
Research Article
Stability for a New Class of GNOVI with (𝛾

𝐺
, 𝜆)-Weak-GRD

Mappings in Positive Hilbert Spaces

Hong Gang Li,1 Yongqin Yang,2 Mao Ming Jin,3 and Qinghua Zhang1

1School of Science, Chongqing University of Posts and Telecommunications, Chongqing, Nan’an 400056, China
2School of Science, Chongqing Jiaotong University, Chongqing, Nan’an 400074, China
3Institute of Nonlinear Analysis Research, Changjiang Normal University, Chongqing, Fuling 400803, China

Correspondence should be addressed to Hong Gang Li; lihg12@126.com

Received 9 March 2016; Accepted 7 August 2016

Academic Editor: Ben T. Nohara

Copyright © 2016 Hong Gang Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By using ordered fixed point theory, we set up a new class of GNOVI structures (general nonlinear ordered variational inclusions)
with (𝛾

𝐺
, 𝜆)-weak-GRDmappings, discuss an existence theorem of solution, consider a perturbed Ishikawa iterative algorithm and

the convergence of iterative sequences generated by the algorithm, and show the stability of algorithm for GNOVI structures in
positive Hilbert spaces. The results in the instrument are obtained.

1. Introduction

Stability for variational inequality or general nonlinear
ordered variational inclusions problems are of course pow-
erful tools to deal with the problems occurring in control,
nonlinear programming, economics, engineering sciences
and optimization, and so forth. In recent years, there are
some achievements in terms of systems of inequalities [1],
weak vector variational inequality [2], differential mixed
variational inequalities [3], and so forth. Moreover, Jin [4]
studied the stability for strong nonlinear quasi-variational
inclusion involving H-accretive operators in 2006. After that
the authors investigated some the stability problems of per-
turbed Ishikawa iterative algorithms for nonlinear variational
inclusion problems involving (𝐴, 𝜂)-accretive mappings [5,
6].

On the other hand, in 1972, Amann [7] had the number
of solutions of nonlinear equations in ordered Banach spaces.
Focusing on the work done related to the fixed points of
nonlinear increasing operators in ordered Banach spaces,
it is worth mentioning that work done by Du [8] is quite
interesting and applicable in pure and applied sciences.
From 2008, the authors have some results with regard to
the approximation algorithm, the approximation solution
for a variety of generalized nonlinear ordered variational
inequalities, ordered equations and inclusions, and sensitivity

analysis for a class of parametric variational inclusions in
orderedBanach spaces (see [7–22]). For relatedwork,we refer
the reader to [1–36] and the references therein.

Taking into account the importance of above-mentioned
research works, in this paper, a new class of generalized
nonlinear ordered variational inclusion structures, GNOVI
structures, are introduced in positive Hilbert spaces. By
using the resolvent operator for (𝛾𝐺, 𝜆)-weak-GRD set-valued
mappings and fixed point theory, an existence theorem
of solution for the GNOVI frameworks is established, a
perturbed Ishikawa iterative algorithm is suggested, and the
stability and the convergence of iterative sequences generated
by the algorithm are discussed in positive Hilbert spaces. In
this field, the results in the instrument are obtained.

2. Preliminaries and a New Class of
GNOVI Structures

Let us recall the following results and concepts for research
stability for a new class of GNOVI with (𝛾

𝐺
, 𝜆)-weak-GRD

mappings in positive Hilbert spaces.
Let R be real set, let H be Hilbert space with an inner

product ⟨⋅, ⋅⟩, a norm ‖ ⋅ ‖, and a zero element 𝜃, let nonempty
closed convex subsets C ⊆ H be a cone, let 𝑁 be a normal
constant of C, and let relation ≤ defined by a normal cone C
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be a partial ordered relation inH; thenH formats an ordered
Hilbert space for the ordered relation ≤ and 𝑥 and 𝑦 are
said to be compared to each other (denoted by 𝑥 ∝ 𝑦) for
𝑥, 𝑦 ∈ H if 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 holds inH. If supper{𝑢, V} express
the least upper bound of a binary set {𝑢, V} and inf{𝑢, V}
express the greatest lower bound of a binary set {𝑢, V} on the
partial ordered relation ≤ for any 𝑢, V ∈ H𝑃, supper{𝑢, V} and
inf{𝑢, V} exist, and some binary operators can be defined as
follows:

(i) 𝑥 ∧ 𝑦 = inf{𝑢, V}.
(ii) 𝑢 ∨ V = supper{𝑢, V}.
(iii) 𝑢 ⊕ V = (𝑢 − V) ∨ (V − 𝑢).

∧, ∨, and ⊕ are called AND, OR, and XOR operations,
respectively; then (H, ∨, ∧, ≤) is an ordered lattice [35].

Definition 1. An ordered Hilbert space H with an inner
product ⟨⋅, ⋅⟩ is said to be a positive Hilbert space (denoted
byH
𝑃
) with a partially ordered relation ≤, if

𝑥 ≥ 𝜃,

𝑦 ≥ 𝜃

for any 𝑥, 𝑦 ∈ H;

(1)

then ⟨𝑥, 𝑦⟩ ≥ 0 holds, or H with an inner product ⟨⋅, ⋅⟩ is
said to be a nonpositive Hilbert space (denoted by H

𝑁
) with

a partially ordered relation ≤.

As an example, let C
1
= {(𝑢, V) | 0 ≤ 𝑢, V, 𝑢, V ∈ R}

be closed convex subsets and let ≤ defined by a normal cone
C
1
be a partial ordered relation in R2 (denoted by HNC

1

); it
is clear that R2 is a positive Hilbert space with the partially
ordered relation ≤. However, when letting C

2
= {(𝑢, V) |

0 ≤ 𝑢, |V| ≤ 2𝑢, 𝑢 ∈ R}, then C
2
is closed convex subsets.

Obviously, R2 is a nonpositive Hilbert space with ≤ because
⟨(𝑢, 𝑢), (𝑢, −1.5𝑢)⟩ = −0.5𝑢

2
< 0 for 𝜃 ≤ (𝑢, 𝑢), (𝑢, −1.5𝑢) ∈

C
2
(denoted byHNC

2

).
The following results and structural relationships are

achievements gained by some folks in ordered Banach spaces
(see [8, 9, 16–28, 30–35]), and they are as same as right in
positive Hilbert spaceH𝑃.

Theorem 2 (see [9, 35]). LetR be real set, letH be an ordered
Hilbert space, and let (H, ∨, ∧, ≤) be an ordered lattice; then the
following relations hold:

(1) If 𝑢 and V can be compared, then 𝜃 ≤ 𝑢 ⊕ V.

(2) 𝜃 ≤ 𝑢 ⊕ 𝜃.
(3) If 𝜆 ≥ 0, then 𝜆(𝑢 ∨ V) = 𝜆𝑢 ∨ 𝜆V.
(4) Let 𝜆 be real; then (𝜆𝑢) ⊕ (𝜆V) = |𝜆|(𝑢 ⊕ V).
(5) (𝑢+𝑤)∧(V+𝑤) exists and (𝑢+𝑤)∧(V+𝑤) = (𝑢∧V)+𝑤.
(6) (𝑢+𝑤)∨(V+𝑤) exists and (𝑢+𝑤)∨(V+𝑤) = (𝑢∨𝑦)+𝑤.
(7) If 𝑢, V, and 𝑤 can be compared to each other, then (𝑢 ⊕

V) ≤ 𝑢 ⊕ 𝑤 + 𝑤 ⊕ V.

(8) Let (𝑢+V)∨(𝑤+𝑧) exist, and if 𝑥 ∝ 𝑢, V and 𝑦 ∝ 𝑢, V,
then (𝑢+V)⊕ (𝑤+𝑧) ≤ (𝑢⊕𝑤+V⊕𝑧)∧(𝑢⊕𝑧+V⊕𝑤).

(9) If 𝑢, V, 𝑤, and 𝑧 can be compared to each other, then
(𝑢∧V)⊕(𝑤∧𝑧) ≤ ((𝑢⊕𝑤)∨(V⊕𝑧))∧((𝑢⊕𝑧)∨(V⊕𝑤)).

(10) (𝛼𝑢) ⊕ (𝛽𝑢) = |𝛼 − 𝛽|𝑢 for 𝛼, 𝛽 ∈ R.

For arbitrariness, 𝑢, V, 𝑤, and 𝑧 ∈ H.

Theorem 3 (see [8, 9, 16]). Let H be an ordered Hilbert space
and let ≤ be a partial ordered relation inH; then the following
conclusions hold:

(i) If 𝑥 ∝ 𝑦, then (1) supper{𝑥, 𝑦} and inf{𝑥, 𝑦} exist, (2)
𝑥 − 𝑦 ∝ 𝑦 − 𝑥, and (3) 𝜃 ≤ (𝑥 − 𝑦) ∨ (𝑦 − 𝑥).

(ii) If, for any natural number 𝑛, 𝑥 ∝ 𝑦
𝑛
and 𝑦

𝑛
→

𝑦
∗
(𝑛 → ∞), then 𝑥 ∝ 𝑦

∗.

Theorem 4 (see [22]). If H
𝑃
is a positive Hilbert space and ≤

is a partial ordered relation inH
𝑃
, then the inequalities,

(1) if 𝜃 ≤ 𝑧, 𝑢 ≤ V, then ⟨𝑢, 𝑧⟩ ≤ ⟨V, 𝑧⟩,
(2) if 𝜃 ≤ 𝑧, then ⟨𝑢 ∧ V, 𝑧⟩ ≤ ⟨𝑢, 𝑧⟩ ∧ ⟨V, 𝑧⟩, ⟨𝑢, 𝑧⟩ ∨

⟨V, 𝑧⟩ ≤ ⟨𝑢 ∨ V, 𝑧⟩,
(3) if 𝜃 ≤ 𝑧, then ⟨𝑢, 𝑧⟩+⟨V, 𝑧⟩−⟨𝑢, 𝑧⟩∧⟨V, 𝑧⟩ ≤ ⟨𝑢∨V, 𝑧⟩,
(4) if 𝜃 ≤ 𝑧, then ⟨𝑢, 𝑧⟩ ∨ ⟨V, 𝑧⟩ + ⟨𝑢 ∧ V, 𝑧⟩ ≤ ⟨𝑢 + V, 𝑧⟩,
(5) if 𝜃 ≤ 𝑧, then ⟨𝑢, 𝑧⟩ ⊕ ⟨V, 𝑧⟩ ≤ ⟨𝑢 ⊕ V, 𝑧⟩,

hold for 𝑢, V, 𝑧, 𝑤 ∈ H
𝑃.

It is worth noting that (1)–(5) metric inequalities in
Theorem 4 are failure in nonpositive Hilbert space H𝑁, for
example,HNC

2

.

Definition 5. Let H
𝑃 be a real positive Hilbert space, and let

𝑄 : H𝑃×H𝑃 → H𝑃 be a mapping.Themapping𝑄 : H×H →

H is said to be ordered Lipschitz continuous mapping with
constants (𝜇, ]); if 𝑢 ∝ V and 𝑤 ∝ 𝑧, then 𝑄(𝑤, 𝑢) ∝ 𝑄(𝑧, V)
and there exist constants 𝜇, ] > 0 such that

𝑄 (𝑤, 𝑢) ⊕ 𝑄 (𝑧, V) ≤ 𝜇 (𝑤 ⊕ 𝑧) + ] (𝑢 ⊕ V) . (2)

Definition 6. Let H𝑃 be a real positive Hilbert space, let
𝑀 : H𝑃 → CB(H𝑃) be a set-valued mapping, and let 𝐺 :

H
𝑃
→ H
𝑃
be a strong comparison and𝛽-ordered compressed

mapping.

(1) 𝑀 is said to be a weak comparison mapping with
respect to 𝐺; if, for any 𝑥, 𝑦 ∈ 𝑋, 𝑥 ∝ 𝑦, then there
exist V

𝑥
∈ 𝑀(𝐺(𝑥)) and V

𝑦
∈ 𝑀(𝐺(𝑦)) such that

𝑥 ∝ V
𝑥
, 𝑦 ∝ V

𝑦
, and V

𝑥
∝ V
𝑦
, where V

𝑥
and V
𝑦
are

said to be weak-comparison elements, respectively.
(2) 𝑀 with respect to 𝐺 is said to be a 𝜆-weak ordered

different comparison mapping with respect to 𝐺; if
there exists a constant 𝜆 > 0 such that, for any
𝑥, 𝑦 ∈ H

𝑃
, there exist V

𝑥
∈ 𝑀(𝐺(𝑥)), V

𝑦
∈ 𝑀(𝐺(𝑦)),

𝜆(V
𝑥
− V
𝑦
) ∝ 𝑥 − 𝑦 holds, where V

𝑥
and V
𝑦
are said to

be 𝜆-elements, respectively.
(3) 𝑀 is said to be an ordered rectangular mapping, if,

for each 𝑥, 𝑦 ∈ H
𝑃
, and any V

𝑥
∈ 𝑀(𝑥) and any V

𝑦
∈

𝑀(𝑦) such that ⟨V
𝑥
⊙ V
𝑦
, −(𝑥 ⊕ 𝑦)⟩ = 0 holds.
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(4) 𝑀 is said to be a 𝛾
𝐺
-ordered rectangular mapping

with respect to 𝐺; if there exists a constant 𝛾
𝐺
≥ 0,

for any 𝑥, 𝑦 ∈ H
𝑃
, there exist V

𝑥
∈ 𝑀(𝐺(𝑥)) and

V
𝑦
∈ 𝑀(𝐺(𝑦)) such that

⟨V
𝑥
⊙ V
𝑦
, − (𝐺 (𝑥) ⊕ (𝑦))⟩ ≥ 𝛾

𝐺

𝐺 (𝑥) ⊕ 𝐺 (𝑦)


2 (3)

holds, where V
𝑥
and V

𝑦
are said to be 𝛾

𝐺
-elements,

respectively.
(5) A weak comparison mapping 𝑀 with respect to 𝐵 is

said to be a (𝛾
𝐺
, 𝜆)-weak-GRD mapping with respect

to 𝐵, if 𝑀 is a 𝛾
𝐺
-ordered rectangular and 𝜆-weak

ordered different comparison mapping with respect
to 𝐵 and (𝐺 + 𝜆𝑀)(H

𝑃
) = H

𝑃
for 𝜆 > 0, and there

exist V
𝑥
∈ 𝑀(𝐺(𝑥)) and V

𝑦
∈ 𝑀(𝐺(𝑦)) such that V

𝑥

and V
𝑦
are (𝛾
𝐺
, 𝜆)-elements, respectively.

Remark 7 (see [9]). LetH
𝑃
be a real positive Hilbert space, let

𝐺 : H
𝑃
→ H
𝑃
be a single-valuedmapping, and let𝑀 : H

𝑃
→

CB(H𝑃) be a set-valued mapping; then one has the following:

(i) If 𝐺 = 𝐼 (identical mapping), then a 𝛾
𝐼
-ordered

rectangular mapping must be ordered rectangularly
in [15].

(ii) An ordered RME mapping must be 𝜆-weak-GRD in
[15].

(iii) A 𝜆-ordered monotone mapping must be 𝜆-weak
ordered different comparison [22].

Theorem 8 (see [22]). Let H
𝑃
be a real positive Hilbert space

with normal constant𝑁, and let𝐺 be a strong comparison and
𝛽-ordered compressed mapping. Let𝑀 : H

𝑃
→ 𝐶𝐵(H

𝑃
) be an

𝛼
𝐼
-weak ordered rectangular set-valued mapping and 𝐼 is an

identical mapping. Let mapping 𝑅𝑀,𝜆
𝐺

= (𝐺 + 𝜆𝑀)
−1

: H
𝑃
→

2
H
𝑃 be an inverse mapping of (𝐺 + 𝜆𝑀).
If 𝛼
𝐼
𝜆 > 𝛽 > 0, 𝜆(𝛼

𝐼
∧ 𝛾
𝐺
) > 𝛽 > 0, and 𝑀 :

H
𝑃
→ 𝐶𝐵(H

𝑃
) is a (𝛾

𝐺
, 𝜆)-weak-GRD set-valued mapping

with respect to 𝑅𝑀,𝜆
𝐺

, then the resolvent operator 𝑅𝑀,𝜆
𝐺

of𝑀 is
a single-valued comparison, and


𝑅
𝑀,𝜆

𝐺
(𝑢) ⊕ 𝑅

𝑀,𝜆

𝐺
(V)


≤

1

𝛾𝐺𝜆 − 𝛽
‖𝑢 ⊕ V‖ , (4)

for 𝑧
𝑢
∈ 𝑀(𝑅

𝑀,𝜆

𝐺
(𝑢)) and 𝑧V ∈ 𝑀(𝑅

𝑀,𝜆

𝐺
(V)), which are 𝛼

𝐼
, 𝛾
𝐺
,

and 𝜆-elements, respectively.

Let R be real set, and let H
𝑃
be a real positive Hilbert

space with normal constant𝑁, a norm ‖ ⋅ ‖, an inner product
⟨⋅, ⋅⟩, and zero 𝜃. Let 𝑀 : H𝑃 → CB(H𝑃) and 𝜌𝑀(H𝑃) =

{𝜌V | V ∈ 𝑀(H𝑃)} be two set-valued mappings, and let 𝑔 :

H𝑃 → H𝑃 and 𝐹 : H𝑃 × H𝑃 → H𝑃 be two single-valued
nonlinear ordered compression mappings. We consider the
following structures.

For 𝜌 > 0 and any 𝜉 ∈ R, find 𝑥 ∈ H𝑃 such that

𝜃 ∈ 𝜌𝑀 (𝑥) − 𝜉𝐹 (𝑥, 𝑔 (𝑥)) , (5)

which is called a new class of general nonlinear ordered vari-
ational inclusion structures (GNOVI structures) in positive
Hilbert spaces.

Remark 9. (i) If 𝜌 = 1, 𝜉 = 0, and 𝑀(𝑥) = 𝐴(𝑔(𝑥)),
then problem (5) becomes the ordered variational inequality
𝐴(𝑔(𝑥)) ≥ 𝜃, which was studied by Li [9].

(ii) If 𝜌 = 1 and 𝜉 = 0, then problem (5) becomes the
ordered variational inequality 𝜃 ∈ 𝑀(𝑥), which was studied
by Li [10].

(iii) If 𝜌 = 𝜔, 𝜉 = −1, and 𝐹(𝑥, 𝑔(𝑥)) = 𝑓(𝑥) − 𝑤(𝑤 ∈ 𝑋),
then problem (5) becomes the ordered variational inequality
𝑤 ∈ 𝑓(𝑥) + 𝜔𝑀(𝑥), which was studied by Li et al. [20].

3. Existence Theorem of the Solution for
GNOVI Structures

In this section, by usingDefinition 1 andTheorems 2–4 and 8,
we study a new class of general nonlinear ordered variational
inclusion structures in positive Hilbert spaces.

Lemma 10. LetH
𝑃
be a real positiveHilbert spacewith normal

constant 𝑁, let 𝐺 be a strong comparison and 𝛽-ordered
compressed mapping, and let𝑀 : H

𝑃
→ 𝐶𝐵(H

𝑃
) be a (𝛾

𝐺
, 𝜆)-

weak ordered GRD set-valued mapping with respect to 𝑅𝑀,𝜆
𝐺

.
Let 𝑔 : H

𝑃
→ H
𝑃
and 𝐹 : H

𝑃
×H
𝑃
→ H
𝑃
be two single-valued

nonlinear mappings. Then inclusion problem (5) has a solution
𝑥
∗ if and only if 𝑥∗ = 𝑅

𝑀,𝜆

𝐺
(𝐺(𝑥
∗
) + 𝜆(𝜉/𝜌)𝐹(𝑥

∗
, 𝑔(𝑥
∗
))) in

H𝑃.

Proof. For 𝜌 > 0, take notice of the fact that 𝜃 ∈ 𝜌𝑀(𝑥) −

𝜉𝐹(𝑥, 𝑔(𝑥)) if and only if 𝐺(𝑥) + 𝜆(𝜉/𝜌)𝐹(𝑥, 𝑔(𝑥)) ∈ 𝐺(𝑥) +

𝜆𝑀(𝑥); this directly follows from the definition of 𝑅𝜌𝑀,𝜆
𝐺

and
problem (5).

Theorem 11. Let R be real set, and let H
𝑃
be a real positive

Hilbert spacewith an inner product ⟨⋅, ⋅⟩ and a normal constant
𝑁. Let 𝐺 be a strong comparison and 𝛽-ordered compressed
mapping, let𝑀 : H

𝑃
→ 𝐶𝐵(H

𝑃
) be an 𝛼

𝐼
-ordered rectangular

and (𝛾
𝐺
, 𝜆)-weak-GRD set-valued mapping with respect to

𝑅
𝑀,𝜆

𝐺
, and let V

𝑥
∈ 𝑀(𝑅

𝑀,𝜆

𝐺
(𝑥)) and V

𝑦
∈ 𝑀(𝑅

𝑀,𝜆

𝐺
(𝑦)) be

𝛼
𝐼
, 𝜆, and 𝛾

𝐺
-elements, respectively. Let 𝐹 : H

𝑃
× H
𝑃
→ H
𝑃

be an ordered Lipschitz continuous mapping with constants
(𝜇, ]), and let 𝑔 : H

𝑃
→ H

𝑃
be single-valued nonlinear

𝜑-ordered compression mapping. If 𝑀,𝐺, 𝑔, 𝜆(𝜉/𝜌)𝐹(𝑥, 𝑔(𝑥))

and 𝐺(𝑥) + 𝜆(𝜉/𝜌)𝐹(𝑥, 𝑔(𝑥)) are compared to each other and
𝛽 and 𝜆 satisfy

0 < 𝛽 < 𝜆(
𝛾𝐺

2
∧ 𝛼
𝐼
) ∧ 1, (6)

𝜌𝛽 (𝑁 + 1) + 𝜆 (𝜇 + ]𝜑 𝜉
)𝑁 < 𝜌𝛾

𝐺
𝜆, (7)

then there exists a solution 𝑥∗ of GNOVI structures (5), which
is a fixed point of 𝑅𝑀,𝜆

𝐺
(𝐺(𝑥) + 𝜆(𝜉/𝜌)𝐹(𝑥, 𝑔(𝑥))).

Proof. Let H
𝑃 be a positive Hilbert space with an inner

product ⟨⋅, ⋅⟩ and a normal constant 𝑁, let 𝐺 be a strong
comparison and 𝛽-ordered compression mapping, and let
𝑀(𝑥) = {V | V ∈ 𝑀(𝑥)} : H

𝑃
→ CB(H

𝑃
) (𝜌 > 0) be a (𝛾

𝐺
, 𝜆)-

weak-GRD set-valued mapping with respect to 𝑅𝑀,𝜆
𝐺

.
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Since 𝛼
𝐼
, 𝛽, 𝛾
𝐺
, 𝜆 > 0 and by condition (6), we have

𝜆 (𝛼
𝐼 ∧ 𝛾𝐺) ≥ 𝜆 (

𝛾
𝐺

2
∧ 𝛼) = 𝜆

𝛾
𝐺

2
∧ 𝜆𝛼𝐼 > 𝛽 > 0,

1 >
𝛽

𝛾
𝐺
𝜆 − 𝛽

> 0.

(8)

By Theorems 4 and 8(4) in [9] and the conditions, if 𝑥
1
∝

𝑥
2
, then 𝑅

𝑀,𝜆

𝐺
(𝐺 + 𝜆(𝜉/𝜌)𝐹(⋅, 𝑔(⋅)))(𝑥

1
) ∝ 𝑅

𝑀,𝜆

𝐺
(𝐺(⋅) +

𝜆(𝜉/𝜌)𝐹(⋅, 𝑔(⋅)))(𝑥
2
) for 𝑥

1
, 𝑥
2
∈ H
𝑃
, and



𝑅
𝜌𝑀,𝜆

𝐺
(𝐺 + 𝜆

𝜉

𝜌
𝐹 (⋅, 𝑔 (⋅))) (𝑥1)

⊕ 𝑅
𝜌𝑀,𝜆

𝐺
(𝐺 + 𝜆

𝜉

𝜌
𝐹 (⋅, 𝑔 (⋅))) (𝑥2)



≤
1

𝛾
𝐺
𝜆 − 𝛽



(𝐺 + 𝜆
𝜉

𝜌
𝐹 (⋅, 𝑔 (⋅))) (𝑥1)

⊕ (𝐺 + 𝜆
𝜉

𝜌
𝐹 (⋅, 𝑔 (⋅))) (𝑥2)



≤
𝑁

𝛾
𝐺
𝜆 − 𝛽

(
𝐺 (𝑥
1
) ⊕ 𝐺 (𝑥

2
)


+ 𝜆
| 𝜉 |

𝜌

𝐹 (𝑥1, 𝑔 (𝑥1)) ⊕ 𝐹 (𝑥2, 𝑔 (𝑥2))
)

≤
𝑁

𝛾
𝐺
𝜆 − 𝛽

(𝛽
𝑥1 ⊕ 𝑥2



+ 𝜆

𝜉


𝜌
(𝜇
𝑥1 ⊕ 𝑥2

 + ] 𝑔 (𝑥1) ⊕ 𝑔 (𝑥2)
))

≤
𝑁

𝛾𝐺𝜆 − 𝛽
(𝛽

𝑥1 ⊕ 𝑥2


+ 𝜆

𝜉


𝜌
(𝜇 + ]𝜑) 𝑥1 ⊕ 𝑥2

) ≤ 𝑁

⋅
𝜌𝛽 + 𝜆 (𝜇 + ]𝜑 𝜉

)

𝜌 (𝛾𝐺𝜆 − 𝛽)

𝑥1 ⊕ 𝑥2
 .

(9)

It follows that 𝑅𝑀,𝜆
𝐺

(𝐺 + (𝜆/𝜌)𝑤) has a fixed point 𝑥∗, which
is a solution 𝑥∗ for GNOVI (5), from Lemma 10 and𝑁((𝜌𝛽+

𝜆(𝜇 + ]𝜑|𝜉|))/𝜌(𝛾
𝐺
𝜆 − 𝛽)) < 1 for (7).

4. Stability of Algorithm for GNOVI Structures

Definition 12. Let 𝑇 : H
𝑃
→ H
𝑃
be a self-mapping, 𝑢

0
∈ H
𝑃
,

and let 𝑢𝑛+1 = ℎ(𝑇, 𝑢𝑛) define an iteration procedure which
yields a sequence of points {𝑢𝑛}

∞

𝑢=0
in H𝑃. Suppose that {𝑢 ∈

H
𝑃
: 𝑇𝑢 = 𝑢} ̸= 0 and {𝑢

𝑛
}
∞

𝑛=0
converge to a fixed point 𝑢∗ of

𝑇. Let {𝑤
𝑛
} ⊂ H

𝑃
and let 𝜀

𝑛
= ‖𝑤
𝑛+1

−ℎ(𝑇, 𝑤
𝑛
)‖. If lim

𝑛→∞
𝜀
𝑛
=

0 implies that 𝑢
𝑛
→ 𝑢
∗, then the iteration procedure defined

by 𝑢
𝑛+1

= ℎ(𝑇, 𝑢
𝑛
) is said to be 𝑇-stable or stable with respect

to 𝑇.

Lemma 13 (see [36]). Let {𝜉
𝑛
}
∞

𝑛=0
be a nonnegative real se-

quence and let {𝜁
𝑛
}
∞

𝑛=0
be a real sequence in [0, 1] such that

∑
∞

𝑛=0
𝜁
𝑛
= ∞. If there exists a positive integer 𝑛

1
such that

𝜉
𝑛+1

≤ (1 − 𝜁
𝑛) 𝜉𝑛 + 𝜁𝑛𝜂𝑛, ∀𝑛 ≥ 𝑛

1
, (10)

where 𝜂
𝑛 ≥ 0 for all 𝑛 ≥ 0 and 𝜂𝑛 → 0 (𝑛 → ∞), then

lim𝑛→∞𝜉𝑛 = 0.

Based on Theorem 11, we can develop a new Ishikawa
iterative sequence for solving problem (5) as follows.

Algorithm 14. LetR be real set, and let H
𝑃
be a real positive

Hilbert spacewith normal constant𝑁. Let {𝜔
𝑛
}
∞

𝑛=0
and {𝜎

𝑛
}
∞

𝑛=0

be two sequences such that 𝜔
𝑛
, 𝜎
𝑛
∈ [0, 1] and ∑∞

𝑛=0
𝜔
𝑛
= ∞.

Let {𝑎
𝑛
}
∞

𝑛=0
and {𝑏

𝑛
}
∞

𝑛=0
be two sequences inH

𝑃
introduced to

take into account possible inexact computation, where 𝑎
𝑛
⊕

𝜃 = 𝑎
𝑛
and 𝑏
𝑛
⊕𝜃 = 𝑏

𝑛
(𝑛 = 0, 1, 2, ⋅ ⋅ ⋅ ). For any given𝑥

0
∈ H
𝑃
,

the perturbed Ishikawa iterative sequence {𝑥
𝑛
}
∞

𝑛=0
is defined

by

𝑥
𝑛+1

= (1 − 𝜔
𝑛
) 𝑥
𝑛

+ 𝜔
𝑛
[𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑦

𝑛
) + 𝜆

𝜉

𝜌
𝐹 (𝑦
𝑛
, 𝑔 (𝑦
𝑛
)))]

+ 𝜔
𝑛
𝑎
𝑛
,

𝑦𝑛 = (1 − 𝜎𝑛) 𝑥𝑛

+ 𝜎
𝑛
[𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑥

𝑛
) + 𝜆

𝜉

𝜌
𝐹 (𝑥
𝑛
, 𝑔 (𝑥
𝑛
)))]

+ 𝜎𝑛𝑏𝑛.

(11)

Let {𝑧
𝑛
}
∞

𝑛=0
be any sequence in𝑋 and define {𝜀

𝑛
}
∞

𝑛=0
by

𝜀
𝑛
=



𝑧
𝑛+1

− [𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑡
𝑛
) + 𝜆

𝜉

𝜌
𝐹 (𝑡
𝑛
, 𝑔 (𝑡
𝑛
))) + 𝜔

𝑛
𝑎
𝑛
]



,

𝑡
𝑛
= (1 − 𝜎

𝑛
) 𝑧
𝑛

+ 𝜎
𝑛
(𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑧

𝑛
) + 𝜆

𝜉

𝜌
𝐹 (𝑧
𝑛
, 𝑔 (𝑧
𝑛
)))) + 𝜔

𝑛
𝑏
𝑛
,

(12)

where 𝜌, 𝜆 > 0, 𝜉 ∈ R and 𝑛 = 0, 1, 2, . . . .

Remark 15. For a suitable choice of the mappings 𝐴, 𝑔, 𝑓,
𝐵, 𝜎
𝑛
, 𝜔
𝑛
, 𝜌, and 𝜉 and space H

𝑃
, then Algorithm 14 can be

degenerated to known the algorithms in [9].

Theorem 16. LetR,H
𝑃
,𝑀, 𝑔, 𝐹 be the same as inTheorem 11,

and let {𝜔
𝑛
}
∞

𝑛=0
and {𝜎

𝑛
}
∞

𝑛=0
be two sequences such that𝜔

𝑛
, 𝜎
𝑛
∈

[0, 1] and ∑
∞

𝑛=0
𝜔
𝑛

= ∞. Let {𝑎
𝑛
}
∞

𝑛=0
and {𝑏

𝑛
}
∞

𝑛=0
be two

sequences in H
𝑃

introduced to take into account possible
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inexact computation, where 𝑎
𝑛
⊕ 𝜃 = 𝑎

𝑛
and 𝑏
𝑛
⊕ 𝜃 = 𝑏

𝑛
(𝑛 =

0, 1, 2, ⋅ ⋅ ⋅ ). If condition

𝜌𝛽 + 𝜆 (𝜇 + ]𝜑 𝜉
) < 𝜌 (𝜆𝛾

𝐺
− 𝛽)min { 1

𝑁
,
1

2
} (13)

holds, then one has the following:

(i) If lim
𝑛→∞‖𝑎𝑛 ∨ −𝑎𝑛‖ = lim𝑛→∞‖𝑏𝑛 ∨ −𝑏𝑛‖ = 0, then

sequence {𝑥𝑛} generated by (11) converges strongly to
𝑥
∗
∈ H
𝑃
, and 𝑥∗ is a unique solution of problem (5).

(ii) Moreover, if 0 < 𝜑 ≤ 𝜔
𝑛, then lim𝑛→∞𝑧𝑛 = 𝑥

∗ if and
only if lim

𝑛→∞
𝜀
𝑛
= 0, where 𝜀

𝑛
is defined by (12); that

is, sequence {𝑥
𝑛
} generated by (11) is 𝑇-stable.

Proof. LetR,H
𝑃
,𝑀, 𝑔, 𝐹 be the same as inTheorem 11. If (13)

holds then (7) is true.
In the first place, we show that (i) is right.
Let 𝑥∗ be a unique solution of problem (5); then we have

𝑥
∗
= (1 − 𝜔𝑛) 𝑥

∗

+ 𝜔𝑛 [𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑥

∗
) + 𝜆

𝜉

𝜌
𝐹 (𝑥
∗
, 𝑔 (𝑥
∗
)))]

= (1 − 𝜎
𝑛
) 𝑥
∗

+ 𝜎
𝑛
[𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑥

∗
) + 𝜆

𝜉

𝜌
𝐹 (𝑥
∗
, 𝑔 (𝑥
∗
)))] .

(14)

From (11), (14), and (9) and Theorems 2, 4, and 11, it follows
that

𝜃 ≤ 𝑥
𝑛+1

⊕ 𝑥
∗
≤ (1 − 𝜔

𝑛
) (𝑥
𝑛
⊕ 𝑥
∗
) + 𝜔
𝑛
(𝑎
𝑛
⊕ 𝜃)

+ 𝜔
𝑛
((𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑦

𝑛
) + 𝜆

𝜉

𝜌
𝐹 (𝑦
𝑛
, 𝑔 (𝑦
𝑛
))))

⊕ (𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑥

∗
) + 𝜆

𝜉

𝜌
𝐹 (𝑥
∗
, 𝑔 (𝑥
∗
))))) ≤ (1

− 𝜔
𝑛
) (𝑥
𝑛
⊕ 𝑥
∗
) + ℎ𝜔

𝑛
(𝑦
𝑛
⊕ 𝑥
∗
) + 𝜔
𝑛
(𝑎
𝑛
⊕ 𝜃) ,

(15)

where

ℎ =
𝜌𝛽 + 𝜆 (𝜇 + ]𝜑 𝜉

)

𝜌 (𝛾
𝐺
𝜆 − 𝛽)

. (16)

Similarly, we can prove that

𝜃 ≤ 𝑦𝑛 ⊕ 𝑥
∗
≤ (1 − 𝜎𝑛) (𝑥𝑛 ⊕ 𝑥

∗
) + 𝜎𝑛 (𝑏𝑛 ⊕ 𝜃)

+ 𝜎
𝑛 ((𝑅

𝑀,𝜆

𝐺
(𝐺 (𝑦𝑛) + 𝜆

𝜉

𝜌
𝐹 (𝑦𝑛, 𝑔 (𝑦𝑛))))

⊕ (𝑅
𝑀,𝜆

𝐺
(𝐺 (𝑥

∗
) + 𝜆

𝜉

𝜌
𝐹 (𝑥
∗
, 𝑔 (𝑥
∗
))))) ≤ (1

− 𝜎
𝑛
) (𝑥
𝑛
⊕ 𝑥
∗
) + 𝜎
𝑛
ℎ (𝑥
𝑛
⊕ 𝑥
∗
) + 𝜎
𝑛
(𝑏
𝑛
⊕ 𝜃) .

(17)

It follows that
𝜃 ≤ 𝑥
𝑛+1

⊕ 𝑥
∗
≤ (1 − 𝜔

𝑛
) (𝑥
𝑛
⊕ 𝑥
∗
)

+ ℎ𝜔𝑛 ((1 − 𝜎𝑛) (𝑥𝑛 ⊕ 𝑥
∗
) + 𝜎𝑛ℎ (𝑥𝑛 ⊕ 𝑥

∗
) + 𝜎𝑛𝑏𝑛)

+ 𝜔
𝑛
(𝑎
𝑛
⊕ 𝜃) ≤ (1 − 𝜔

𝑛
) (𝑥
𝑛
⊕ 𝑥
∗
)

+ ℎ ((1 − 𝜎
𝑛
) (𝑥
𝑛
⊕ 𝑥
∗
) + 𝜎
𝑛
ℎ (𝑥
𝑛
⊕ 𝑥
∗
)

+ 𝜎
𝑛
(𝑏
𝑛
⊕ 𝜃)) + 𝜔

𝑛
(𝑎
𝑛
⊕ 𝜃) ≤ (1 − 𝜔

𝑛 (1 − 2ℎ))

⋅ (𝑥𝑛 ⊕ 𝑥
∗
) + 𝜔
𝑛
(ℎ𝜎
𝑛
(𝑏
𝑛
⊕ 𝜃) + (𝑎

𝑛
⊕ 𝜃)) ,

(18)

from (15), (16), and (17) andTheorems 2 and 4.
By assumption (13), we have 0 < 1 − 2ℎ < 1 and deduce
𝑥𝑛+1 − 𝑥

∗ ≤ (1 − 𝜔
𝑛 (1 − 2ℎ))𝑁

𝑥𝑛 − 𝑥
∗

≤ +𝜔
𝑛 (1 − 2ℎ)𝑁(

ℎ
𝑏𝑛 ∨ −𝑏𝑛

 +
𝑎𝑛 ∨ −𝑎𝑛



1 − 2ℎ
) ,

(19)

for (18) and Theorem 11, and 𝑎𝑛 ⊕ 𝜃 = 𝑎𝑛 ∨ −𝑎𝑛 and 𝑏𝑛 ⊕ 𝜃 =

𝑏𝑛 ∨ −𝑏𝑛.
Let

𝜂
𝑛
=
𝑥𝑛 − 𝑥

∗ ,

𝜁
𝑛
= 𝜔
𝑛 (1 − 2ℎ)𝑁,

𝜒𝑛 =
ℎ
𝑏𝑛 ∨ −𝑏𝑛

 +
𝑎𝑛 ∨ −𝑎𝑛



1 − 2ℎ
;

(20)

then (20) can be written as

𝜂
𝑛+1

≤ (1 − 𝜁
𝑛
) 𝜉
𝑛
+ 𝜁
𝑛
𝜒
𝑛
. (21)

It follows from Lemma 13 and lim𝑛→∞‖𝑎𝑛 ∨ −𝑎𝑛‖ =

lim
𝑛→∞

‖𝑏
𝑛
∨ −𝑏
𝑛
‖ = 0 that 𝜉

𝑛
→ 0 (𝑛 → ∞), and so {𝑥

𝑛
}

converges strongly to unique solution 𝑥∗ of problem (5).
There is one more point; we prove (ii).
Let𝑄(𝑥) = 𝑅

𝑀,𝜆

𝐺
(𝐺(𝑥)+𝜆(𝜉/𝜌)𝐹(𝑥, 𝑔(𝑥))) for 𝑥 ∈ 𝑋

𝑃
. By

(12) andTheorems 2 and 4 and (14), we obtain
𝜃 ≤ 𝑧
𝑛+1

⊕ 𝑥
∗

≤ (𝑧
𝑛+1

⊕ ((1 − 𝜔
𝑛
) 𝑧
𝑛
+ 𝜔
𝑛
𝑄 (𝑡
𝑛
) + 𝜔
𝑛
𝑎
𝑛
))

+ ((1 − 𝜔𝑛) 𝑧𝑛 + 𝜔𝑛𝑄 (𝑡𝑛) + 𝜔𝑛𝑎𝑛) ⊕ 𝑥
∗

≤ (𝑧
𝑛+1

⊕ ((1 − 𝜔
𝑛
) 𝑧
𝑛
+ 𝜔
𝑛
𝑄 (𝑡
𝑛
) + 𝜔
𝑛
𝑎
𝑛
))

+ ((1 − 𝜔
𝑛
) 𝑧
𝑛
+ 𝜔
𝑛
𝑄 (𝑡
𝑛
) + 𝜔
𝑛
𝑎
𝑛
)

⊕ ((1 − 𝜔
𝑛
) 𝑥
∗
+ 𝜔
𝑛
𝑄 (𝑥
∗
))

≤ (𝑧𝑛+1 ⊕ ((1 − 𝜔𝑛) 𝑧𝑛 + 𝜔𝑛𝑄 (𝑡𝑛) + 𝜔𝑛𝑎𝑛))

+ (1 − 𝜔
𝑛
) (𝑧
𝑛
⊕ 𝑥
∗
) + 𝜔
𝑛
𝑄 (𝑡
𝑛
) ⊕ 𝑄 (𝑥

∗
)

+ 𝜔𝑛 (𝑎𝑛 ⊕ 𝜃)

≤ (𝑧
𝑛+1

⊕ ((1 − 𝜔
𝑛
) 𝑧
𝑛
+ 𝜔
𝑛
𝑄 (𝑡
𝑛
) + 𝜔
𝑛
(𝑎
𝑛
⊕ 𝜃)))

+ (1 − 𝜔
𝑛 (1 − 2ℎ)) (𝑧𝑛 ⊕ 𝑥

∗
)

+ 𝜔
𝑛
(ℎ𝜎
𝑛
(𝑏
𝑛
⊕ 𝜃) + (𝑎

𝑛
⊕ 𝜃)) .

(22)
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As in the proof of inequality (19) andTheorem 11, we have
𝑧𝑛+1 − 𝑥

∗

≤ 𝑁
𝑧𝑛+1 − [(1 − 𝜔𝑛) 𝑧𝑛 + 𝜔𝑛𝑄 (𝑡𝑛) + 𝜔𝑛𝑎𝑛]



+ 𝑁 (1 − 𝜔
𝑛 (1 − 2ℎ))

𝑧𝑛 − 𝑥
∗

+ 𝑁𝜔
𝑛 (ℎ𝜎𝑛

𝑏𝑛 ∨ −𝑏𝑛
 +

𝑎𝑛 ∨ −𝑎𝑛
)

≤ 𝑁𝜀
𝑛 + 𝑁 (1 − 𝜔𝑛 (1 − 2ℎ))

𝑧𝑛 − 𝑥
∗

+ 𝑁𝜔
𝑛
(ℎ
𝑏𝑛 ∨ −𝑏𝑛

 +
𝑎𝑛 ∨ −𝑎𝑛

) .

(23)

Since 0 < 𝜑 ≤ 𝜔
𝑛
, by (23), we have

𝑧𝑛+1 − 𝑥
∗ ≤ [1 − 𝜔

𝑛 (1 − 2ℎ)]𝑁
𝑧𝑛 − 𝑥

∗

+ (1 − 2ℎ)

⋅ 𝜔
𝑛𝑁(

ℎ
𝑏𝑛 ∨ −𝑏𝑛

 +
𝑎𝑛 ∨ −𝑎𝑛



1 − 2ℎ
+

𝜀𝑛

𝜑 (1 − 2ℎ)
) .

(24)

Suppose that lim
𝑛→∞

𝜀
𝑛

= 0; we have lim
𝑛→∞

𝑧
𝑛

= 𝑥
∗

for ∑∞
𝑛=0

𝜔
𝑛

= ∞, Theorem 3, and lim
𝑛→∞

‖𝑎
𝑛
∨ −𝑎
𝑛
‖ =

lim
𝑛→∞

‖𝑏
𝑛
∨ −𝑏
𝑛
‖ = 0.

Conversely, if lim
𝑛→∞

𝑧
𝑛

= 𝑥
∗, then, by (14) and

lim
𝑛→∞

‖𝑎
𝑛
∨ −𝑎
𝑛
‖ = lim

𝑛→∞
‖𝑏
𝑛
∨ −𝑏
𝑛
‖ = 0, we get

𝜃 ≤ 𝑧𝑛+1 ⊕ [(1 − 𝜔𝑛) 𝑧𝑛 + 𝜔𝑛𝑄 (𝑡𝑛) + 𝜔𝑛𝑎𝑛] ≤ (𝑧𝑛+1

⊕ 𝑥
∗
) + [(1 − 𝜔

𝑛
) 𝑧
𝑛
+ 𝜔
𝑛
𝑄 (𝑡
𝑛
) + 𝜔
𝑛
𝑎
𝑛
] ⊕ 𝑥
∗

≤ (𝑧
𝑛+1

⊕ 𝑥
∗
) + [(1 − 𝜔

𝑛
) (𝑧
𝑛
⊕ 𝑥
∗
)

+ 𝜔
𝑛
(𝑄 (𝑡
𝑛
) ⊕ 𝑄 (𝑥

∗
)) + 𝜔

𝑛
(𝑎
𝑛
⊕ 𝜃)] ≤ (𝑧

𝑛+1

⊕ 𝑥
∗
) + (1 − 𝜔𝑛 (1 − 2ℎ)) (𝑧𝑛 ⊕ 𝑥

∗
) ≤ +𝜔𝑛 (ℎ𝜎𝑛 (𝑏𝑛 ⊕ 𝜃)

+ (𝑎
𝑛
⊕ 𝜃)) .

(25)

From (12) andTheorem 11, it follows that
𝜀𝑛

 =
𝑧𝑛+1 − [(1 − 𝜔𝑛) 𝑧𝑛 + 𝜔𝑛𝑄 (𝑡

𝑛
) + 𝜔
𝑛
𝑎
𝑛
]


≤ 𝑁
𝑧𝑛+1 ⊕ [(1 − 𝜔𝑛) 𝑧𝑛 + 𝜔𝑛𝑄 (𝑡𝑛) + 𝜔𝑛 (𝑎𝑛 ⊕ 𝜃)]



≤ 𝑁
𝑧𝑛+1 ⊕ 𝑥

∗ + 𝑁 (1 − 𝜔
𝑛 (1 − 2ℎ))

𝑧𝑛 − 𝑥
∗

≤ +𝑁𝜔
𝑛
(ℎ
𝑏𝑛 ∨ −𝑏𝑛

 +
𝑎𝑛 ∨ −𝑎𝑛

) ;

(26)

we can have

lim
𝑛→∞

𝜀𝑛
 = 0. (27)

Sequence {𝑥
𝑛
} generated by (11) is 𝑇-stable. This completes

the proof.

Remark 17. For a suitable choice of themappings𝑀,𝑔, 𝐹, 𝜌, 𝜉,
we can obtain known results [9, 22] as special cases of
Theorem 11.
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