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We have synthesized Pd-filled carbon nanotubes (CNTs) oriented perpendicular to Si substrates using a microwave plasma-
enhanced chemical vapor deposition (MPECVD) for the application of scanning probe microscopy (SPM) tip. Prior to the CVD
growth, Al thin film (10 nm) was coated on the substrate as a buffer layer followed by depositing a 5 ∼ 40 nm-thick Pd film as a
catalyst. The diameter and areal density of CNTs grown depend largely on the initial Pd thickness. Scanning electron microscopy
(SEM) and transmission electron microscopy (TEM) images clearly show that Pd is successfully encapsulated into the CNTs,
probably leading to higher conductivity. Using optimum growth conditions, Pd-filled CNTs are successfully grown on the apex of
the conventional SPM cantilever.
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cited.

1. Introduction

Since their discovery by Iijima in 1991 [1], CNTs have suc-
cessfully been synthesized via various techniques such as arc-
discharged method [2], laser vaporization [3], and chemical
vapor deposition (CVD) [4]. The advantage of CVD lies in
the controlled fabrication at a designated position on the
substrate using patterned catalysts. In particular, plasma-
enhanced CVD (PECVD) technique can control the growth
direction of individual CNTs by electric field [5–7].

Recently, growth of metal-filled CNTs (MF-CNTs) using
Pd as the catalyst has been demonstrated and their struc-
ture and growth mechanism were investigated [8–10]. The
anomalous feature of the Pd-filled CNTs was that they
contained a Pd nanowire of the length of micrometer
size and diameter of nanometer size. Since Pd has been
shown to be particularly useful for achieving reliable
ohmic contacts to single walled CNTs (SWCNTs) [11], the
Pd-filled CNTs are expected to have higher conductivity
from conventional hollow nanotubes. This property has
potential application for the conductive tip in scanning
probe microscopy (SPM). In addition, Pd, in nanosize and

low dimension, is known to change its magnetism from
paramagnetic to ferromagnetic [12, 13]. The feature extends
the application to the tip of magnetic force microscopy
(MFM).

Here, we demonstrate controlled synthesis of Pd-filled
CNTs on the Si substrate as well as on the tip apex of
SPM probes using the microwave plasma-enhanced chemical
vapor deposition (MPECVD). The diameter and density of
CNTs are well controlled by changing Pd thickness. The
structure is investigated by field emission scanning electron
microscopy (FE-SEM) and high-resolution transmission
electron microscopy (TEM). Raman spectroscopy is also
conducted to investigate the quality of the Pd-filled CNTs.

2. Experimental

Pd-filled CNTs were synthesized by using a MPECVD system
(CVD-CN-100, Ulvac, Japan). A 10 nm-thick Al film was
deposited as a buffer layer on a Si wafer or cantilever. This
layer is known to prevent the formation of silicide as well as
to support catalyst as nanoparticle [14, 15]. Then Pd of 5–
40 nm was deposited as catalyst by sputtering. The mixture
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Figure 1: Low magnification SEM images of CNTs grown on (a) Pd (10 nm)/Al (10 nm)/Si, (b) Pd (20 nm)/Al (10 nm)/Si, (c) Pd (40 nm)/Al
(10 nm)/Si. (d) High magnification SEM image of the CNTs in Figure 1(c). TEM image of the CNTs in Figure 1(a).

of H2 and CH4 gases was used for the CVD growth. The
flow ratio of H2 : CH4 was kept constant at 80 : 20. Total
gas pressure was set at 1.7 torr. We used a microwave of
2.45 GHz and 500 W, and the growth time was 10 minutes.
During the growth process, a voltage of 200 V was applied
between electrodes. Prior to the CNTs growth, the substrate
was exposed to hydrogen plasma for 3 minutes to clean
the substrate as well as to activate the catalyst. Hydrogen
plasma has a significant annealing effect on Pd particles
and alters their morphology [16]. The CNTs grown were
characterized by field emission scanning electron microscopy

(FE-SEM, Hitachi S4700), and high-resolution transmission
electron microscopy (TEM, JEOL, JEM2000EX) and Raman
spectroscopy (Jovin Yvon, LabRAM HR800) were carried out
to determine the structure of the Pd-filled CNTs.

3. Results and Discussion

Figures 1(a)–1(c) show SEM images of CNTs grown with
different Pd thickness. The CNTs grown on Pd (10 nm)/Al
(10 nm)/Si, as shown in Figure 1(a), were sparsely distributed
on the substrate. The CNTs on Pd (20 nm)/Al (10 nm)/Si
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Figure 2: Pd thickness dependence of CNTs diameter. Hydrogen
cleaning time is 3 minutes. Growth time is 10 minutes.
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Figure 3: Pd thickness dependency of CNTs density. Hydrogen
cleaning time is 3 minutes. Growth time is 10 minutes.

in Figure 1(b) and those on Pd (40 nm)/Al (10 nm)/Si in
Figure 1(c) are well aligned and homogeneously distributed
by the plasma sheath effect in MPECVD [16]. The diameter
of the tip of CNTs is approximately 100 nm, and Pd-
related materials are visible as bright contrast inside the
CNTs as shown in Figure 1(d). TEM image in Figure 1(e)
reveals that Pd is encapsulated inside the hollow of CNTs.
In previous reports, metals were considered to be encap-
sulated in the hollows of CNTs by the capillary force
[8, 9, 17–20].

Figure 2 shows the diameter of CNTs as a function of Pd
thickness. The diameter of CNTs decreases with decreasing
Pd thickness. It means that the diameter of CNTs depends
on the size of catalyst particles. Thus the diameter can be
reduced to approximately 30 nm at a Pd thickness of 7.5 nm.
Figure 3 shows the density of CNTs as a function of Pd
thickness. The curve was like mountain and it has a peak
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Figure 4: Raman spectra of CNTs grown on (a) Pd (1 nm)/Al
(10 nm)/Si, (b) Pd (10 nm)/Al (10 nm)/Si, (c) Pd (30 nm)/Al
(10 nm)/Si.

at a Pd thickness of 30 nm. CNTs were hardly grown on the
substrates with Pd less than 5 nm because Pd was removed
from the substrate by plasma etching in MPECVD.

Figure 4 shows Raman spectra of the CNTs grown in
different conditions: (a) Pd (1 nm)/Al (10 nm)/Si, remote
plasma, (b) Pd (10 nm)/Al (10 nm)/Si, MPECVD, (c) Pd
(30 nm)/Al (10 nm)/Si, MPECVD. Remote plasma growth
was done for comparison, where Pd was not encapsulated
into the whole CNTs. Two strong peaks are observed in
all the spectra at around 1350 cm−1 (D band) and around
1580–1600 cm−1 (G band). G peaks in Figures 4(b) and
4(c) are accompanied by an additional D∗ peak at around
1610–1620 cm−1. The origin of D and D∗ bands have
been attributed to disorder induced features such as defects
generated in the graphitic planes of CNTs, due to curvature
[21] and presence of amorphous carbon. On the other hand,
G band is a characteristic of graphitic phase corresponding to
in-plane vibration of C atoms, which indicates the presence
of crystalline graphitic carbon in CNTs [22]. The appearance
of D∗ band in Figures 4(b) and 4(c) agrees with the previous
report, indicating the presence of Pd inside the whole CNTs
[8, 23]. The intensity ratio of these two bands (ID/IG) [24]
is considered as a parameter to characterize the quality of
disorders in CNTs. The intensity ratios of ID/IG in all the
spectra are larger than unity, indicating that the Pd-filled
CNTs in the present study are multiwall CNTs (MWCNTs)
with defective structure.

Since the growth condition is now optimized, growth of
Pd-filled CNTs onto the SPM tip apex is performed. The Si
cantilever was used as a specimen, and the same preparation,
Al (10 nm) and Pd (10 nm) deposition, was conducted. The
conditions are optimized to decrease the density of CNT
and reduce the number or to produce only one CNT on the
apex of tip. Figure 5(a) shows a low-magnified SEM image
of CNTs grown on the cantilever surface. It is found that
the pyramidal structure keeps its original shape after the
growth. This is because the damage was minimized using a
metal mesh for shielding from the direct impact of plasma
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Figure 5: (a) Low magnification SEM image of CNTs grown on Al (10 nm)/Si cantilever. High magnification SEM images of CNTs at the tip
apex (b) and of substrate Si (c).

ions [25]. The CNTs are well aligned and homogeneously
distributed on the tip surface (Figure 5(b)) as well as on
the cantilever surface (Figure 5(c)). The diameter of CNTs
on the apex of tip is estimated to be approximately 50 nm.
Figure 5(c) clearly reveals that Pd is encapsulated into the
whole CNTs, as is on the Si wafer.

4. Conclusion

Pd-filled CNTs have been synthesized perpendicularly on
Pd/Al (10 nm)/Si substrates by MPECVD. The diameter of
CNTs has been controlled from 30 nm to 140 nm depending
on the Pd thickness. Both SEM and TEM images clearly
show that Pd is encapsulated into the whole CNTs. Raman
revealed that Pd-filled CNTs were composed of poorly
ordered graphene layers. Using optimum growth parameters,
we have successfully fabricated Pd-filled CNTs on the apex of
SPM probes.
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