r.
r;

k / (,k’.).
Hence, if m n, then k O, and the highest power of 2 dividing the denominator of

pn is zero and pn is an integern n

3. SUMS INVOLVING pm
n

Haggard [1] proved that

z pO: 2
n=O

and for k >

n=k

If k O, then m n.

pk 1.3.5-7 (2k- I) 2 (3 2)n

However, we note that his arguments prove only that the stated sums in (3.1) and (3.2)
are in the sense of Abel. In fact, as we show later, the series

I: pk for fixed k > O, converges ff k 0nn=k

To see this, using Stirling’s formula, viz.

n,m2V- nn + I/2 e-n as n/

we have

2n 22n(n)-1/2n

and hence pO n 2nn -2n, (-1)n
2n (-I) )2

Also, since the sequence {IP2nl}n 0 1,2 is decreasing, the series n=OI: PO2n
converges.

Now let k > be fixed. Again by Stirllng’s formula, we see that

Pn+k=(-1)n (2n + 2k)’. ,.(_1)nnk-1/22k-1/2
n n + k 22n+k

and hence the series I; P n/k for fixed k >_ I, actually diverges.
n=O

However, some interesting sums Involvlng reclprocals of Legendre numbers yield

the following results.
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THEOREH 3. For Ixl

1
(-l)nx2n 2x Sin ]x

n: n pO /I---- -x-2n
(3.3)

PROOF. it is known from Lehnmr [4] that for xl <

(2x) 2n 2x Sln’Ix
n:i n (n-: /l---x

and (3.3) is a rformulation of thls.

COROLLARY 3.1 For Ix
}: (-I) n x2n 2(Sln-Ix)2

n=| n2 pO
2n

(3.4)

by dividing (3.3) by x and integrating both sides,

: (-l)nx2n x2 x Sin’Ix
n: pO -i-X

+ (3.5)

by differentiatior of (3.3) and multiplying by x, and then,

2n
:

_
2.x.(_s_i_n x__)_

n:, r, po /i + x2

2
I; x n _2(Sinh-lx)2-

n=l n2p

x2n
}:

n=l pO
2n

+ nh-lx "x2 x S!
;7 (3.5’)

by replacing x by x in 3.3, 3.4 and 3.5.

REMARK 3. Since PInz "2nP2n results corresponding to Theorem 3.1 and

Corollary 3.1 can be formulated for sums involving Pn-I For various special cases
we refer the reader to the very interesting paper of D. H. Lehmer [4]. However, it

appears that obtaining a closed expression for the sums of series such as

2n
I: x for larger m, is a difficult problem.
n:m pm

nn/m even
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