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Anomaly detection systems and many other applications are frequently confronted with the problem of finding the largest knee
point in the sorted curve for a set of unsorted points. This paper proposes an efficient knee point search algorithm with minimized
time complexity using the cascading top-k sorting when a priori probability distribution of the knee point is known. First, a top-k
sort algorithm is proposed based on a quicksort variation. We divide the knee point search problem into multiple steps. And in
each step an optimization problem of the selection number k is solved, where the objective function is defined as the expected
time cost. Because the expected time cost in one step is dependent on that of the afterwards steps, we simplify the optimization
problem by minimizing the maximum expected time cost. The posterior probability of the largest knee point distribution and the
other parameters are updated before solving the optimization problem in each step. An example of source detection of DNS DoS
flooding attacks is provided to illustrate the applications of the proposed algorithm.

1. Introduction

Anomaly detection system andmany other applications often
rely on finding the largest knee point in the sorted curve
to perform clustering, classification, anomaly identification,
and so forth [1–6]. Here the largest knee point is targeted
because the particular interests lie in finding the cluster of
the largest points whose values differ significantly from their
lower neighbors in the sorted curve.

Knee point is defined as the point whose value is close to
its upper neighbor while far from its lower neighbor in the
sorted curve and thereby taken as the boundary of the cluster
of upper points. For an unsorted list, it is necessary to sort
it to facilitate the knee point search. Due to time and space
efficiency considerations, the method of first completely
sorting and then searching the sorted list is often not the
optimal one. An alternative approach is to perform search on
the partially sorted, namely, top-k, list, hoping to save the cost
of sort. Therefore the top-k sort algorithm is introduced to
help minimize the time complexity of the knee point search
in this paper.There have been many efforts for bounding and

evaluating the time and space complexity of sort algorithms
[7–12]. These works provide component algorithms for our
work. But the problem of knee point search via top-𝑘 sorting
has not been addressed by any of the previous works. We
present in this paper a knee point search algorithm using top-
𝑘 sorting with minimized time complexity.

This paper is organized as follows: some basic concepts
and definitions on knee point search and top-k sorting are
presented in Section 2; Section 3 will design a knee point
search algorithm, including basic idea, top-k sort algorithm,
time complexity, parameter updating, cascading top-k sort-
ing with minimized time complexity, the knee point search
algorithm, and the solution of the optimization problem;
Section 4 will introduce source detection of DNS DoS
flooding attacks as an application example of the proposed
algorithm; Section 5 will conclude this paper.

2. Knee Point Search and Selection Sort

Assume there are 𝑛 points 𝑎
1
, 𝑎
2
, . . . , 𝑎
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, . . . , 𝑞
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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192730809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

Sorted
curve

Largest knee
point

Anomaly point
Normal point

Value

Figure 1: Sorted graph for first knee point search.

let their differential values be 𝛿
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(1)

As illustrated in Figure 1, there is usually a notable gap of value
between points on the upper left side and those on the lower
right side of the sorted curve. We define a knee point as the
one whose neighboring differential values differ significantly.

Definition 1. Point 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 − 1, is a knee point if it

satisfies

𝛿
𝑖+1

𝛿
𝑖

> 𝜃, (2)

where 𝜃 is the threshold, whose value ranges from 10 to 50 in
the practice of anomaly detection.

Note that there may be more than one knee point for a
list, and the goal of the algorithm is to find the largest one in
the sorted curve. For an unsorted list, we should first partially
sort the list to find the sorted top-k list and then search the
sorted top-k list for the largest knee point.

Definition 2. A top-k sort problem of selection number k for
an unsorted list L is a problem that finds k largest elements of
L sorted in descending order.

Apparently, total sort is often not optimal for the problem
as knee point search may be successful on a partially sorted
top-k list if it contains the largest knee point. Therefore
it is preferable to selectively sort first using the top-k sort
algorithm and then search in each step. The procedure may
go throughmany recursive steps until finding the largest knee
point for the search may fail in the previous steps. There is a
tradeoff between the time cost and expected hit probability
of knee point search in each step, both determined by the
selection number and both contributing to the expected

overall time cost. In this paper, the optimization problem of
the selection number is solved by minimizing the maximum
expected time cost.

3. The Knee Point Search Algorithm

3.1. Basic Idea. The knee point search algorithm is based on
cascading top-k sorting. In each step, top-k sorting segments
the list left to be searched. The optimal selection number
is determined by minimizing the expected time cost on the
list left. If the search successfully finds the knee point in
the sorted top-k list, the algorithm ends there. Otherwise,
the residual list excluding top-k requires further checking. It
becomes the objective list for the next step and the function
of the expected time cost using top-k sorting should also be
updated according to the a priori knowledge that the search
fails in the previous step. Thus the new top-k sort problem,
likewise, holds for the next step. The algorithm runs in this
way recursively until the knee point is found. There are two
cases that bring the algorithm to the end.

(1) The knee point is found in the sorted top-k list in a
step.

(2) The optimal selection number in one step equals the
length of the objective list. This means the optimal
option is total sorting. Therefore the knee point is
certain to be found in the completely sorted list.

3.2. Top-k Sort Algorithm. We design a quicksort variation
as the top-k sort algorithm. Quicksort is a very efficient sort
algorithm invented by Hoare [7]. Quicksort has two phases:
the partition phase and the sort phase, which makes it a
good example of the divide and conquer strategy for solving
problems.

Top-k sorting only aims at treating the largest k elements,
and thus it can be facilitated by the divide and conquer
strategy. The intermediate results of quicksort, namely, the
pivot positions, can be leveraged to possibly cut off one of
the smaller problems divided from the bigger problem and
to be conquered. For the strategy to be effective, the partition
phase runs recursively only for the lower part if the pivot falls
below position k, because there is no need to sort the upper
part, which only consists of elements larger than top-k. This
is themajor distinction from the original quicksort algorithm
and brings sorting efficiency.

At the same time, the pivots located after position 𝑑
𝑖

(the optimal selection number) at step 𝑖 in Section 3.6 are
potentially useful for the afterwards steps, while they are
actually not helpful for the inner top-𝑑

𝑖
sorting. Therefore

we record those pivots via a stack. A stack is a data structure
featured by last in, first out (LIFO). Recalling that the
recursive partitions with their pivots after position 𝑘 produce
their pivots in a sequential descending position order, we
push these pivots into the stack resulting in a stack of pivots
ordered by their positions. At the afterwards step 𝑖 + 1, if the
optimal selection number d

𝑖+1
is larger than the position of

the pivot at the top of the stack, the pivot is popped from the
stack used for an inner pivot of top-𝑑

𝑖+1
. Since this pivot is

no longer needed for the afterwards steps, it should not be



The Scientific World Journal 3

maintained in the stack.When the stack is empty or the pivot
at the top of the stack (so do all of the other pivots) is located
after the selection number, the partition has to run by itself to
find a pivot without the help of the pivot stack.

The top-k sort algorithm, namely, QuickSortTopK, can be
expressed as in Algorithm 1.

The input of QuickSortTopK is the objective unsorted
list 𝐿 indexed from FirstIndex to LastIndex. For all steps,
LastIndex is fixed at 𝑛, whereas FirstIndex is progressively
increased to exclude the sorted part of 𝐿 in all previous steps.
The output includes the sorted top-𝑘 elements of 𝐿 indexed
from FirstIndex to LastIndex and the stack 𝑆 containing all
pivots falling after position 𝑘 obtained in all previous steps.

The termination condition of the recursion is checked in
Line 1 of the algorithm. If the stack is nonempty and the top
element of the stack falls into the objective range (see Line
2), the top element is used as the pivot for the partition (see
Line 3). Otherwise, the pivot is obtained by a partition (see
Line 6). Once the pivot is presented, different recursive steps
are to be taken depending on the position of the pivot. If the
pivot falls after position k, it should be pushed into the stack
and then run further sorting on the original list subtracting
the pivot, hoping to help afterwards steps (see Lines 9, 11). If
the pivot is located exactly at position k, the pivot itself is the
last element of the output and thereafter only top-k-1 sorting
on the original list subtracting the pivot is needed (see Line
15). If the pivot is located prior to position k, both the upper
and lower parts should be treated. The action on the upper
part is equivalent to Quicksort, while the action on the lower
part is actually the recursive running of QuickSortTopK with
diminished selection number k and the shrinking objective
list (see Lines 18, 20).

3.3. Time Complexity. Let totally sorting of a list of length 𝑛

require 𝑆(𝑛) time. Calculated by the number of comparisons,
the average time complexity of 𝑆(𝑛) is 𝑂(𝑛 log(𝑛)) following
some efficient algorithms, for example, Quicksort [7].

Let top-k sorting of selection number k require 𝐶(𝑘, 𝑛)

time, where n is the length of the list. The QuickSortTopK
algorithm requires an expected time of 𝑂(𝑛 + 𝑘 log 𝑘). So
𝐶(𝑘, 𝑛) equals 𝑂(𝑛 + 𝑘 log 𝑘).

Let the time complexity of finding the knee point in the
sorted list of length 𝑛 be𝐷(𝑛). Recalling (2),𝐷(𝑛) takes𝑂(𝑛).

3.4. Parameter Updating. For a list of length 𝑛, the algorithm
divides the overall procedure into𝑚+1 steps by a sequence of
selection numbers, 𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑚
, 1 ≤ 𝑑

1
< 𝑑
2

< ⋅ ⋅ ⋅ < 𝑑
𝑚

≤

𝑛. Additionally, to facilitate the formulation, we let 𝑑
0

= 0

and 𝑑
𝑚

+ 1 = 𝑛. Let the length of the objective list in step 𝑖,
𝑖 = 1, 2, . . . , 𝑚 + 1 be 𝑛

𝑖
; we have

𝑛
𝑖
= 𝑛 − 𝑑

𝑖−1
, 𝑖 = 1, 2, . . . , 𝑚 + 1. (3)

In the first step, 𝑛
𝑖
= 𝑛. Let top-𝑘

𝑖
sorting for the objective

list of length 𝑛
𝑖
be performed in step 𝑖, 𝑖 = 1, 2, . . . , 𝑚+ 1, and

we have

𝑘
𝑖
= 𝑑
𝑖
− 𝑑
𝑖−1

, 𝑖 = 1, 2, . . . , 𝑚 + 1. (4)

Particularly, 𝑘
𝑖
= 𝑛
𝑖
in step𝑚+1. And thus top-𝑘

𝑖
sorting

for the objective list of length 𝑛
𝑖
is actually total sorting of

the objective list. If the search of the knee point is successful
in step 𝑖 for the sorted top-𝑘

𝑖
list, the algorithm ends at step

𝑖. Otherwise, the algorithm continues with the next step. The
algorithm lasts until step𝑚+1 if the searchmisses in all of the
previous steps during the progressive search. Since step𝑚+1

takes no further selection of the objective list, the algorithm
finishes in it.

Let 𝐴 be the position variable of the knee point and 𝐴 =

1, 2, . . . , 𝑛. Let 𝑝(𝑖) represent the probability that 𝐴 = 𝑖, 𝑖 =

1, 2, . . . , 𝑛, and thus∑𝑛
𝑖=1

𝑝(𝑖) = 1.The value of𝑝(𝑖) is assumed
to be known at the beginning of the algorithm. Let 𝐴

𝑖
be the

position variable of the knee point in step 𝑖 and𝐴
𝑖
= 𝑑
𝑖−1

+1,
𝑑
𝑖−1

+ 2, . . . , 𝑛. Let 𝑝
𝑖
(𝑗) represent the probability that𝐴

𝑖
= 𝑗,

𝑗 = 𝑑
𝑖−1

+ 1, 𝑑
𝑖−1

+ 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑚 + 1, and thus
∑
𝑛

𝑗=𝑑𝑖−1+1
𝑝
𝑖
(𝑗) = 1.

Lemma3. Theprobability distribution of the knee point in step
𝑖 𝑝
𝑖
(𝑗) can be written as

𝑝
𝑖
(𝑗) =

𝑝 (𝑗)

∑
𝑛

𝑘=𝑑𝑖−1+1
𝑝 (𝑘)

,

𝑗 = 𝑑
𝑖−1

+ 1, 𝑑
𝑖−1

+ 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑚 + 1.

(5)

Proof. At the first step, all knowledge about the probability
distribution of the knee point is only given by 𝑝(𝑖). But
the search in the afterward steps should make use of the
posterior distribution of the knee point for it is confirmed not
to exist prior to the selection number in the previous steps;
for example, when the algorithm comes to step 𝑖, the knee
point is already checked to be not present in the top-𝑑

𝑖−1
list,

𝑖 = 2, 3, . . . , 𝑚 + 1. Therefore 𝑝
𝑖
(𝑗) should be updated in step

𝑖 as
𝑝
𝑖
(𝑗) = 𝑃 (𝐴

𝑖
= 𝑗)

= 𝑃 (𝐴 = 𝑗 | 𝐴 ∈ {𝑑
𝑖−1

+ 1, 𝑑
𝑖−1

+ 2, . . . , 𝑛})

=
𝑃 (𝐴 = 𝑗, 𝑗 ∈ {𝑑

𝑖−1
+ 1, 𝑑
𝑖−1

+ 2, . . . , 𝑛})

𝑃 (𝐴 ∈ {𝑑
𝑖−1

+ 1, 𝑑
𝑖−1

+ 2, . . . , 𝑛})

=
𝑝 (𝑗)

∑
𝑛

𝑘=𝑑𝑖−1+1
𝑝 (𝑘)

𝑗 = 𝑑
𝑖−1

+ 1, 𝑑
𝑖−1

+ 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑚 + 1.

(6)

Let the hit probability of search in step 𝑖 be 𝐻
𝑖
.

Lemma 4. The hit probability of search in step 𝑖 𝐻
𝑖
can be

written as

𝐻
𝑖
(𝑑
𝑖
) =

𝑑𝑖

∑

𝑗=𝑑𝑖−1+1

𝑝
𝑖
(𝑗) , 𝑖 = 1, 2, . . . , 𝑚 + 1. (7)

Proof. For the selection number 𝑑
𝑖
in step 𝑖, the search for

the knee point is successful if and only if the knee point falls
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Input:
𝐿: an unsorted list of length 𝑛

FirstIndex: the first index of 𝐿 to be sorted
LastIndex: the last index of 𝐿 to be sorted
𝑘: top-𝑘 elements of 𝐿 are to be sorted
Output:
𝐿
𝑘
: Sorted top-𝑘 elements of 𝐿 ranging from FirstIndex to LastIndex

𝑆: a stack of pivot positons useful for the afterwards selection sorts
(1) if FirstIndex < LastIndex then
(2) if !isempty(𝑆) & top(𝑆) < LastIndex then /∗ the stack is available ∗/
(3) pivotpos = pop(𝑆) /∗ use the top element of the stack as the pivot ∗/
(4) else
(5) /∗ Partition without using pivots from the stack ∗/
(6) pivotpos=Partition(L, FirstIndex, LastIndex)
(7) if pivotpos− FirstIndex +1> 𝑘 then /∗The pivot falls after position 𝑘

∗/
(8) /∗The pivot may be useful for the afterwards steps ∗/
(9) push(pivotpos, 𝑆)
(10) /∗QuickSort for top-k in the upper part ∗/
(11) QuickSortTopK(L, FirstIndex, pivotpos −1, k)
(12) /∗The pivot is located exactly at position 𝑘

∗/
(13) elseif(pivotpos− FirstIndex +1==𝑘)
(14) /∗QuickSort for top-𝑘 − 1 in the upper part ∗/
(15) QuickSortTopK(L, FirstIndex, pivotpos −1, 𝑘 − 1)
(16) else /∗The pivot falls prior to position k ∗/
(17) /∗QuickSort the upper part ∗/
(18) QuickSortTopK(L, FirstIndex, pivotpos −1, pivotpos− FirstIndex)
(19) /∗QuickSort for the residual elements in the lower part ∗/
(20) QuickSortTopK(𝐿, pivotpos +1, FirstIndex, 𝑘-pivotpos+ FirstIndex −1)

Algorithm 1: QuickSortTopK(𝐿, FirstIndex, LastIndex, 𝑘).

into the interval of position among 𝑑
𝑖−1

+1 and 𝑑
𝑖
. According

to Lemma 3, the probability distribution of the knee point at
step 𝑖 𝑝

𝑖
(𝑗) should be updated as (5). Therefore we have

𝐻
𝑖
(𝑑
𝑖
) =

𝑑𝑖

∑

𝑗=𝑑𝑖−1+1

𝑃 (𝐴
𝑖
= 𝑗)

=

𝑑𝑖

∑

𝑗=𝑑𝑖−1+1

𝑝
𝑖
(𝑗) , 𝑖 = 1, 2, . . . , 𝑚 + 1.

(8)

3.5. CascadingTop-k SortingwithMinimizedTimeComplexity

Lemma 5. Let the expected overall computational time cost in
step 𝑖 be tc

𝑖
; 𝑡𝑐
𝑖
yields

𝑡𝑐
𝑖
= 𝐶 (𝑑

𝑖
− 𝑑
𝑖−1

, 𝑛 − 𝑑
𝑖−1

)

+ (1 − 𝐻
𝑖
(𝑑
𝑖
)) 𝑡𝑐
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑚.

(9)

Proof. When the search succeeds in step 𝑖, tc
𝑖
comes only

from top-k
𝑖
sorting which requires 𝐶(𝑘

𝑖
, 𝑛
𝑖
) time and the

search in the top-𝑘
𝑖
sorted list which requires𝐷(𝑛). However,

recalling Section 3.3, the time complexity of𝐷(𝑛) is negligible
compared to that of 𝐶(𝑘

𝑖
, 𝑛
𝑖
), so the summation of them can

be approximated by𝐶(𝑘
𝑖
, 𝑛
𝑖
). For the failure of search in step 𝑖,

the residual list of length 𝑛
𝑖
−𝑑
𝑖
has to be further checked.Thus

the overall computation time cost consists of top-k sort and
search in the remaining list. Note that the computation time
cost of sort and search in the remaining list is no other than
tc
𝑖+1

. Hence tc
𝑖
yields

tc
𝑖
= 𝐻
𝑖
(𝑑
𝑖
) 𝐶 (𝑘

𝑖
, 𝑛
𝑖
) + (1 − 𝐻

𝑖
(𝑑
𝑖
)) (𝐶 (𝑘

𝑖
, 𝑛
𝑖
) + tc
𝑖+1

)

= 𝐶 (𝑘
𝑖
, 𝑛
𝑖
) + (1 − 𝐻

𝑖
(𝑑
𝑖
)) tc
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑚.

(10)

Plugging (3) and (4) into (10), we get (9).

Lemma 5 tells us that the expected computational cost tc
1

can be calculated iteratively following (7), until reaching tc
𝑚+1

where there is no selection for step 𝑚 + 1. Thus tc
𝑚+1

only
consists of the time cost of total sorting of the list of length
𝑛
𝑖
and the search in it. As total sorting takes 𝑆(𝑛

𝑖
) and search

takes 𝐷(𝑛
𝑖
), thus we have

tc
𝑚+1

= 𝑆 (𝑛
𝑚+1

) + 𝐷 (𝑛
𝑚+1

) . (11)

Let 𝑁(𝑎, 𝑏) (𝑎 ≤ 𝑏 and 𝑎, 𝑏 are integers) denote the set
of integers {𝑖 | 𝑎 ≤ 𝑖 ≤ 𝑏 and 𝑖 is integer}. In every step 𝑖, the
algorithm calculates the current probability distribution of
the knee point which determines the hit probability 𝐻

𝑖
and
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chooses 𝑑
𝑖
to be the solution of the following optimization

problem:

Min : tc
𝑖

s.t. 𝑑
𝑖
∈ 𝑁 (𝑑

𝑖−1
+ 1, 𝑛) .

(12)

We see in (12) that for any fixed 𝑑
𝑖
the minimum of tc

𝑖

is determined by tc
𝑖+1

under the optimal selection of 𝑑
𝑖+1

in the next step, 𝑑
𝑖

∈ 𝑁(𝑑
𝑖−1

+ 1, 𝑛). And the optimal tc
𝑖+1

for any fixed 𝑑
𝑖+1

is also determined by the tc
𝑖+2

under the
optimal selection of 𝑑

𝑖+2
and so on. This kind of iterative

dependency finally extends to the last step which has no
further selection. So tc

𝑖
is the function of 𝑑

𝑖
, 𝑑
𝑖+1

, . . .. The
variation of any choice of selection in any number of steps
makes the search space of optimization very huge, especially
for the initial steps.Therefore it is not practical to evaluate all
possibilities of selections in all of the afterwards steps when
solving the optimization problem in step 𝑖.Thus it is necessary
to constrain the variable of the objective function tc

𝑖
in (12)

as mere 𝑑
𝑖
.

Theorem6. Theupper bound of the minimum of 𝑡𝑐
𝑖
for a fixed

𝑑
𝑖
can be written as substituting 𝑡𝑐

𝑖+1
in (9) by 𝑆(𝑛

𝑖+1
)+𝐷(𝑛

𝑖+1
),

such that

min
𝑑𝑖+1∈𝑁(𝑑𝑖+1,𝑛),𝑑𝑖+2∈𝑁(𝑑𝑖+1+1,𝑛),...

tc
𝑖

≤ 𝐶 (𝑑
𝑖
− 𝑑
𝑖−1

, 𝑛 − 𝑑
𝑖−1

)

+ (1 − 𝐻
𝑖
(𝑑
𝑖
)) (𝑆 (𝑛 − 𝑑

𝑖
) + 𝐷 (𝑛 − 𝑑

𝑖
)) ,

𝑖 = 1, 2, . . . , 𝑚.

(13)

Proof. We only need to prove that

min
𝑑𝑖+1∈𝑁(𝑑𝑖+1,𝑛),𝑑𝑖+2∈𝑁(𝑑𝑖+1+1,𝑛),...

tc
𝑖+1

≤ 𝑆 (𝑛 − 𝑑
𝑖
) + 𝐷 (𝑛 − 𝑑

𝑖
) .

(14)

As total sort of the list of length 𝑛
𝑖+1

can be viewed as per-
forming top-𝑛

𝑖+1
sorting, their time costs are both 𝑆(𝑛

𝑖+1
) +

𝐷(𝑛
𝑖+1

). This is equivalent to the case when 𝑑
𝑖+1

= 𝑛. Because
the algorithm ends with the total sorting and there are no
afterwards steps, we have no definitions for 𝑑

𝑖+1
, 𝑑
𝑖+2

, . . ..
Thus we have

tc
𝑖+1

𝑑𝑖+1=𝑛 (hence 𝑑𝑖+2 ,𝑑𝑖+3... has no definition) = 𝑆 (𝑛
𝑖+1

) + 𝐷 (𝑛
𝑖+1

) .

(15)

Hence

min
𝑑𝑖+1∈𝑁(𝑑𝑖+1,𝑛),𝑑𝑖+2∈𝑁(𝑑𝑖+1+1,𝑛),...

tc
𝑖+1

≤ tc
𝑖+1

𝑑𝑖+1=𝑛 (hence 𝑑𝑖+2,𝑑𝑖+3,...has no definition).

(16)

Plugging (3) into (15) and then (15) into (16), we have (14),
and thereby (13) is proved.

Theorem 6 manifests that, for a fixed 𝑑
𝑖
, tc
𝑖
is definitely

bounded by the time cost of total sort of the residual list

of length 𝑛
𝑖
+ 1 plus that of search in it. The optimization

problem in step 𝑖 described by (13) can be isolated from
all of the possible selections of the afterwards steps and
becomes a function ofmere𝑑

𝑖
.Thisminmax technique brings

convenience to our analysis, such that (13) can be simplified
as

Min : 𝐶 (𝑑
𝑖
− 𝑑
𝑖−1

, 𝑛 − 𝑑
𝑖−1

)

+ (1 − 𝐻
𝑖
(𝑑
𝑖
)) (𝑆 (𝑛 − 𝑑

𝑖
) + 𝐷 (𝑛 − 𝑑

𝑖
))

s.t. 𝑑
𝑖
∈ 𝑁 (𝑑

𝑖−1
+ 1, 𝑛) .

(17)

Plugging (5) into (17), we have

Min : 𝐶 (𝑑
𝑖
− 𝑑
𝑖−1

, 𝑛 − 𝑑
𝑖−1

)

+ (1 −

𝑑𝑖

∑

𝑗=𝑑𝑖−1+1

𝑝
𝑖
(𝑗)) (𝑆 (𝑛 − 𝑑

𝑖
) + 𝐷 (𝑛 − 𝑑

𝑖
))

s.t. 𝑑
𝑖
∈ 𝑁 (𝑑

𝑖−1
+ 1, 𝑛) .

(18)

Solving (14), we can obtain the optimal 𝑑
𝑖
in step 𝑖.

3.6. The Knee Point Search Algorithm. The knee point search
algorithm runs iteratively using cascading top-𝑘 sorting.
When the optimal selection number 𝑑

𝑖
is determined at

step 𝑖, top-𝑘 sorting can be done via running QuickSort-
TopK (𝐿, 𝑑

𝑖−1
+1, 𝑛, 𝑑

𝑖
−𝑑
𝑖−1

). Specifically, the first step starts
with QuickSortTopK (L, 1, n, d

1
).

The procedure can be described as follows.

Step 1.
(1) According to (5), the probability distribution of the

knee point for the optimization problem is initialized
as follows

𝑝
1
(𝑗) = 𝑝 (𝑗) , 𝑗 = 1, 2, . . . , 𝑛. (19)

(2) The optimal selection number 𝑑
1
is obtained by solv-

ing the following optimization problem as (18):

Min : 𝐶 (𝑑
1
, 𝑛) + (1 −

𝑑1

∑

𝑗=1

𝑝 (𝑗))

× (𝑆 (𝑛 − 𝑑
1
) + 𝐷 (𝑛 − 𝑑

1
))

s.t. 𝑑
1
∈ 𝑁 (1, 𝑛) .

(20)

(3) Perform top-𝑑
1
sorting on the list of length n.

(4) Search for the knee point on the sorted top-𝑑
1
list. If

successful or 𝑑
1

= 𝑛, the algorithm ends. Otherwise,
go to Step 2.

Step 2.

(1) The probability distribution of the knee point for the
optimization problem is updated as follows:

𝑝
2
(𝑗) =

𝑝 (𝑗)

∑
𝑛

𝑘=𝑑1+1
𝑝 (𝑘)

, 𝑗 = 𝑑
1
+ 1, 𝑑

1
+ 2, . . . , 𝑛. (21)
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(2) 𝑑
2
is derived as the solution of the following optimiza-

tion problem:

Min : 𝐶 (𝑑
2
− 𝑑
1
, 𝑛 − 𝑑

1
) + (1 −

𝑑2

∑

𝑗=𝑑1+1

𝑝
2
(𝑗))

× (𝑆 (𝑛 − 𝑑
2
) + 𝐷 (𝑛 − 𝑑

2
))

s.t. 𝑑
2
∈ 𝑁 (𝑑

1
+ 1, 𝑛) .

(22)

Note that 𝑑
1
is inherited from Step 1.

(3) Perform top-(𝑑
2

− 𝑑
1
) selection sort on the list of

length 𝑛 − 𝑑
1
subtracting top-𝑑

1
elements in Step 1.

(4) Search for the knee point on the sorted top-(𝑑
2
− 𝑑
1
)

list. If successful or 𝑑
2

= 𝑛, the algorithm ends.
Otherwise, go to Step 2.

Step i.

(1) The probability distribution of the knee point for the
optimization problem is updated according to (5).

(2) 𝑑
𝑖
is obtained as the solution of the optimization

problem in (18), where 𝑑
𝑖−1

is known from step 𝑖 − 1.
(3) Perform top-(𝑑

𝑖
− 𝑑
𝑖−1

) selection sort on the list of
length 𝑛 − 𝑑

𝑖−1
subtracting top-𝑑

𝑖−1
elements already

sorted in the previous steps.
(4) Search for the knee point on the sorted top-(𝑑

𝑖
−𝑑
𝑖−1

)

list. If successful or 𝑑
𝑖

= 𝑛, the algorithm ends.
Otherwise, go to step 𝑖 + 1.

The knee point search algorithm can be summarized as
in Algorithm 2.

The knee point search algorithm can also be expressed
recursively.

For each recursive step, we have an unsorted list L of
length n and the probability distribution of the knee point
in the sorted list of length n: P. Thus we can modify the
optimization problem in (18) as follows:

Min : 𝐶 (𝑑, 𝑛) + (1 −

𝑑

∑

𝑗=1

𝑝 (𝑗)) (𝑆 (𝑛 − 𝑑) + 𝐷 (𝑛 − 𝑑))

s.t. 𝑑 ∈ 𝑁 (1, 𝑛) .

(23)

Solving (14), we can obtain the optimal𝑑 in each recursive
step.

When the knee point search fails after top-𝑘 sorting in
each recursive step, the algorithm has to go to the next
recursive step. First, we need to update the probability
distribution of the knee point as well as the residual unsorted
list as two parameters for the recursive function. According
to Lemma 3, the update of the probability distribution of the
knee point yields

𝑝 (𝑗) ←
𝑝 (𝑗)

∑
𝑛

𝑘=𝑑+1
𝑝 (𝑘)

, 𝑗 = 𝑑 + 1, 𝑑 + 2, . . . , 𝑛. (24)

In each recursive step, top-𝑘 sorting can be done via
running QuickSortTopK(L, 1, length(L), d), where 𝐿 is the
objective list in the current step and length (𝐿) denotes the
length of L.

A recursive version of knee point search algorithm can be
summarized as in Algorithm 3

3.7.The Solution of the Optimization Problem. In this section,
we will assume two forms of the probability distribution of
the knee point and discuss the solutions of (18) under these
presumptions.

(1) Uniform Distribution. 𝑝(𝑖) is equal for all 𝑖 ∈ 𝑁(1, 𝑛), and
thus 𝑝(𝑖) = 1/𝑛. Plugging 𝑝(𝑖) into (23), we have

Min : 𝐶 (𝑑, 𝑛) + (1 −
𝑑

𝑛
) (𝑆 (𝑛 − 𝑑) + 𝐷 (𝑛 − 𝑑))

s.t. 𝑑 ∈ 𝑁 (1, 𝑛) .

(25)

Let

𝑓 (𝑑) = 𝐶 (𝑑, 𝑛) + (1 −
𝑑

𝑛
) (𝑆 (𝑛 − 𝑑) + 𝐷 (𝑛 − 𝑑)) . (26)

Although (26) is a discrete function, we still utilize the
method of derivation to find the extremum, which can be
only applied to the continuous and derivable function. Here
we treat the discrete variable 𝑑 as continuous ones, and there-
after (26) turns into a continuous and derivable function.This
is a rational approximation of the problem, which facilitates
our analysis and solving. The final solution should be the
round-off of 𝑑 obtained by solving the continuous function.

For simplicity, we let

𝐶 (𝑘, 𝑛) = 𝑐
1
(𝑛 + 𝑘 log 𝑘)

𝑆 (𝑛) = 𝑐
2
(𝑛 log (𝑛))

𝐷 (𝑛) = 𝑐
3
𝑛,

(27)

where 𝑐
1
, 𝑐
2
, and 𝑐

3
are all constants.

By choosing 𝑑 such that 𝑑𝑓(𝑑)/𝑑 = 0, we have the optimal
𝑑 which satisfies

𝑐
1
(1 + log 𝑑) 𝑛 = (𝑛 − 𝑑) [2𝑐

2
log (𝑛 − 𝑑) + 2𝑐

3
+ 𝑐
2
] . (28)

For large 𝑛 and d, we have the approximation of (28) as

𝑐
1
𝑛 log 𝑑 = 2𝑐

2
(𝑛 − 𝑑) log (𝑛 − 𝑑) . (29)

To get the explicit mathematical expression of the solu-
tion of the nonlinearity equation (29), we used a heuristic
approach to simplify the problem. We assume that 𝑑 is a
proportion function of 𝑛, such that

𝑑 = 𝑝𝑛, 0 < 𝑝 < 1, (30)

where p decides the optimum of 𝑑.
Thus (30) yields

𝑐
1
𝑛 log (𝑝𝑛) = 2𝑐

2
(1 − 𝑝) 𝑛 log [(1 − 𝑝) 𝑛] , (31)
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Input: Unsorted list 𝐿 of length 𝑛, probability distribution of the knee point in the sorted
list of length 𝑛: 𝑃
Output: The knee point e or the non-existence of it (𝑒 = null).
(1) /∗ initialize the parameters for the optimization problem ∗/
(2) 𝑃
1
← 𝑃, 𝐿

1
← 𝐿

(3) 𝑖 ← 1

(4) while (true)
(5) solve the optimization problem of list 𝐿

𝑖
in (18) to get 𝑑

𝑖

(6) if 𝑑
𝑖
= 𝑛
𝑖
then /∗ total sorting is the optimal option ∗/

(7) totally sort list 𝐿
𝑖

(8) /∗ successful if the knee point exists ∗/
(9) Search the sorted list for the knee point e
(10) break /∗ the algorithm is completed ∗/
(11) else /∗ top-(𝑑

𝑖
− 𝑑
𝑖−1

) sort is the optimal option ∗/
(12) QuickSortTopK(𝐿, 𝑑

𝑖−1
+ 1, 𝑛, 𝑑

𝑖
–𝑑
𝑖−1
)

(13) Search the sorted list for the knee point e
(14) if e is found then
(15) break
(16) else /∗ Update the parameters for the next round of optimization problem ∗/
(17) update 𝑃

𝑖+1
according to (5) /∗ the posterior probability ∗/

(18) update 𝐿
𝑖+1

by exluding the top-(𝑑
𝑖
− 𝑑
𝑖−1

) item from list 𝐿
𝑖

(19) 𝑖 ← 𝑖 + 1

(20) return 𝑒

Algorithm 2: FindKnee(𝐿, 𝑃).

Input: Unsorted list 𝐿 of length 𝑛, probability distribution of the knee point in the sorted
list of length 𝑛: 𝑃
Output: The knee point e or the non-existence of it (𝑒 = null).
(1) solve the optimization problem of list 𝐿 in (20) to get 𝑑
(2) if 𝑑 = 𝑛 then /∗ total sort is the optimal option ∗/
(3) totally sort list 𝐿
(4) /∗ successful if the knee point exists ∗/
(5) Search the sorted list for the knee point 𝑒
(6) return 𝑒 /∗ the algorithm is completed ∗/
(7) else /∗ top-𝑑 sorting is the optimal option ∗/
(8) QuickSortTopK(𝐿, 1, length(𝐿), 𝑑)
(9) Search the sorted list for the knee point e
(10) if 𝑒 is found then
(11) return e
(12) else /∗ Update the parameters for the next round of optimization problem ∗/
(13) update 𝑃 according to (5) /∗ the posterior probability ∗/
(14) update 𝐿 by exluding the top-𝑑 item from list 𝐿
(15) FindKnee(𝐿, 𝑃)

Algorithm 3: FindKnee(𝐿, 𝑃).

then
𝑐
1
𝑛 log (𝑝) + 𝑐

1
𝑛 log (𝑛)

= 2𝑐
2
(1 − 𝑝) 𝑛 log (1 − 𝑝) + 2𝑐

2
(1 − 𝑝) 𝑛 log (𝑛) .

(32)

Leave out the low order item in both sides of (32), and we
get

𝑐
1
𝑛 log (𝑝) + 𝑐

1
𝑛 log (𝑛) ≈ 𝑐

1
𝑛 log (𝑛) ,

2𝑐
2
(1 − 𝑝) 𝑛 log (1 − 𝑝) + 2𝑐

2
(1 − 𝑝) 𝑛 log (𝑛)

≈ 2𝑐
2
(1 − 𝑝) 𝑛 log (𝑛) .

(33)

Plugging (33) into (32), the optimum of p yields

𝑝 = 1 −
𝑐
1

2𝑐
2

. (34)

We can see that the optimum of p that takes the form
of a proportion function of 𝑛 exists only when 𝑐

1
< 2𝑐
2
.

Particularly, if 𝑐
1

= 𝑐
2

= 1, the optimum of p is 1/2, which
means that the optimum first selection number is half of the
length of the list. As the search algorithmmay run recursively
if the knee point search misses, the optimal method is the so-
called binary search or logarithmic search method.
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Theorem 7. If the probability distribution of the knee point
follows uniform distribution and the optimal selection number
takes the form of (30), the optimal method for the knee point
search algorithm is binary search or logarithmic searchmethod.

Proof. We first prove using an inductive method that in each
recursive step of the search algorithm, 𝑝(𝑖) is equal for all 𝑖 ∈

𝑁(1, 𝑛).
We know that for the first recursive step, 𝑝(𝑖) is equal for

all 𝑖 ∈ 𝑁(1, 𝑛) as the starting point of the induction. Then for
the second recursive step, we can derive according to (24) that
𝑝(𝑖) is equal for all 𝑖 ∈ 𝑁(1, 𝑛).

Suppose that for the lth recursive step, 𝑝(𝑖) is equal for all
𝑖 ∈ 𝑁(1, 𝑛). Similarly, for the (𝑙 + 1)th recursive step, 𝑝(𝑖) is
equal for all 𝑖 ∈ 𝑁(1, 𝑛) following (24).

Therefore we can form the concept inductively that in
each recursive step of the knee point search algorithm, 𝑝(𝑖) is
equal for all 𝑖 ∈ 𝑁(1, 𝑛). So the optimization problem in each
recursive step can be written as no other than (25), whose
solution of number of selection is half of the length of the list
discussed above. Here the list is the one left from previous
recursive step. Hence the optimal method for the search
algorithm is binary search or logarithmic searchmethod.

(2) Inverse Proportion Distribution. 𝑝(𝑖) is in direct inverse
proportion to 𝑖, 𝑖 ∈ 𝑁(1, 𝑛), and thus 𝑝(𝑖) = 𝑐/𝑖, where
𝑐 = 1/∑

𝑛

𝑖=1
(1/𝑖).

As an approximate treatment of the summation∑
𝑏

𝑖=𝑎
(1/𝑖),

we consider
𝑏

∑

𝑖=𝑎

1

𝑖
≈ ∫

𝑏

𝑎

1

𝑥
𝑑𝑥. (35)

Particularly, for 𝑎 = 1 and a large 𝑏, we have

𝑏

∑

𝑖=1

1

𝑖
= ln 𝑏 + 𝐸. (36)

And for a large 𝑛, we have

𝑐 = 1/ (ln 𝑛 + 𝐸) , (37)

where 𝐸 is the Euler constant and has the approximate value
as 0.5772.

Plugging 𝑝(𝑖) and then (36) and (37) into (23), we have

Min : 𝐶 (𝑑, 𝑛) + (1 −
ln 𝑑 + 𝐸

ln 𝑛 + 𝐸
) (𝑆 (𝑛 − 𝑑) + 𝐷 (𝑛 − 𝑑))

s.t. 𝑑 ∈ 𝑁 (1, 𝑛) .

(38)

Let

𝑔 (𝑑) = 𝐶 (𝑑, 𝑛) + (1 −
ln 𝑑 + 𝐸

ln 𝑛 + 𝐸
) (𝑆 (𝑛 − 𝑑) + 𝐷 (𝑛 − 𝑑)) .

(39)

Theorem 8. If the probability distribution of the knee point
𝑝(𝑖) is in direct inverse proportion to 𝑖, 𝑖 ∈ 𝑁(1, 𝑛), the optimal
top-k sorting for the knee point search algorithm is full sorting
of the list for a large length of the list.

Proof. We only need to prove that 𝑔(𝑑) is a monotony
increase function of d, and the equivalent condition for it is

𝑑𝑔 (𝑑)

𝑑
=

𝑐
1
(1 + log𝑑) − 𝑐

2
(𝑛 − 𝑑) log (𝑛 − 𝑑) − 𝑐

3
𝑛

(ln 𝑛 + 𝐸) 𝑑

−
𝑐
2
(ln 𝑛 − ln 𝑑) (1 + log (𝑛 − 𝑑))

ln 𝑛 + 𝐸
< 0,

(40)

that is,

𝑐
1
(1 + log𝑑) (ln 𝑛 + 𝐸) 𝑑

< 𝑐
2
(𝑛 − 𝑑) log (𝑛 − 𝑑)

+ 𝑐
3
𝑛 + 𝑐
2
(ln 𝑛 − ln 𝑑) (1 + log (𝑛 − 𝑑)) 𝑑.

(41)

We assume that 𝑑 is an exponential function of 𝑛, such
that

𝑑 = 𝑛
𝑞
, 0 < 𝑞 < 1. (42)

Thus the left and right sides of (41) can be, respectively,
written as

𝑐
1
(1 + log 𝑑) (ln 𝑛 + 𝐸) 𝑑 ∼ 𝑂 ((log 𝑛)

2

𝑛
𝑞
) (43)

𝑐
2
(𝑛 − 𝑑) log (𝑛 − 𝑑) + 𝑐

3
𝑛

+ 𝑐
2
(ln 𝑛 − ln 𝑑) (1 + log (𝑛 − 𝑑)) 𝑑 ∼ 𝑂 (𝑛) .

(44)

Comparing (43) and (44), we obtain (41) for a large 𝑛. That
means the optimal selection number is n for the first step, or
the optimal top-k sorting for the knee point search algorithm
is full sorting.

4. Source Detection of DNS DoS Flooding
Attacks: An Application Example

4.1. DNS DoS Flooding Attacks. TheDomain Name System is
a fundamental and indispensable component of the modern
Internet [13, 14]. The availability of the DNS can affect
the availability of a large number of Internet applications.
Ensuring the DNS data availability is an essential part of
providing a robust Internet.

In the past few years, some important DNS name servers
on the top level of the DNS hierarchical structure were tar-
geted by theDoS orDDoS attackers, and someof these attacks
did succeed in disabling theDNS servers and resulted in parts
of the Internet experiencing severe name resolution problems
[15–18]. Particularly,DNSDoSflooding attacks are the attacks
launched by the attackers towards theDNS name servers with
an overwhelming traffic flux in order to disrupt the DNS
service for the legitimate clients. However, it is usually not
easy to efficiently detect and defend the DoS flooding attacks
because the attacking traffic is blended with the legitimate
ones, which complicates the distinguishing efforts. Moreover,
the detectionmechanism should be implementable or should
not add heavy computational load. Here we focus on the
source-based detection method and show that the problem
of source detection of DNS DoS flooding attacks can be
addressed by the knee point search in the sorted curve
discussed in this paper.
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4.2. Detection Using the Knee Point Search. Generally, DNS
name servers may receive queries coming from thousands
of DNS clients (mostly DNS cache servers), whose traffic
volumes are expected to remain far below those of the DoS
flooding attacks. The real-time query rates for all incoming
sources can be counted by the traffic monitoring system
residing at the border gateway in front of the DNS name
server. The goal of the DoS attack defense is to realize
real-time attacking source detection and then filter out the
attacking traffic from these sources accordingly. Therefore
the detection problem is equivalent to knee point search in
the sorted curve, where all points above the largest knee
point are identified as the attacking sources. Moreover, time
efficiency is also the key requirement for the problem, for
timely attacking detection means timely defending action.
Applying the knee point search algorithm proposed in this
paper, the expected detection time is minimized.

4.3. Leaning the Knee Point Distribution. The assumption on
probability distribution of the knee point is the prerequisite
for the knee point search algorithm. However, in the initial
rounds of detection we have hardly any a priori knowledge
about the knee point. But the distribution estimation of
the knee point can be learned based on the empirical data
obtained in all previous rounds of detection.

First, suppose that the knee point largely follows sta-
tionary random distribution; hence its distribution exhibits
almost the same probability model in all rounds of detection.
We can fit a statistical model to data and provide estimates
for the model’s parameters. Here we apply the method of
maximum likelihood for the estimation.

Let the count variable of detected knee points so far at
position 𝑖 in the ordered list of length 𝑛 be ℎ

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Let the value of ℎ
𝑖
be 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. If the number of

rounds of detection is 𝑅, we have

𝑛

∑

𝑖=1

𝑥
𝑖
= 𝑅. (45)

Let the probability vector of the knee point at different
positions be 𝑃 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
)
. The likelihood function of

𝑃 can be written as

lik (𝑃) = 𝑓
𝐷

(ℎ
1
= 𝑥
1
, ℎ
2
= 𝑥
2
, . . . , ℎ

𝑛
= 𝑥
𝑛

| 𝑃) , (46)

where 𝑓
𝐷
(⋅) is the density function. To calculate lik (𝑃), we

have

lik (𝑃) = 𝑓
𝐷

(ℎ
1
=𝑥
1
| 𝑃) 𝑓
𝐷

(ℎ
2
=𝑥
2
, . . . , ℎ

𝑛
=𝑥
𝑛

| ℎ
1
=𝑥
1
, 𝑃)

= 𝑓
𝐷

(ℎ
1
= 𝑥
1
| 𝑃) 𝑓
𝐷

(ℎ
2
= 𝑥
2
| ℎ
1
= 𝑥
1
, 𝑃) 𝑓
𝐷

× (ℎ
3
= 𝑥
3
, . . . , ℎ

𝑛
= 𝑥
𝑛

| ℎ
1
= 𝑥
1
, ℎ
2
= 𝑥
2
, 𝑃)

...

= 𝑓
𝐷

(ℎ
1
= 𝑥
1
| 𝑃) 𝑓
𝐷

(ℎ
2
= 𝑥
2
| ℎ
1
= 𝑥
1
, 𝑃) ⋅ ⋅ ⋅

𝑓
𝐷

(ℎ
𝑛−2

=𝑥
𝑛−2

| ℎ
1
=𝑥
1
, ℎ
2
=𝑥
2
, . . . , ℎ

𝑛−3
=𝑥
𝑛−3

, 𝑃)

× 𝑓
𝐷

(ℎ
𝑛−1

= 𝑥
𝑛−1

, ℎ
𝑛

= 𝑥
𝑛

| ℎ
1
= 𝑥
1
,

ℎ
2
= 𝑥
2
, . . . , ℎ

𝑛−2
= 𝑥
𝑛−2

, 𝑃)

= 𝑓
𝐷

(ℎ
1
= 𝑥
1
| 𝑃) 𝑓
𝐷

(ℎ
2
= 𝑥
2
| ℎ
1
= 𝑥
1
, 𝑃) ⋅ ⋅ ⋅

𝑓
𝐷

(ℎ
𝑛−2

= 𝑥
𝑛−2

| ℎ
1
= 𝑥
1
,

ℎ
2
= 𝑥
2
, . . . , ℎ

𝑛−3
= 𝑥
𝑛−3

, 𝑃)

×𝑓
𝐷

(ℎ
𝑛−1

=𝑥
𝑛−1

| ℎ
1
=𝑥
1
,

ℎ
2
=𝑥
2
, . . . , ℎ

𝑛−2
=𝑥
𝑛−2

, 𝑃)

×𝑓
𝐷

(ℎ
𝑛
=𝑥
𝑛

| ℎ
1
=𝑥
1
, ℎ
2
=𝑥
2
, . . . , ℎ

𝑛−1
=𝑥
𝑛−1

, 𝑃) ,

(47)

where the last item in (47) is actually not an independent one
given that all ℎ

𝑖
other than ℎ

𝑛
are known due to the constraint

in (45), such that

𝑓
𝐷

(ℎ
𝑛

= 𝑥
𝑛

| ℎ
1
= 𝑥
1
, ℎ
2
= 𝑥
2
, . . . , ℎ

𝑛−1
= 𝑥
𝑛−1

, 𝑃) = 1.

(48)

Plugging (48) into (47), we get

lik (𝑃) = (
𝑛

𝑥
1

)𝑝
𝑥1

1
(1 − 𝑝

1
)
𝑛−𝑥1

(
𝑛 − 𝑥
1

𝑥
2

)(
𝑝
2

1 − 𝑝
1

)

𝑥2

× (1 −
𝑝
2

1 − 𝑝
1

)

𝑛−𝑥1−𝑥2

⋅ ⋅ ⋅ (
𝑛 −

𝑛−2

∑
𝑖=1

𝑥
𝑖

𝑥
𝑛−1

)

× (
𝑝
𝑛−1

1 − ∑
𝑛−2

𝑖=1
𝑝
𝑖

)

𝑥𝑛−1

(1 −
𝑝
𝑛−1

1 − ∑
𝑛−2

𝑖=1
𝑝
𝑖

)

𝑛−∑
𝑛−1

𝑖=1
𝑥𝑖

.

(49)

Thus let
𝜕 ln (lik (𝑃))

𝜕𝑝
𝑖

= 0, 𝑖 = 1, 2, . . . , 𝑛 − 1. (50)

We obtain the maximum likelihood estimation of 𝑝
𝑖
, 𝑖 =

1, 2, . . . , 𝑛 − 1:

𝑝
𝑖
=

𝑥
𝑖

𝑅
, 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝑝
𝑛

= 1 −

𝑛−1

∑

𝑖=1

𝑝
𝑖
=

𝑥
𝑛

𝑅
.

(51)

At the beginning of each round of detection, if the pre-
vious round finds the knee point at position 𝑖

∗, 𝑅 and 𝑥
𝑖
, 𝑖 =

1, 2, . . . , 𝑛, are updated as follows:

𝑅 ← 𝑅 + 1,

𝑥
𝑖∗

← 𝑥
𝑖∗

+ 1,

𝑥
𝑖
← 𝑥
𝑖
, 𝑖 ∈ 𝑁 (1, 𝑛) , 𝑖 ̸= 𝑖

∗
.

(52)

The knee point distribution may evolve over time; thus
the position of the knee point detected in recent rounds



10 The Scientific World Journal

provides more reliable information for the estimation than
earlier rounds. Taking the chronological order into consid-
eration, we assign more weight to recent rounds than earlier
rounds. This can be done by decreasing the detection results
in previous rounds progressively.The deceasing is performed
in updating 𝑅 and 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, and sums up the current

detection and the previous ones at a discount 𝛽, 0 < 𝛽 < 1.
Formally, the updating of 𝑅 and 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, can be

modified as follows:

𝑅 ← 𝛽
∗
𝑅 + 1,

𝑥
𝑖∗

← 𝛽
∗
𝑥
𝑖∗

+ 1,

𝑥
𝑖
← 𝛽 ∗ 𝑥

𝑖
, 𝑖 ∈ 𝑁 (1, 𝑛) , 𝑖 ̸= 𝑖

∗
.

(53)

5. Conclusion

Knee point search in the sorted curve is often used in the
practice of anomaly detection and many other applications.
Due to the inefficiency of total sorting, top-k sorting should
be adopted for the knee point search. In this paper, a knee
point search algorithm using cascading top-k sorting is
proposed. The expected time complexity is minimized via
optimizing the selection number 𝑘 in each step.
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