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ABSTRACT. The definition and basic properties of Legendre Numbers are reviewed here.
We then develop some new properties and identities involving sums of Legendre Numbers,
including clarification of a statement in the paper of Haggard [1].
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INTRODUCTION

Recently P. W. Haggard [1] introduced Legendre Numbers, discussed various of
their properties, and evaluated certain related infinite series and integrals. In
this note we review some of these ideas and discuss some further results.
1. LEGENDRE NUMBERS.

The Legendre polynomials Pn(x) are defined [2] by the generating function

2 .
= 5 Pn(x)t" (1.1)
n=0

and the Associated Legendre functions are defined by

(-2t + £2)7"

m
P"(x) = (1-x%)7 0"(P,(x)). (1.2)

n® to be Pﬂ(o) and
studied some of their basic properties. By the well-known Rodrigue's formula [2]

Recently P. W. Haggard [1] defined the Legendre Number, P"

P (x) = zTL.f o"((x2 - )M, (1.3)
we see that m

P"(x) = (;n-.x':.g o™"((x2 - 1)") (1.4)
and consequently

Pl = P,gm)(o) . (1.5)

where Pgm)(o) is the value of the mth derivative of Pn(x) at x = 0. Haggard [1]

deduced the following explicit formula from (1.4).
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0 R m + n odd
P: = 0 , m>n and (1.6)
n-m
o '
_(?-“]?)‘_;__(_?_f'_‘_n})_'.ﬁ_. , m+neven, m<n.
2 (—-?") ( )

He also gave a table of P: for 0 - m, n . 8.

We note that (1.6) follows directly from (1.1). 1In fact by (1.1) and the
Binomial theorem

PP GOt = (1 - t(2x-t)) V2 135 o 1) g gyn
n= n=1 2" oot
i 2n)! " k n-k ,n+k
=1+ (2n)! r (-1)"/n\(2x) t
n=1 22(n1)? =0 (L)
NN : (-1)™"(2n)! ( n) K2n-m
— m-n
m=1 g <ns<m 2
so that

/2
P.(x) = 2" :Eo (-0 (";') (2’(:;1) n-2i

Writing m for n-2i in this, we get

n n-m
Pa(x) = 27" mio(-]) ? G: ! :3%) <'(‘n++mm)/9 x"

mn even

n P'(,"')(o) "
I —m— X, We get (1.6).
m=0 :

Now since Pn(x)

2. INTEGER VALUES OF p’r;‘

In this section we prove that for Pﬁ # 0, then Pﬁ is an integer iff m = n. For
this, let [x] denote the largest integer I x, and for prime p and n 2 1, let H(p,n)
denote the highest power of p dividing n. Then 1t is well known, due to Legendre

(cf. [3], p. 67), that

H(pont) = [2-1 , (2.1)
r=11p

THEOREM 2.1 The highest power of 2 dividing the denominator of PM"2k

n 21 and k 2 0, when expressed in its lowest terms, is k + H(2,k!). In particular,
a non-zero Legendre number Pw is an integer 1ff m = n.

PROOF. By 1.6 and 2.1, letting m = n - 2k, we see that the highest power of 2

dividing the denominator of P:'Zk (in its reduced form) is given by
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H(2,2" ("} 2_1.2!&) ' (',‘.'._’Zli,?k_) "
v LR e - L)
EBA L1 D

= - -k T
n (n )"’ Z] r

= k + H(2,k!).
n, then k = 0, and the highest power of 2 dividing the denominator of

n
=1

Hence, if m

P: is zero and P: is an integer. If k = 0, then m = n,

3. SUMS INVOLVING P: .

Haggard [1] proved that

5 PO - LA (3.1)
n=
and for k 2 1
. L2k,
: PK=1.35.7 (k-1 2 2. (3.2)
n=k "

However, we note that his arguments prove only that the stated sums in (3.1) and (3.2)
are in the sense of Abel. In fact, as we show later, the series

b Ph , for fixed k 2 0, converges iff k = 0.
n=k

To see this, using Stirling's formula, viz.

nt~/aw "t 1/2 e, as now

we have
20 2N ()12
n
and hence Pg = (-])"(2")2'2"~£'_'_L
n n -

Also, since the sequence {|PO |} =0,1,2,... is decreasing, the series t P°

2ni’n n=0 2n
converges.

Now let k 2 1 be fixed. Again by Stirling's formula, we see that

K _, a0 (2n+ 2K): n k-1/2.k_-1/2
pk ooy .2 ~ (-1)"nk=1/2k
2n+k nt(n+k)2em

and hence the series P;m‘k , for fixed k 2 1, actually diverges.
n=0

However, some interesting sums involving reciprocals of Legendre numbers yield
the following results.
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THEOREM 3. For [x| - 1
» 0" 2x sinlx (3.3)
0 = "':':.—:_—2— .
nsl npy N1

PROOF. it is known from Lehmer [4] that for |x| < 1

@022 sinlx
RGN ]

z

n:

and (3.3) is a raformulation of this.
COROLLARY 3.1  For |x| < 1

w n .2n
g L1 X700 a(sinTx)? (3.4)
n=1 n2 po
2n

by dividing (3.3) by x and integrating both sides,
o n.2n 2 -1
5 1:1)6}*~'= _5_“? . X S1n2 X (3.5)
n=1 P2n 1-x (1-x2)

by differentiatior of (3.3) and multiplying by x, and then,
T L axisinT) (3.3)
n=ln Pg /1 +x2
A -1,42
I -5-— = -2(Sinh”'x) (3.4")
n=1 2%p%

Y 2n
™ 2n 2 (-1
X X x Sinh 'x

A TR SIS AN (3.5')
n=1 Pgn £+;Z (1 +>(2)3/2

by replacing x by i x in 3.3, 3.4 and 3.5.

REMARK 3.7  Since P;n—l = -ZnPgn , results corresponding to Theorem 3.1 and

Corollary 3.1 can be formulated for sums involving P;n_] . For various special cases
we refer the reacder to the very interesting paner of D. H. Lehmer [4]. However, it
appears that obtaining a closed expression for the sums of series such as

o 2n
L X—m— , for larger m, is a difficult problem.
n=m P
n+m even
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