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A phenylene is a conjugated hydrocarbons molecule composed of six- and four-membered rings. The matching energy of a graph
𝐺 is equal to the sum of the absolute values of the zeros of the matching polynomial of 𝐺, while the Hosoya index is defined as the
total number of the independent edge sets of𝐺. In this paper, we determine the extremal graph with respect to the matching energy
and Hosoya index for all phenylene chains.

1. Introduction

Phenylenes are a class of conjugated hydrocarbons composed
of six- and four-membered rings, where the six-membered
rings (hexagons) are adjacent only to four-membered rings,
and every four-membered ring is adjacent to a pair of
hexagons. They are nanostructures that can be precisely
designed andmanufactured for a wide variety of applications;
see [1–3] and the references therein.

A topological index is a numerical quantity derived in an
unambiguousmanner from the structure graphof amolecule,
as a graph structural invariant; that is, it does not depend
on the labeling or the pictorial representation of a graph.
Various topological indices usually reflect molecular size and
shape. One topological index is Hosoya index, which was first
introduced by Hosoya [4]. It plays an important role in the
so-called inverse structure-property relationship problems.
For details of Hosoya index and its applications, the readers
are suggested to refer to [5, 6]. A new topological index in
chemistry, matching energy, is first introduced by Gutman
andWagner [7] in 2012 to study topological resonance energy
of conjugatedmolecules, which has received a lot of attention
from researchers in recent years. For more background and
applications about matching energy, see [8–16].

In this paper, our aim is to determine the phenylenes with
minimum and maximum matching energy (Hosoya index)
among all the phenylenes with 𝑛 hexagons.

In the following we present some definitions and nota-
tions.

Let 𝐺 = (𝑉, 𝐸) be a graph with the vertex set 𝑉(𝐺) and
the edge set 𝐸(𝐺). Let 𝑒 and V be an edge and a vertex in 𝐺,
respectively. We denote by 𝐺 − 𝑒 the graph obtained from 𝐺

by removing edge 𝑒 and by 𝐺 − V the graph obtained from 𝐺

by deleting vertex V.
By 𝑚(𝐺, 𝑘) we denote the number of 𝑘-matchings of a

graph 𝐺. The matching polynomial of a graph 𝐺 with 𝑛

vertices is fined as

𝛼 (𝐺, 𝑥) = ∑

𝑘≥0

(−1)
𝑘
𝑚(𝐺, 𝑘) 𝑥

𝑛−2𝑘
, (1)

where𝑚(𝐺, 0) = 1 and𝑚(𝐺, 𝑘) ≥ 0 for all 𝑘 = 1, 2, . . . , [𝑛/2].
This expression 𝛼(𝐺, 𝑥) induces a quasi-order relation (i.e.,
reflexive and transitive relation) on the set of all graphs with 𝑛
vertices. If𝐺 and𝐻 are two graphswithmatching polynomial
in the form (1), then the quasi-order ⪰ is defined by

𝐺 ⪰ 𝐻 ⇐⇒ 𝑚(𝐺, 𝑘) ≥ 𝑚 (𝐻, 𝑘)

∀𝑘 = 0, 1, . . . , ⌊𝑛/2⌋ .

(2)

Particularly, if 𝐺 ⪰ 𝐻 and there exists some 𝑘 such that
𝑚(𝐺, 𝑘) > 𝑚(𝐻, 𝑘), then we write 𝐺 ≻ 𝐻.
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Gutman and Wagner in [7] first proposed the concept of
thematching energy of a graph, denoted by ME(𝐺), as

ME = ME (𝐺) = 2

𝜋
∫

∞

0

𝑥
−2 ln[∑

𝑘≥0

𝑚(𝐺, 𝑘) 𝑥
2𝑘
]𝑑𝑥. (3)

Meanwhile, they gave also another form of definition of
matching energy of a graph. That is,

ME (𝐺) =
𝑛

∑

𝑖=1

𝜇𝑖
 , (4)

where 𝜇𝑖 denotes the root of matching polynomial of 𝐺. By
(2) and (3), we easily obtain the fact as follows:

𝐺 ⪰ 𝐻 ⇒ ME (𝐺) ≥ ME (𝐻) ,

𝐺 ≻ 𝐻 ⇒ ME (𝐺) > ME (𝐻) .

(5)

The𝑍-counting polynomial was defined byHosoya [4] as

𝑍 (𝐺) = 𝑍 (𝐺, 𝑥) = ∑

𝑘

𝑚(𝐺, 𝑘) 𝑥
𝑘
. (6)

Particularly, set 𝑥 = 1; then 𝑍(𝐺, 1) = ∑
𝑘
𝑚(𝐺, 𝑘) is called

Hosoya index of𝐺. Furthermore,The𝑍-counting polynomial
of graphs has the property as follows.

Lemma 1 (see [4]). (a) Let 𝐺 be a graph consisting of two
components 𝐺1 and 𝐺2. Then 𝑍(𝐺) = 𝑍(𝐺1)𝑍(𝐺2).

(b) Let 𝑢V ∈ 𝐸(𝐺) be an edge of 𝐺. Then 𝑍(𝐺) = 𝑍(𝐺 −

𝑢V) + 𝑥𝑍(𝐺 − 𝑢 − V).

A phenylene chain containing 𝑛 (𝑛 ≥ 2) hexagons,
denoted by PHB𝑛, is a phenylene with the properties that
(a) no vertex is incident with two hexagons or squares and
(b) no hexagon is adjacent to more than two squares. We
denote byB𝑛 the set of all phenylene chains with 𝑛 hexagons.
Let PHB𝑛 ∈ B𝑛. If the subgraph PHB𝑛 induced by the
vertices with degree 3 is the union of 𝑛 − 1 disjoint copies
of a square, then PHB𝑛 is called a linear phenylene chain
and denoted by PHL𝑛 (see Figure 1). If the subgraph PHB𝑛of
induced by the vertices with degree 3 is isomorphic to the
graph 𝑆𝑛−1 having 𝑛 − 1 squares (see Figure 1), then PHB𝑛 is

called a zigzag phenylene chain and is denoted by PHZ𝑛 (see
Figure 1). It is easy to see that B2 = {PHL2} = {PHZ2} and
B3 = {PHL3,PHZ3}. Finally, by the definition of a phenylene
chain, any element PHB𝑛 in B𝑛 can be obtained from an
appropriately chosen graph PHB𝑛−1 ∈ B𝑛−1 by attaching to it
a new graph 𝜃, where 𝜃 is obtained from an edge of a square
attaching an edge of a hexagon; see Figure 2.

2. Main Results

Theorem 2. Let B𝑛 be the set of all phenylene chains with 𝑛

hexagons. For any 𝑃𝐻𝐵𝑛 ∈ B𝑛, then

𝑀𝐸(𝑃𝐻𝐿𝑛) ≤ 𝑀𝐸 (𝑃𝐻𝐵𝑛) ≤ 𝑀𝐸 (𝑃𝐻𝑍𝑛) , (7)

where the equalities on the left side hold only if 𝑃𝐻𝐵𝑛 ≅ 𝑃𝐻𝐿𝑛,
and the equalities on the right side hold only if 𝑃𝐻𝐵𝑛 ≅ 𝑃𝐻𝑍𝑛.

By (2) and (5), we know that Theorem 2 holding only
needs to prove the following result.

Theorem 3. For any 𝑃𝐻𝐵𝑛 ∈ B𝑛 and for each 𝑘 ≥ 0,

𝑚(𝑃𝐻𝐿𝑛, 𝑘) ≤ 𝑚 (𝑃𝐻𝐵𝑛, 𝑘) ≤ 𝑚 (𝑃𝐻𝑍𝑛, 𝑘) , (8)

where the equalities on the left side hold only if 𝑃𝐻𝐵𝑛 ≅ 𝑃𝐻𝐿𝑛

and the equalities on the right side hold only if 𝑃𝐻𝐵𝑛 ≅ 𝑃𝐻𝑍𝑛.

Let 𝑓(𝑥) = ∑
𝑛

𝑘=0
𝑎𝑘𝑥
𝑘 and 𝑔(𝑥) = ∑

𝑛

𝑘=0
𝑏𝑘𝑥
𝑘 be two

polynomials of 𝑥. We say 𝑓(𝑥) ⪯ 𝑔(𝑥) if 𝑎𝑘 ≤ 𝑏𝑘 for all 𝑘.
If 𝑓(𝑥) ⪯ 𝑔(𝑥) and there exists some 𝑘 such that 𝑎𝑘 < 𝑏𝑘, then
we say 𝑓(𝑥) ≺ 𝑔(𝑥). By (6), it is easy to obtain the following
result which is equivalent to Theorem 3.

Theorem 4. For any 𝑃𝐻𝐵𝑛 ∈ B𝑛 (𝑛 ≥ 2),

(I) if 𝑃𝐻𝐿𝑛 ̸= 𝑃𝐻𝐵𝑛, then 𝑍(𝑃𝐻𝐿𝑛) ≺ 𝑍(𝑃𝐻𝐵𝑛),
(II) if 𝑃𝐻𝑍𝑛 ̸= 𝑃𝐻𝐵𝑛, then 𝑍(𝑃𝐻𝐵𝑛) ≺ 𝑍(𝑃𝐻𝑍𝑛).

In the followingwewill use the notation𝐺 for𝑍(𝐺), when
it would lead to no confusion.

Proof. Checking Figure 2, by Lemma 1, we obtained that

PHB𝑛 = (1 + 6𝑥 + 9𝑥
2
+ 2𝑥
3
)PHB𝑛−1 + (𝑥 + 4𝑥

2
+ 3𝑥
3
) [(PHB𝑛−1 − 𝑠2𝑛−3) + (PHB𝑛−1 − 𝑡2𝑛−3)] + (𝑥

2
+ 3𝑥
3
+ 𝑥
4
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) , (9)

PHB𝑛 − 𝑦

=

{{{{{{

{{{{{{

{

(1 + 4𝑥 + 3𝑥
2
)PHB𝑛−1 + (𝑥 + 2𝑥

2
) (PHB𝑛−1 − 𝑡2𝑛−3) + (𝑥 + 3𝑥

2
+ 𝑥
3
) (PHB𝑛−1 − 𝑠2𝑛−3) + (𝑥

2
+ 2𝑥
3
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) if 𝑦 = 𝑏

𝑛

1
,

(1 + 4𝑥 + 3𝑥
2
)PHB𝑛−1 + (𝑥 + 2𝑥

2
+ 𝑥
3
) (PHB𝑛−1 − 𝑡2𝑛−3) + (𝑥 + 2𝑥

2
) (PHB𝑛−1 − 𝑠2𝑛−3) + (𝑥

2
+ 𝑥
3
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) if 𝑦 = 𝑏

𝑛

2
,

(1 + 4𝑥 + 3𝑥
2
)PHB𝑛−1 + (𝑥 + 2𝑥

2
+ 𝑥
3
) (PHB𝑛−1 − 𝑠2𝑛−3) + (𝑥 + 2𝑥

2
) (PHB𝑛−1 − 𝑡2𝑛−3) + (𝑥

2
+ 𝑥
3
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) if 𝑦 = 𝑏

𝑛

3
,

(1 + 4𝑥 + 3𝑥
2
)PHB𝑛−1 + (𝑥 + 2𝑥

2
) (PHB𝑛−1 − 𝑠2𝑛−3) + (𝑥 + 3𝑥

2
+ 𝑥
3
) (PHB𝑛−1 − 𝑡2𝑛−3) + (𝑥

2
+ 2𝑥
3
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) if 𝑦 = 𝑏

𝑛

4
,

(10)

PHB𝑛 − 𝑦 − 𝑧

=

{{{{

{{{{

{

(1 + 3𝑥 + 𝑥
2
)PHB𝑛−1 + (𝑥 + 𝑥

2
) (PHB𝑛−1 − 𝑡2𝑛−3) + (𝑥 + 2𝑥

2
) (PHB𝑛−1 − 𝑠2𝑛−3) + (𝑥

2
+ 𝑥
3
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) if 𝑦 = 𝑏

𝑛

1
, 𝑧 = 𝑏

𝑛

2
;

(1 + 3𝑥 + 𝑥
2
)PHB𝑛−1 + (𝑥 + 𝑥

2
) (PHB𝑛−1 − 𝑡2𝑛−3) + (𝑥 + 𝑥

2
) (PHB𝑛−1 − 𝑠2𝑛−3) + 𝑥 (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) if 𝑦 = 𝑏

𝑛

2
, 𝑧 = 𝑏

𝑛

3
;

(1 + 3𝑥 + 𝑥
2
)PHB𝑛−1 + (𝑥 + 𝑥

2
) (PHB𝑛−1 − 𝑠2𝑛−3) + (𝑥 + 2𝑥

2
) (PHB𝑛−1 − 𝑡2𝑛−3) + (𝑥

2
+ 𝑥
3
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) if 𝑦 = 𝑏

𝑛

3
, 𝑧 = 𝑏

𝑛

4
.

(11)
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Figure 1: A linear phenylene chain PHL𝑛 and a zigzag phenylene chain PHZ𝑛.
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Figure 2: A phenylene chain PHB𝑛.

By (10) and (11), we have

(i) PHB𝑛 − 𝑏
𝑛

3
≺ PHB𝑛 − 𝑏

𝑛

1
and PHB𝑛 − 𝑏

𝑛

2
≺ PHB𝑛 − 𝑏

𝑛

4
;

(ii) PHB𝑛−𝑏
𝑛

2
−𝑏
𝑛

3
≺ PHB𝑛−𝑏

𝑛

1
−𝑏
𝑛

2
and PHB𝑛−𝑏

𝑛

2
−𝑏
𝑛

3
≺

PHB𝑛 − 𝑏
𝑛

3
− 𝑏
𝑛

4
.

Particularly, if PHB𝑛 = PHL𝑛, then

(i) PHL𝑛 − 𝑎
𝑛

2
= PHL𝑛 − 𝑎

𝑛

3
≺ PHL𝑛 − 𝑎

𝑛

1
= PHL𝑛 − 𝑎

𝑛

4
,

(ii) PHL𝑛 − 𝑎
𝑛

2
− 𝑎
𝑛

3
≺ PHL𝑛 − 𝑎

𝑛

1
− 𝑎
𝑛

2
= PHL𝑛 − 𝑎

𝑛

3
− 𝑎
𝑛

4
,

(iii) (PHL𝑛 − 𝑎
𝑛

2
) + (PHL𝑛 − 𝑎

𝑛

3
) ≺ (PHL𝑛 − 𝑎

𝑛

2
)+ (PHL𝑛 −

𝑎
𝑛

1
) = (PHL𝑛 − 𝑎

𝑛

3
) + (PHL𝑛 − 𝑎

𝑛

4
).

We proveTheorem 4(I) by mathematical induction.
First we consider 𝑛 = 3. In this case,B𝑛 = {PHL3,PHZ3}.
By (9), we have

PHL3

= (1 + 6𝑥 + 9𝑥
2
+ 2𝑥
3
)PHL2

+ (𝑥 + 4𝑥
2
+ 3𝑥
3
) [(PHL2 − 𝑎

2

2
) + (PHL2 − 𝑎

2

3
)]

+ (𝑥
2
+ 3𝑥
3
+ 𝑥
4
) (PHL2 − 𝑎

2

2
− 𝑎
2

3
) ,

PHZ3

= (1 + 6𝑥 + 9𝑥
2
+ 2𝑥
3
)PHZ2

+ (𝑥 + 4𝑥
2
+ 3𝑥
3
) [(PHZ2 − 𝑑

2

1
) + (PHZ2 − 𝑑

2

2
)]

+ (𝑥
2
+ 3𝑥
3
+ 𝑥
4
) (PHZ2 − 𝑑

2

1
− 𝑑
2

2
)

= (1 + 6𝑥 + 9𝑥
2
+ 2𝑥
3
)PHL2

+ (𝑥 + 4𝑥
2
+ 3𝑥
3
) [(PHL2 − 𝑎

2

4
) + (PHL2 − 𝑎

2

3
)]

+ (𝑥
2
+ 3𝑥
3
+ 𝑥
4
) (PHL2 − 𝑎

2

3
− 𝑎
2

4
) .

(12)

By (i)–(iii), we have PHL3 ≺ PHZ3.
Suppose that Theorem 4(I) is right for all phenylene

chains with few 𝑛 hexagons. Let PHB𝑛 be a phenylene chain
with 𝑛 ≥ 4 hexagons, which is obtained from PHB𝑛−1 ∈ B𝑛−1
by attaching to it a new 𝜃 (see Figure 2). We show that if
PHL𝑛 ̸= PHB𝑛, then PHL𝑛 ≺ PHB𝑛. By (9) we obtain that

PHL𝑛 = (1 + 6𝑥 + 9𝑥
2
+ 2𝑥
3
)PHL𝑛−1

+ (𝑥 + 4𝑥
2
+ 3𝑥
3
)
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⋅ [(PHL𝑛−1 − 𝑢2𝑛−3) + (PHL𝑛−1 − V2𝑛−3)]

+ (𝑥
2
+ 3𝑥
3
+ 𝑥
4
) (PHL𝑛−1 − 𝑢2𝑛−3 − V2𝑛−3) ,

PHB𝑛 = (1 + 6𝑥 + 9𝑥
2
+ 2𝑥
3
)PHB𝑛−1

+ (𝑥 + 4𝑥
2
+ 3𝑥
3
)

⋅ [(PHB𝑛−1 − 𝑠2𝑛−3) + (PHB𝑛−1 − 𝑡2𝑛−3)]

+ (𝑥
2
+ 3𝑥
3
+ 𝑥
4
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) .

(13)
By the inductive hypotheses we have PHL𝑛−1 ⪯ PHB𝑛−1,

(PHL𝑛−1 − 𝑢2𝑛−3) + (PHL𝑛−1 − V2𝑛−3) ⪯ (PHB𝑛−1 − 𝑠2𝑛−3) +

(PHB𝑛−1 − 𝑡2𝑛−3), and (PHL𝑛−1 − 𝑢2𝑛−3 − V2𝑛−3) ⪯ (PHB𝑛−1 −
𝑠2𝑛−3 − 𝑡2𝑛−3). Since PHL𝑛 ̸= PHB𝑛, either PHL𝑛−1 ̸= PHB𝑛−1
or {𝑠𝑛−1, 𝑡𝑛−1} ̸= {𝑢2𝑛−3, V2𝑛−3}, and hence at least one of the
three inequalities is strict. Therefore, we get that PHL𝑛 ≺

PHB𝑛.
In the following we proveTheorem 4(II) by induction.
By the proof of Theorem 4(I), we know that PHB3 ≺

PHZ3.
Similarly, suppose that Theorem 4(II) is right for all

phenylene chains with few 𝑛 hexagons. Let PHB𝑛 be a
phenylene chainwith 𝑛 ≥ 4 hexagons, which is obtained from
PHB𝑛−1 ∈ B𝑛−1 by attaching to it a new 𝜃 (see Figure 2). We
show that if PHB𝑛 ̸= PHZ𝑛, then PHB𝑛 ≺ PHZ𝑛. By (9) we
have

PHB𝑛 = (1 + 6𝑥 + 9𝑥
2
+ 2𝑥
3
)PHB𝑛−1

+ (𝑥 + 4𝑥
2
+ 3𝑥
3
)

⋅ [(PHB𝑛−1 − 𝑠2𝑛−3) + (PHB𝑛−1 − 𝑡2𝑛−3)]

+ (𝑥
2
+ 3𝑥
3
+ 𝑥
4
) (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3)

PHZ𝑛 = (1 + 6𝑥 + 9𝑥
2
+ 2𝑥
3
)PHZ𝑛−1

+ (𝑥 + 4𝑥
2
+ 3𝑥
3
)

⋅ [(PHZ𝑛−1 − 𝑢2𝑛−3) + (PHZ𝑛−1 − V2𝑛−3)]

+ (𝑥
2
+ 3𝑥
3
+ 𝑥
4
) (PHZ𝑛−1 − 𝑢2𝑛−3 − V2𝑛−3) .

(14)

By the inductive hypotheses we have PHB𝑛−1 ⪯ PHZ𝑛−1,
(PHB𝑛−1 − 𝑠2𝑛−3) + (PHB𝑛−1 − 𝑡2𝑛−3) ⪯ (PHZ𝑛−1 − 𝑢2𝑛−3) +

(PHZ𝑛−1 − V2𝑛−3), and (PHB𝑛−1 − 𝑠2𝑛−3 − 𝑡2𝑛−3) ⪯ (PHZ𝑛−1 −
𝑢2𝑛−3 − V2𝑛−3). Since PHB𝑛 ̸= PHZ𝑛, either PHB𝑛−1 ̸= PHZ𝑛−1
or {𝑠𝑛−1, 𝑡𝑛−1} ̸= {𝑢2𝑛−3, V2𝑛−3}, and hence at least one of the
three inequalities is strict. Therefore, we get that PHB𝑛 ≺

PHZ𝑛.
The proof is complete.

By the definition of Hosoya index andTheorem 4, we can
obtain the following result.

Theorem 5. Let B𝑛 be the set of all phenylene chains with 𝑛

hexagons. For any 𝑃𝐻𝐵𝑛 ∈ B𝑛, then
𝑍 (𝑃𝐻𝐿𝑛, 1) ≤ 𝑍 (𝑃𝐻𝐵𝑛, 1) ≤ 𝑍 (𝑃𝐻𝑍𝑛, 1) , (15)

where the equalities on the left side hold only if 𝑃𝐻𝐵𝑛 ≅ 𝑃𝐻𝐿𝑛

and the equalities on the right side hold only if 𝑃𝐻𝐵𝑛 ≅ 𝑃𝐻𝑍𝑛.
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