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Relative position of seismic source and sensors has great influence on locating accuracy, particularly in far field conditions, and
the accuracy will decrease seriously due to limited calculation precision and prior velocity error. In order to improve the locating
accuracy of far field sources by isometric placed sensors in a straight line, a new locatingmethodwith nonprior velocity is proposed.
After exhaustive research, this paper states that the hyperbola which is used for locating will be very close to its asymptote when
seismic source locates in far field of sensors; therefore, the locating problem with prior velocity is equivalent to solving linear
equations and the problem with nonprior velocity is equivalent to a nonlinear optimization problem with respect to the unknown
velocity. And then, this paper proposed a new locating method based on a one-variable objective function with respect to the
unknown velocity. Numerical experiments show that the proposed method has faster convergence speed, higher accuracy, and
better stability.

1. Introduction

Microseismic monitoring, which was first studied by Obert
[1], has been successfully applied in mining [2–5], oil
exploitation [6–10], water conservancy construction [11–13],
and so forth. One of the core technologies of microseismic
monitoring is source locating method, which can be reduced
to (1) in homogeneous medium:
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where 𝑥, 𝑦, and 𝑧 are coordinates of seismic source and 𝑡
𝑠

is the initial time of source; 𝑥
𝑖
, 𝑦
𝑖
, and 𝑧

𝑖
are coordinates

of the 𝑖th sensor; V
𝑖
is the average wave velocity measured

by the 𝑖th sensor; 𝑡
𝑖
is arrival time measured by 𝑖th sensor.

It is obvious that 4 or more sensors at least are needed
to solve for (𝑥, 𝑦, 𝑧, 𝑡

𝑠
) if V
𝑖
is known. A set of nonlinear

equations as expressed by (1) can be solved either iteratively
or noniteratively.

The well-known noniterative methods, such as Inglada
method [14, 15] and USBM (United States Bureau of Mines)
method [15–17], may not be applicable for current micro-
seismic monitoring system. The Inglada method uses only
a minimum number of sensors that are mathematically
required for source locating, and because of this requirement,
no optimizationmethod can be applied to the algorithm.The
USBM method introduces least squares method so that all
available arrival time information can be used simultaneously
for source locating calculation. However, for its matrix
inversion, the method will be unstable while the measured
values have gross errors, which is common in a real-world
situation.

The main iterative methods for source locating include
Geiger’s method [18, 19], Simplex Algorithm [20, 21], and
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Genetic Algorithm [22]. Geiger’s method has heavy comput-
ing burden and may be divergent because of the foundation
of the method-first-order Taylor expansion and least square
method. Many scholars studied these problems and have
proposed some solutions [23, 24]. Simplex Algorithm [25],
a robust geometry search algorithm, is one of the dominant
methods for source locating [26–28]. Simplex is a geometric
figure which contains one more vertex than the solution
space’s dimension, and the optimization process is simple
which is moving the worst vertex till the optimal solution
meets the preset conditions. GA (Genetic Algorithm), an
optimization method, simulates nature selection in which
only the “fittest” solutions survive so that they can create even
better answers in the process of reproduction. Although the
theory of GA is imperfect, the algorithm was still introduced
in earthquake source locations in 1992 [29–32], and it has
shown attractive prospects in parallel computing, such as
SPARK [33], because of its intrinsic parallelism. According
to the research from Yun and Xi [34] and He et al. [35], EGA
(Elitist preserved GA) is global convergent, which provides
guidance for GA based algorithms.

All of the algorithms mentioned above have the same
hypothesis, which is that the velocity structure is known
before location calculation, which is obviously impossible
in practice. Therefore, the location accuracy of algorithms
mentioned above will be seriously affected by prior velocity.
According to Dong et al.’s research [36], the accuracy of
methods with prior velocity in homogeneous medium will
decrease seriously when the velocity error reaches 1%–5%,
while the accuracy ofmethods with nonprior velocity will not
be affected. Consequently, Dong and Li [37] proposed a new
locationmethod with nonprior velocity based on arrival time
of PS waves; however, the method was not used when P-wave
and S-wave could not be distinguished clearly. Li et al. [38]
proposed a location method with nonprior velocity based on
Simplex Algorithm and the essence of its method is a new
objective function without velocity, which could also be used
by other optimization methods.

Actually, Li’s method is a concrete realization of Prugger’s
method [21], which will give a correct result when the seismic
source is surrounded by sensors and the measured arrival
times have no error. However, in practice, the seismic source
is not always surrounded by sensors for a variety of reasons,
and Li’s objective function changes very little near true value
which will decrease the accuracy of location by reason of
finite word length effect. To solve this problem, this paper
proposed a new objective function, which can locate faster
and more stable.

2. Two-Dimensional Source Locating Theory

In this paper, wewill discuss only one scenario that frequently
happened during mining monitoring as shown in Figure 1.

The parameters of Figure 1 are shown as follows.
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Figure 1: Model of two-dimensional far field source locating.
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If V is unknown, the three unknowns can be solved by the
following equation set:
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Obviously, V in equation set (3) can be eliminated and
equation set (3) will change to the following equation set:
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Equation sets (3) and (4) are both nonlinear equations,
and they can be solved by Simplex Method, GA, and other
global optimization methods.

According to Prugger’s method, the objective function of
(3) can be defined as (5) and the objective function of (4) can
be defined as (6):
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According to Li’s method, the objective function of equa-
tion set (3) can be defined as
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If the seismic source is far away from sensors, as shown
in Figure 1, neither (6) nor (7) can lead to correct results due
to small changes of objective functions near true value. Here
is an example.

Assume the coordinates of sensors (units of coordinates
are in meters unless particularly stated in this paper) are
(970, 0), (980, 0), (990, 0), and (1000, 0); the average wave
velocity is 3000m/s and the coordinate of seismic source is
(500, 500). The graph of objective function (6) when 𝑥 ∈
(100, 1000) and 𝑦 ∈ (100, 1000) is shown in Figure 2.
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Figure 2: 45-degree view of (6) when seismic source locates at (500,
500).

Enlarged view of Figure 2 near (500, 500) is shown in
Figure 3.

The graph of objective function (7) under the same con-
ditions is shown in Figure 4.

Enlarged view of Figure 4 near (500, 500) is shown in
Figure 5.

As shown in Figures 2–5, two concluding points can
be made when the seismic source is far away from sensors
as shown in Figure 1; that is, the locating accuracy of 𝑥
coordinate is better than 𝑦 coordinate and the objective
function, whether (6) or (7), changes little near true value. As
a comparison, the graphs of (6) and (7) when seismic source
locates at (1000, 500) are shown in Figures 6-7.

Obviously, the locating accuracy of methods, which take
(6) or (7) as objective function,will decline seriouslywhen the
seismic source is far away from sensors. This paper presents
a new method based on solution space downsizing, and
the core of the new method is a new one-variable objective
function. Numerical experiments will show that the new
method has faster convergence speed, higher accuracy, and
better stability.

3. Two-Dimensional Far Field
Source Locating Method Based on
Solution Space Downsizing

3.1. Methodology. When locating with nonprior velocity, the
locating problem is equivalent to a three-dimensional opti-
mization problem ifwe choose (5) as objective function,while
it is equivalent to a two-dimensional optimization problem
if we choose (6) as objective function. Usually, because of
dimension reduction of solution space, method taking (6) as
objective function will calculate faster than (5) in the same
condition. Therefore, if the solution space’s dimension of (3)
or (4) can be reduced to one, the calculation should also be
faster.

The coordinates of seismic source (𝑥, 𝑦) satisfy hyperbolic
equation (9), shown as follows:
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Figure 3: 45-degree/𝑋𝑍/𝑌𝑍 enlarged view of (6).
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Figure 4: 45-degree view of (7) when seismic source locates at (500,
500).
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The asymptotic equation of (9) is expressed in

𝑦 = 𝑦
1

+ 𝑦
2

2

±
√(𝑥
2

− 𝑥
1
)2 − 𝑁2𝑡2

0
V2

𝑁𝑡
0
V

(𝑥 − 𝑥
1

+ 𝑥
2

2 ) .
(10)

The asymptote will be very close to the hyperbola when
the seismic source locates far from sensors as shown in
Figure 1. If the error between asymptote and hyperbola is
less than predefined locating error, (10) can be used to locate

instead of (9) and we will obtain an approximate equation set
instead of (2) as shown in
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Figure 5: 45-degree/𝑋𝑍/𝑌𝑍 enlarged view of (7) near (500, 500).
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Figure 6: 45-degree/𝑋𝑍/𝑌𝑍 view of (6) when seismic source locates at (1000, 500).
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Figure 7: 45-degree/𝑋𝑍/𝑌𝑍 enlarged view of (7) when seismic source locates at (1000, 500).
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All the 𝑦 coordinates are equal when sensors are placed in
a line as shown in Figure 1. Therefore, 𝐴
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are only two 𝑥 coordinates in (12)–(15) shown as follows:
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, (17)

𝑥 = 𝐵
23

𝐶
23

+ 𝐵
12

𝐶
12

𝐵
23

+ 𝐵
12

. (18)

Equation (17) is the 𝑥 coordinate of far field source. Sub-
stitute 𝐵

12
, 𝐶
12
, 𝐵
23
, and 𝐶

23
into (17) and get

𝑥 =
√((𝑥
3

− 𝑥
2
) /𝑁
23

𝑡
0
)2 − V2 ((𝑥

2
+ 𝑥
3
) /2) − √((𝑥

2
− 𝑥
1
) /𝑁
12

𝑡
0
)2 − V2 ((𝑥

1
+ 𝑥
2
) /2)

√((𝑥
3

− 𝑥
2
) /𝑁
23

𝑡
0
)2 − V2 − √((𝑥

2
− 𝑥
1
) /𝑁
12

𝑡
0
)2 − V2

. (19)
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Equation (19) shows that if 𝑥
1
, 𝑥
2
, and 𝑥

3
(coordinates of

sensors) and 𝑁
12

𝑡
0
and 𝑁

23
𝑡
0
(arrival time differences) are

known, 𝑥 (𝑥 coordinate of seismic source) can be regarded as
a function of V (average wave velocity), denoted as 𝑥 = 𝑓(V).
Obviously, there is a one-to-one correspondence between 𝑥
and V since V > 0 in practice; that is to say, 𝑥 exists and is
unique when V is known.

An approximate graph can be plotted by (19).
Take the derivative of (19) with respect to V:

𝑑𝑥
𝑑V = (V/2) (𝐵 − 𝐴) (𝐵 + 𝐴) (𝑥

1
+ 𝑥
2

− 𝑥
2

− 𝑥
3
)

𝐴𝐵 (𝐵 − 𝐴)2 , (20)

where 𝐴 = √((𝑥
2

− 𝑥
1
)/𝑁
12

𝑡
0
)2 − V2 and 𝐵 =

√((𝑥
3

− 𝑥
2
)/𝑁
23

𝑡
0
)2 − V2.

Equation (20) shows that the sign of 𝑑𝑥/𝑑V, namely, the
monotonicity of 𝑥 = 𝑓(V), depends on the sign of (𝐵−𝐴)(𝑥

1
−

𝑥
3
) and then depends on the relative position of seismic

source and sensors.

② ③ ④①

x x

x1 x2 x3

x x

x1 x2 x3

Figure 8: Relative positions of seismic source and sensors.

There are four possible relative positions of seismic source
and sensors as shown in Figure 8.

AsA shows in Figure 8, 𝑥
1

− 𝑥
3

< 0, ((𝑥
2

− 𝑥
1
)/𝑁
12

𝑡
0
)2 >

((𝑥
3

− 𝑥
2
)/𝑁
23

𝑡
0
)2; therefore, 𝑑𝑥/𝑑V = (𝐵 − 𝐴)(𝑥

1
− 𝑥
3
) > 0,

and 𝑥 is a monotonous increasing function of V.
AsB shows in Figure 8, 𝑥

1
− 𝑥
3

< 0, ((𝑥
2

− 𝑥
1
)/𝑁
12

𝑡
0
)2 <

((𝑥
3

− 𝑥
2
)/𝑁
23

𝑡
0
)2; therefore, 𝑑𝑥/𝑑V = (𝐵 − 𝐴)(𝑥

1
− 𝑥
3
) < 0,

and 𝑥 is a monotonous decreasing function of V.
AsC shows in Figure 8, 𝑥

1
− 𝑥
3

> 0, ((𝑥
2

− 𝑥
1
)/𝑁
12

𝑡
0
)2 >

((𝑥
3

− 𝑥
2
)/𝑁
23

𝑡
0
)2; therefore, 𝑑𝑥/𝑑V = (𝐵 − 𝐴)(𝑥

1
− 𝑥
3
) > 0,

and 𝑥 is a monotonous increasing function of V.
AsD shows in Figure 8, 𝑥

1
− 𝑥
3

> 0, ((𝑥
2

− 𝑥
1
)/𝑁
12

𝑡
0
)2 <

((𝑥
3

− 𝑥
2
)/𝑁
23

𝑡
0
)2; therefore, 𝑑𝑥/𝑑V = (𝐵 − 𝐴)(𝑥

1
− 𝑥
3
) < 0,

and 𝑥 is a monotonous decreasing function of V.
According to (19), when V → 0,

lim
V→0

√((𝑥
3

− 𝑥
2
) /𝑁
23

𝑡
0
)2 − V2 ((𝑥

2
+ 𝑥
3
) /2) − √((𝑥

2
− 𝑥
1
) /𝑁
12

𝑡
0
)2 − V2 ((𝑥

1
+ 𝑥
2
) /2)

√((𝑥
3

− 𝑥
2
) /𝑁
23

𝑡
0
)2 − V2 − √((𝑥

2
− 𝑥
1
) /𝑁
12

𝑡
0
)2 − V2

=
√((𝑥
3

− 𝑥
2
) /𝑁
23

𝑡
0
)2 ((𝑥

2
+ 𝑥
3
) /2) − √((𝑥

2
− 𝑥
1
) /𝑁
12

𝑡
0
)2 ((𝑥

1
+ 𝑥
2
) /2)

√((𝑥
3

− 𝑥
2
) /𝑁
23

𝑡
0
)2 − √((𝑥

2
− 𝑥
1
) /𝑁
12

𝑡
0
)2

.

(21)

That is, the 𝑥 coordinate of seismic source tends to a
constant when V → 0, which is determined by coordinates
of sensors and arrival time differences. In addition, when the
distance between seismic source and sensors tends towards
infinity, there is |(𝑥

3
− 𝑥
2
)/𝑁
23

𝑡
0
| ≈ |(𝑥

2
− 𝑥
1
)/𝑁
12

𝑡
0
| ≈ V,

and therefore 𝑥 → +∞ or 𝑥 → −∞.
Equation (19) also shows that ((𝑥

3
− 𝑥
2
)/𝑁
23

𝑡
0
)2 − V2 ≥ 0

and ((𝑥
2

− 𝑥
1
)/𝑁
12

𝑡
0
)2 − V2 ≥ 0; therefore, the supremum

of the domain of 𝑥 = 𝑓(V) is finite, denoted as Vmax. The
value of Vmax depends on the smaller value between |(𝑥

3
−

𝑥
2
)/𝑁
23

𝑡
0
| and |(𝑥

2
− 𝑥
1
)/𝑁
12

𝑡
0
|; in other words, it depends

on sensor interval and arrival time difference of the more
distant sensors from seismic source. That is to say, when
V → Vmax, the 𝑥 coordinate of seismic source tends to the
midpoint of the closer sensors from the seismic source, which
is 𝑥 = (𝑥

𝑚
+ 𝑥
𝑚+1

)/2.
So, the graph of 𝑥 = 𝑓(V) can be approximately plotted as

shown in Figure 9.
There are two real cases of 𝑥 = 𝑓(V) as shown in Figure 10.
The parameters of (a) and (b) in Figure 10 are shown as

follows.
The coordinates of sensors are (−10, 0)–(−200, 0) and the

interval of sensors is 1 meter. The average wave velocity is

V = 300m/s. And the coordinate of seismic source is (0, 10).
The line nearly parallel to the horizontal axis in (b) is the
graph of 𝑥 = 𝑓(V) whose sensor coordinates are (−10, 0)
and (−11, 0) while the other curve is the graph whose sensor
coordinates are (−110, 0) and (−120, 0).

The parameters of (c) and (d) in Figure 10 are shown as
follows.

The coordinates of sensors are (10, 0)–(200, 0) and the
interval of sensors is 1 meter. The average wave velocity is
V = 300m/s. And the coordinate of seismic source is (0, 10).
The line nearly parallel to the horizontal axis in (d) is the 𝑥 =
𝑓(V) graph whose sensor coordinates are (10, 0) and (11, 0)
while the other curve is the graph whose sensor coordinates
are (110, 0) and (120, 0).

There is an inference we can make from Figure 10, which
is that the intersection point of all the 𝑥 = 𝑓(V) graphs exists
and is unique; the reasons are as follows.

Existence. There must be at least one intersection point of the
𝑥 = 𝑓(V) graphs; the horizontal coordinate of the intersection
is the real average wave velocity V and the vertical coordinate
is the real horizontal coordinate of seismic source.
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Figure 9: Approximate graph of 𝑥 = 𝑓(V).
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Figure 10: Real graphs of 𝑥 = 𝑓(V).

Uniqueness. Suppose there is another intersection, named
(𝑥󸀠, V󸀠), of two 𝑥 = 𝑓(V) graphs. As mentioned above, when
V is known, 𝑥 (the horizontal coordinate of seismic source)
exists and is unique; that is to say, when the average wave
velocity is V󸀠, all of the 𝑥 = 𝑓(V) graphs will uniquely intersect
at one point (𝑥󸀠, V󸀠). However, as presented in (b) and (d)
in Figure 10, the sensors away from seismic source and the
sensors close to seismic source will intersect at only one
point, the real horizontal coordinate of seismic source and the
real average wave velocity; there is not another intersection
named (𝑥󸀠, V󸀠). Therefore, there is only one intersection of
𝑥 = 𝑓(V) graphs.

According to the analyses above, the procedure of the
new two-dimensional far field source locating method is as
follows.

Step 1. Assume (𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), and (𝑥

3
, 𝑦
3
) are coordinates

of a set of sensors and 𝑡
12
and 𝑡
23
are the corresponding arrival

time differences; get an equation relating the horizontal
coordinate of seismic source and the average wave velocity
based on (19), denoted as 𝑥 = 𝑓(V).

Step 2. Assume (𝑥
2
, 𝑦
2
), (𝑥
3
, 𝑦
3
), and (𝑥

4
, 𝑦
4
) are coordinates

of a set of sensors and 𝑡
23
and 𝑡
34
are the corresponding arrival
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time differences; another equation will be got based on (19),
denoted as 𝑥󸀠 = 𝑓(V).

Step 3. Define |𝑥 − 𝑥󸀠| as the objective function; Vmin which
minimizes |𝑥 − 𝑥󸀠| can be considered as true value of average
wave velocity.

Step 4. Substitute Vmin and other known quantities into (12)
and (15) to get the coordinate of seismic source.

3.2. Theoretical Error. The reason why the new locat-
ing method proposed in Section 3.1 can reduce a two-
dimensional solution space to a one-dimensional solution
space is that the hyperbola is replaced by asymptote when the
seismic source is far away from sensors, but this replacing will
unquestionably cause theoretical error while locating:

The normal-form hyperbolic equation is 𝑥2
𝑎2 − 𝑦2

𝑏2
= 1.

(22)

And the normal-form asymptotic equation is 𝑦

= ± 𝑏
𝑎 𝑥.

(23)

With (22), the horizontal coordinate of a point on hyper-
bola is 𝑥 = ±𝑎√𝑦2/𝑏2 + 1, and the vertical coordinate is 𝑦 =
±𝑏√𝑥2/𝑎2 − 1.With (23), the horizontal coordinate of a point
on asymptote is 𝑥 = ±𝑎(𝑦/𝑏), and the vertical coordinate is
𝑦 = ±𝑏(𝑥/𝑎):
Define the relative error of horizontal coordinate as Δ𝑥

=
󵄨󵄨󵄨󵄨𝑎 (𝑦/𝑏)󵄨󵄨󵄨󵄨 − |𝑎| √𝑦2/𝑏2 + 1

|𝑎| √𝑦2/𝑏2 + 1
.

Define the relative error of vertical coordinate as Δ𝑦

= |𝑏 (𝑥/𝑎)| − |𝑏| √𝑥2/𝑎2 − 1
|𝑏| √𝑥2/𝑎2 − 1

.

(24)

Δ𝑥 is a decreasing function of |𝑦/𝑏| and lim
|𝑦/𝑏|→∞

Δ𝑥 =
0; Δ𝑦 is a decreasing function of |𝑥/𝑎| and lim

|𝑥/𝑎|→∞
Δ𝑦 = 0.

Some examples are shown in Table 1.
As Table 1 shows, when |𝑦/𝑏| > 7, there is |Δ𝑥| < 1%, and

when |𝑥/𝑎| > 7, there is |Δ𝑦| < 1%. Assume 𝑥
1

= −𝑥
0

(𝑥
0

>
0), 𝑥
2

= 𝑥
0
, and 𝑦

1
= 𝑦
2

= 0; (9) will change into

𝑥2
𝑁2𝑡2
0
V2/4 − 𝑦2

𝑥2
0

− 𝑁2𝑡2
0
V2/4 = 1. (25)

In comparison with (22) and (25), the inequation |𝑦/𝑏| >
7 corresponding to (22) will change into (26) corresponding
to (25):

󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨
√𝑥2
0

− 𝑁2𝑡2
0
V2/4

> 7. (26)

Table 1: Relative error between hyperbola and asymptote.
󵄨󵄨󵄨󵄨𝑦/𝑏󵄨󵄨󵄨󵄨 Δ𝑥 |𝑥/𝑎| Δ𝑦
2 −0.105572809000084 2 0.154700538379252
3 −0.051316701949486 3 0.060660171779821
4 −0.029857499854668 4 0.032795558988644
5 −0.019419324309080 5 0.020620726159658
6 −0.013606076167856 6 0.014185105674220
7 −0.010050506338834 7 0.010362971081845
8 −0.007722123286332 8 0.007905261357939

And the inequation |𝑥/𝑎| > 7 will change into

|𝑥|
𝑁𝑡
0
V/2 > 7. (27)

Since √𝑥2
0

− 𝑁2𝑡2
0
V2
0
/4 < √𝑥2

0
, (26) can be rewritten to

|𝑦| > 7√𝑥2
0

> 7√𝑥2
0

− 𝑁2𝑡2
0
V2/4; therefore, when |𝑦| >

3.5 ⋅ 2𝑥
0
, there is |Δ𝑥| < 1%. Since 𝑁𝑡

0
V < 2𝑥

0
, (27) can

be rewritten to |𝑥| > 7𝑥
0

> 7(𝑁𝑡
0
V/2); therefore, when

|𝑥| > 3.5 ⋅ 2𝑥
0
, there is |Δ𝑦| < 1%. That is to say, when

the distance between the vertical coordinate of seismic source
and the vertical coordinate of midpoint of the two sensors
reaches 3.5 times larger than sensor interval, the relative error
of horizontal coordinate of locating result is less than 1%,
and when the distance between the horizontal coordinate of
seismic source and the horizontal coordinate of midpoint of
the two sensors reaches 3.5 times larger than sensor interval,
the relative error of vertical coordinate of locating result is less
than 1%. Similarly, when |𝑦| > 2.5 ⋅ 2𝑥

0
, there is |Δ𝑥| < 2%,

and when |𝑥| > 2.5 ⋅ 2𝑥
0
, there is |Δ𝑦| < 2%.

According to the analysis above, the distance range of
far field source depends on the demanded locating accuracy.
For example, assume 𝑥

𝑠
and 𝑦

𝑠
are coordinates of seismic

source, 𝑥
𝑛1
and 𝑦

𝑛1
are coordinates of the closest sensor, and

𝑥
𝑛2

and 𝑦
𝑛2

are coordinates of the next-closest sensor; if the
demanded locating accuracy is less than 1%, then the seismic
sources which satisfy |𝑥

𝑠
− (𝑥
𝑛1

+ 𝑥
𝑛2

)/2| > 3.5|𝑥
𝑛2

− 𝑥
𝑛1

| and
|𝑦
𝑠

− (𝑦
𝑛1

+ 𝑦
𝑛2

)/2| > 3.5|𝑥
𝑛2

− 𝑥
𝑛1

| could be considered as far
field sources.

4. Numerical Experiments and Discussion

4.1. Optimization Method. GA (Genetic Algorithm) is a
naturally parallel method of optimization, which can be
conveniently migrated to parallel environments to improve
computing speed. In this paper, we use SGA (Simple Genetic
Algorithm) to optimize the objective function, proposed in
Section 3.1. The program is developed by a toolbox called
GATBX (published by UK’s University of Sheffield). The
parameters of SGA used in this paper are shown in Table 2.

4.2. Validity Experiments. Assume the coordinates of sensors
are (970, 0), (980, 0), (990, 0), and (1000, 0), and the average
wave velocity is 3000m/s. To test the validity of the new
method proposed in this paper, we move the seismic source
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Table 2: Parameters of SGA.

Number of individuals Maximum number
of generations

Variable number of
binary digits Gap of generations Crossover probability Mutation probability

100 100 25 0.95 0.7 0.1
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Figure 11: Relative error of LEFT 𝑉/𝑋/𝑌.

in 𝑥, 𝑦 plane at interval of 100meters and calculate the arrival
time (in seconds with 16 significant digits) of each point,
where 𝑥 ∈ (60, 960) or 𝑥 ∈ (1010, 2010) and 𝑦 ∈ (10, 1010).
Define relative error formula of V, 𝑥, and 𝑦 as

RE = IR − TV
TV

× 100%, (28)

where RE denotes the relative error, IR denotes the inversion
result, and TV denotes the true value.

The LEFT (means the 𝑥 coordinate of seismic source
satisfies 𝑥 ∈ (60, 960)) relative errors of V, 𝑥, and 𝑦 are shown
in Figure 11, and the RIGHT (means the 𝑥 coordinate of
seismic source satisfies 𝑥 ∈ (1010, 2010)) errors are shown
in Figure 12.

All the comparatively larger relative errors highlighted in
Figures 11 and 12 are shown in Table 3.

As shown in Table 3, the comparatively larger relative
errors will arise when seismic source comes close to sensors
which is consistent with the analysis in Section 3.2. For
example, when the largest relative error of LEFT 𝑋 is
−0.1014% and the corresponding 𝑌 coordinate of seismic
source is 10, the distance between the 𝑌 coordinate of seismic
source and the 𝑌 coordinate of sensors is equal to sensor
interval. One more example is that when the largest relative

error of LEFT 𝑌 is −1.72%, the corresponding 𝑋 coordinate
of seismic source is 960, and the 𝑌 coordinate is 10, it is
obvious that the distance between the𝑌 coordinate of seismic
source and the 𝑌 coordinate of sensors is equal to sensor
interval and theminimumdistance between the𝑋 coordinate
of seismic source and the 𝑋 coordinate of the midpoint of
sensors is slightly greater than sensor interval. According
to the numerical experimental results and analyses above,
the locating result can be considered unauthentic when the
minimum distance between the located result and sensors is
less than 2.5 times the sensor interval.

4.3. Contrast Experiments. Assume the coordinates of sen-
sors are (970, 0), (980, 0), (990, 0), and (1000, 0), the coordi-
nates of seismic source are (600, 1000), and the average wave
velocity is 3000m/s; the corresponding theoretical arrival
time differences are 𝑡

21
≈ 1.1704ms, 𝑡

32
≈ 1.1976ms, and

𝑡
43

≈ 1.2246ms after numerical simulation. Table 4 shows
20 contrast experiment results based on the coordinates of
sensors and the theoretical arrival time differences calculated
above, where NEW denotes the method taking |𝑥 − 𝑥󸀠| as
objective function and OLD denotes the method taking (6)
as objective function.The optimizationmethods of NEWand
OLD are both SGA and the parameters of SGA are shown in
Table 2.
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Figure 12: Relative Error of RIGHT 𝑉/𝑋/𝑌.

Table 3: Values and coordinates of comparatively larger relative errors.

Error name Relative error (%) True value of 𝑋 coordinate (m) True value of 𝑌 coordinate (m)
LEFT 𝑉 0.02626 960 10
LEFT 𝑉 −0.08622 960 110
LEFT 𝑋 0.08442 960 10
LEFT 𝑋 0.05909 60 110
LEFT 𝑋 −0.1014 60 10
LEFT 𝑌 0.1885 960 110
LEFT 𝑌 −1.72 960 10
RIGHT 𝑉 0.02626 1010 10
RIGHT 𝑉 −0.08622 1010 110
RIGHT 𝑋 −0.08024 1010 10
RIGHT 𝑌 0.1885 1010 110
RIGHT 𝑌 −1.72 1010 10

Comparison chart of convergence speed is shown in
Figure 13.

Obviously, Figure 13 shows that the NEW method con-
verges faster than the OLDmethod and also the NEWmeth-
od’s fluctuation of iterative times is smaller than the OLD
method.

The stability of optimal solution is shown in Figure 14, and
clearly the optimal solution of NEW method is more stable
than OLD method.

According to Table 4, neither optimal solution of the
two methods converges to true value, which is caused by
the poor timing accuracy. If we substitute arrival time
differences with higher accuracy into the NEW method,
such as 𝑡

21
= 1.170400ms, 𝑡

32
= 1.197628ms, and

𝑡
43

= 1.224583ms, then the optimal solution of V will be

3002.4. Figure 15 shows errors between calculated results and
true values where the calculated results were obtained from
NEW and OLD method by 1 dB–200 dB white Gauss noise
added arrival time differences (arrival time differences are
𝑡
21

= 1.170400227006 × 10−3 s, 𝑡
32

= 1.197627771071 ×
10−3 s, and 𝑡

43
= 1.224582829460 × 10−3 s). Figure 16

shows enlarged view of Figure 15. As shown in Figures 15
and 16, the calculation accuracy of OLD method is better
than NEW method when SNR (Signal-to-Noise Ratio) is
lower than about 80 dB, and the calculation accuracy of
NEW method will be higher than OLD method’s when SNR
becomes higher than about 85 dB. Obviously, OLD method
has better antinoise ability than NEW method, but NEW
method will give more accurate results with higher timing
precision.
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Table 4: Results of contrast experiments.

Experiment
number

Iteration
number of

OLD method

Optimum V of
OLD method

Error of OLD
method

between V and
true value

Iteration
number of

NEWmethod

Optimum V of
NEWmethod

Error of NEW
method

between V and
true value

1 100 2569.7434 −430.2566 17 2614.70 −385.30
2 100 2665.3755 −334.6245 13 2614.70 −385.30
3 90 2306.9505 −693.0495 18 2614.70 −385.30
4 100 2237.0807 −762.9193 16 2614.70 −385.30
5 71 2205.2818 −794.7182 13 2614.70 −385.30
6 99 2660.2377 −339.7623 6 2614.70 −385.30
7 100 2476.904 −523.096 15 2614.70 −385.30
8 100 2204.2403 −795.7597 14 2614.70 −385.30
9 67 2474.3871 −525.6129 17 2614.70 −385.30
10 35 2165.6936 −834.3064 16 2614.70 −385.30
11 100 2573.8501 −426.1499 25 2614.70 −385.30
12 75 2475.6581 −524.3419 19 2614.70 −385.30
13 80 1756.5821 −1243.4179 31 2614.70 −385.30
14 96 1759.8416 −1240.1584 14 2614.70 −385.30
15 30 2276.137 −723.863 19 2614.70 −385.30
16 87 1846.0683 −1153.9317 14 2614.70 −385.30
17 41 2781.9136 −218.0864 13 2614.70 −385.30
18 60 1756.4908 −1243.5092 8 2614.70 −385.30
19 64 3280.5975 280.5975 13 2614.70 −385.30
20 99 2343.6613 −656.3387 25 2614.70 −385.30
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Figure 13: Comparison chart of convergence speed.

5. Conclusions and Discussions

This paper proposes a fast and stable method for two-
dimensional far filed source locating with nonprior velocity
and the new method has been proved valid by numerical
experimentations. The new method uses asymptote instead
of hyperbola to locate seismic source which reduces the
dimension of solution space from two to one. Numerical
experiments show that the new method works faster and
more stable than usual locating method at expense of accept-
able locating accuracy.

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

O
pt

im
al

 so
lu

tio
n

Experiment number

Stability of optimal solution

OLD
NEW

Figure 14: Stability of optimal solution.

However, the method proposed in this paper is still im-
perfect.

(1) There is no strict theoretical proof for the uniqueness
of graphs’ intersection point of𝑥 = 𝑓(V) in Section 3.1.

(2) The relative errors shown in Figures 11 and 12 and
Table 3 are smaller than the theoretic errors got
from Section 3.2. The maximum relative error of
𝑥 coordinate is −0.1014% (LEFT) and −0.08024%
(RIGHT), respectively; they are both smaller than the
theoretic error (1%) deduced in Section 3.2.

(3) NEWmethod has weaker antinoise ability than OLD
method.
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Figure 15: Calculated results by 1–200 dB white Gauss noise added
arrival time differences.
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The three questions mentioned above will need to be
solved in future research.
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