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Based on priority differentiation and efficiency of the system, we consider an 𝑁 + 1 queues’ single-server two-level polling system
which consists of one key queue and 𝑁 normal queues. The novel contribution of the present paper is that we consider that the
server just polls active queues with customers waiting in the queue. Furthermore, key queue is served with exhaustive service and
normal queues are served with 1-limited service in a parallel scheduling. For this model, we derive an expression for the probability
generating function of the joint queue length distribution at polling epochs. Based on these results, we derive the explicit closed-
form expressions for the mean waiting time. Numerical examples demonstrate that theoretical and simulation results are identical
and the new system is efficient both at key queue and normal queues.

1. Introduction

In this paper, we study a class of𝑁+1 queues’ polling systems
that consists of one key queue, 𝑄ℎ, and 𝑁 normal queues,
𝑄1, 𝑄2, . . . , 𝑄𝑁, which are attended by a single server. Studies
on the polling systems have attracted extensive attentions
in the last years due to their vast area of applications in
communication network, production, and transportation.
Excellent surveys on polling systems analysis and their
applications may be found in [1–4]. However, many studies
in the literatures assume that the server visit the queues in a
fixed, cyclic order. This might not be a realistic assumption,
as queues might have different priority level; queues with
high priority should be visit more frequently than the lower
ones; sometime queues might be empty and then there is
no need to visit. As such, we study the case where the
server just visits active queues with customers. Note that as a
consequence, after skipping the empty queues, server could
provide more visit opportunity to active queues with cus-
tomers. Furthermore, parallel process of service period and
switch-over period allows a successive service between two
active queues without the duration of switch-over time. To
provide priority differentiation service, queues are separated

as one key queue and𝑁normal queues. Two-level route order
and mixed service scheme are used to provide high priority
to key queue.

It is observed that in the wide body of literature on
polling system hardly can any studies be found that take the
consideration of queue state-dependent routing and service
priority simultaneously.The reason for this may lie in the fact
that the analysis of state-dependent routing polling model
is much more complex than that of cyclic polling model,
especially in priority differentiated model. In particular,
waiting time and queue length analysis of two-level priorities
polling systems can be found in [5–7], in which the server
visits queues in a two-level route; that is, the server polls
key queue with exhaustive scheme after each gated service to
normal queue [5].This work is extended in [6] with assigning
1-limited service discipline to normal queues. More recently,
Yang et al. set the exhaustive service for normal queue and
gated service for key queue to ensure fairness but just acquire
the first moment performance of the system as mean queue
length at the polling epoch and the mean cyclic time [7]. The
parallel discipline is used to improve the delay performance in
[8], in which when the current polling queue has customers
in storage the server will process service while switching to
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the successive queue simultaneously and begins to serve the
successor once it finishes the service of the current one. This
scheme could improve polling efficiency in high traffic cases.
However, the parallelmechanismwill be invalidwhen there is
no customer in the queue. In low traffic cases, useless polling
to idle queue becomes an obvious liability in cyclic polling
model. Routing depends on the event whether a queue is
empty or it is not helpful to this problem [9]. In this paper,
we consider the special setting to a two-level mixed service
polling model, where the key queue is served exhaustively
while normal queues are served in 1-limited mechanism.
Furthermore, the server no longer checks all the stations
in a fixed order; only active stations with transfer require-
ments could be served and then the switch-over period
and service period are processed paralleled. This mechanism
increases the system utilization and reduces themeanwaiting
time.

Although the exhaustive service discipline in principle
fits the branching property, the present model involves 1-
limited service discipline, which does not satisfy the above-
mentioned branching property. The explicit analysis of non-
branching service disciplines is mostly in special setting,
such as [10, 11] studied on two-queue polling systems and
[12] studied on symmetric 1-limited model. In this paper,
we follow the special setting in [8] and analyze the mean
waiting time of the present model under the assumption on
the symmetrical characteristic among normal queues, as will
be described in greater detail in Section 2.

Initially, we follow an approach similar to the analysis of
[5], which uses a recursive iteration of a functional equation,
for the probability generating function (PGF) of the joint
queue-length distribution at moments the server starts a visit
period.

The main contributions of this paper can be summarized
as follows. Firstly, we extend the parallel two-level poling
system in [8] by using queue state-dependent routing, in
which only active queues with customers could be visited
by server. This scheme is helpful to avoid the consumptions
induced by idle visit. Secondly, under the assumption of a
stable system, we obtain the explicit expressions for the PGF
for the joint queue length distribution at polling epochs as
a starting point of key queue and normal queue separately.
Thirdly, we achieve the exact closed-form expression of the
mean waiting time under the assumption on the symmetrical
characteristic of normal queue.

The rest of the paper is structured as follows. In Section 2,
we give a formal description of the polling model that we
study and we introduce the necessary notation. Based on
this, in Section 3, we derive the expressions for the mean
waiting time of the present model under the assumption of a
semisymmetric (symmetrical characteristic of normal queue)
stable system, by taking a functional equation for the PGF
for the joint queue length distribution at polling epochs as a
starting point. In Section 4, numerical results obtained with
the proposed analytical models are shown and their very
good agreement with realistic simulation results is discussed.
Finally, concluding remarks anddirections for future research
are given in the end.

2. Model Description

Consider a discrete time (timeline is divided into time slot)
polling system consisting of𝑁 (𝑁 ≥ 2) infinite-buffer queues
𝑄1, 𝑄2, . . . , 𝑄𝑁, and𝑄ℎ. The single server visits active queues
in a two-level state-dependent routing order and serves the
customers with mixed service discipline.

In the arrival process, type-𝑗 (𝑗 = 1, 2, . . . , 𝑁, ℎ) customers
arrive at 𝑄𝑗 according to an independent Poisson arrival
process.The generating function of arrival process in queue 𝑗

is 𝐴𝑗(𝑧𝑗), with the variance of 𝜎2
𝜆𝑗

= 𝐴


𝑗
(1) + 𝜆𝑗 − 𝜆

2

𝑗
and the

arrival rate of 𝜆𝑗 = 𝐴


𝑗
(1).The total arrival rate is∑𝑁

𝑖=1
𝜆𝑖+𝜆ℎ.

In the service process, we assume that customers in queue
𝑗 (𝑗 = 1, 2, . . . , 𝑁, ℎ) receive individual service. The service
time of a customer at each queue is independent of each
other. Their generating function is 𝐵𝑗(𝑧𝑗), with the variance
of 𝜎
2

𝛽𝑗
= 𝐵


𝑗
(1) + 𝛽𝑗 − 𝛽

2

𝑗
and the mean value 𝛽𝑗 = 𝐵



𝑗
(1).

We propose a two-level server routing make the high priority
queue be visited more frequently than others and add mix-
service discipline to ensure the high priority of 𝑄ℎ. The load
offered to 𝑄𝑗 is 𝜌𝑗 = 𝜆𝑗𝛽𝑗, and the total offered load is equal
to ∑
𝑁

𝑖=1
𝜌𝑖 + 𝜌ℎ.

State-Dependent Routing. Queues are partitioned as active
queue and idle queue by their buffer condition. Only active
queues with customers waiting in the buffer could be visited
by the server in order. Idle queue with empty buffer would be
skipped in the current polling round.

Two-Level Polling.Theserver visits queues governed by a two-
level routing. In the first polling level, the server polls between
the high priority queue𝑄ℎ and an active normal queue; in the
second level, for each time after the exhaustive service at 𝑄ℎ,
one normal active queue is visited in a cyclic order; that is, the
server routing in this model is 1 → ℎ → ⋅ ⋅ ⋅ → 𝑖 → ℎ →

𝑖 + 1 → ⋅ ⋅ ⋅ → ℎ → 𝑁.
In the switch-over process, a parallel mechanism is used.

When the server polls an active queue at time with customers
in its buffer, the server will provide service and inquire the
next active queue simultaneously and then switch to serve
the successor immediately without the switch-over time once
it has finished the current service. Combined with the state-
dependent routing scheme, over the course of a visit period,
the server serves the active queues and normal queue in
sequence continuously until the entire system is empty; there
will be no consumption of switch-over time anymore in
the present model. More especially, we assume the server
consume one time slot to confirm the system state when the
system is entirely empty.

Mix-Service Discipline. Exhaustive discipline is specified for
the key queue and 1-limited discipline for normal queues, so
that the entire customers in the key queue could be served
in the present server round, while those who are in normal
queues might need several rounds when there are more than
one customer in the buffer. Let 𝐹ℎ denote the duration of a
service period for the customers arrive during arbitrary time
slot in 𝑄ℎ. This service period consists of the services of its
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ancestral customers arriving during the exact slot and the
services of the offspring line of the ancestral customers [13].
The generating function of 𝐹ℎ is denoted by 𝐹ℎ(𝑧ℎ) = 𝐸[𝑧

𝐹ℎ

ℎ
].

Such a functional equation has already been derived in [14]
as 𝐹ℎ(𝑧ℎ) = 𝐴ℎ(𝐵ℎ(𝑧ℎ𝐹(𝑧ℎ))).

In the remainder of this paper, we are interested in the
queue length distributions at the polling epoch of 𝑄𝑖 and 𝑄ℎ.
Let 𝜉𝑗(𝑛) denote the number of customers present at 𝑄𝑗 at
𝑡𝑛 when the server starts a visit period at 𝑄𝑖, and let 𝜉𝑗(𝑛

∗
)

denote the number of customers present at 𝑄𝑗 at 𝑡
∗

𝑛
when

the server starts a visit period at 𝑄ℎ successively with the
service of 𝑄𝑖. The joint distribution of 𝜉𝑗(𝑛 + 1) and 𝜉𝑗(𝑛

∗
) is

represented by the 𝑁-dimensional PGF 𝐺𝑖+1(𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)

and 𝐺𝑖ℎ(𝑧1, . . . , 𝑧𝑁, 𝑧ℎ).
We analyze the system under stability conditions

(∑𝑁
𝑖=1

𝜌𝑖 + 𝜌ℎ < 1) [12]. Normal queues in the present model
are served in a 1-limited manner, which does not satisfy
the well-known branching property in polling systems.
Therefore, more specifically, in the analyses of mean waiting
time, we assume the normal queues are symmetric; that
is, normal queues have the same customer arrival rate and
service rate.

3. Analysis for Steady-State Systems

In this section, we derive explicit expression for the joint
queue length distribution. In Section 3.1, we first obtain
expressions for 𝐺𝑖+1(𝑧1, . . . , 𝑧𝑁, 𝑧ℎ) and 𝐺𝑖ℎ(𝑧1, . . . , 𝑧𝑁, 𝑧ℎ),
the joint queue length PGF at the polling epoch at 𝑄𝑖+1 and
𝑄ℎ.These results ultimately lead in Section 3.2 to the first and
second moment of the PGF, and obtain the expressions for
𝐸[𝑊𝑖] and 𝐸[𝑊ℎ], the mean waiting time of type-𝑖 and type-ℎ
customers that arrive at an arbitrary point in time.

3.1. Joint Queue Length Distribution at Polling Epoch. Assum-
ing that the server begin the service of 𝑄𝑖 at 𝑡𝑛, define
a random variable 𝜉𝑗(𝑛) as the number of type-𝑗 (𝑗 =

1, 2, . . . , 𝑁, ℎ) customers at time 𝑡𝑛. Then the status of
the entire polling model at time 𝑡𝑛 can be represented as
{𝜉1(𝑛), . . . , 𝜉𝑁(𝑛), 𝜉ℎ(𝑛)}. Denote 𝜉𝑗(𝑛 + 𝑘) as the number of
type-𝑗 customers at 𝑡𝑛+𝑘, the polling epoch of𝑄𝑖+𝑘. The status
of the entire polling model at time 𝑡𝑛+𝑘 can be represented as
{𝜉1(𝑛+𝑘), . . . , 𝜉𝑁(𝑛+𝑘), 𝜉ℎ(𝑛+𝑘)}while 𝜉𝑖(𝑛

∗
) is the number of

type-𝑗 customers in at time 𝑡∗
𝑛
, at which the server begins pro-

viding service to𝑄ℎ and the status of the entire pollingmodel
at time 𝑡

∗

𝑛
can be represented as {𝜉1(𝑛

∗
), . . . , 𝜉𝑁(𝑛

∗
), 𝜉ℎ(𝑛

∗
)}.

Under the necessary and sufficient condition for the stability
of the system ∑

𝑁

𝑖=1
𝜌𝑖 + 𝜌ℎ < 1, the probability distribution is

defined as

lim
𝑛→∞

𝑃 [𝜉𝑗 (𝑛) = 𝑥𝑗; 𝑗 = 1, . . . , 𝑁, ℎ]

= 𝜋𝑖 (𝑥1, . . . , 𝑥𝑁, 𝑥ℎ) ,

lim
𝑛→∞

𝑝 [𝜉𝑗 (𝑛
∗
) = 𝑦𝑗; 𝑗 = 1, . . . , 𝑁, ℎ]

= 𝜋𝑖ℎ (𝑦1, . . . , 𝑦𝑁, 𝑦ℎ) .

(1)

The generating functions at 𝑡𝑛 and 𝑡
∗

𝑛
are

𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 𝑧
𝑥𝑛

𝑁
𝑧
𝑥ℎ

ℎ
𝜋𝑖 (𝑥1, . . . , 𝑥𝑁, 𝑥ℎ)

𝑖 = 1, 2, . . . , 𝑁,

𝐺𝑖ℎ (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)

=

∞

∑

𝑦1=0

⋅ ⋅ ⋅

∞

∑

𝑦𝑁=0

∞

∑

𝑦ℎ=0

𝑧
𝑦1

1
⋅ ⋅ ⋅ 𝑧
𝑦𝑛

𝑁
𝑧
𝑦ℎ

ℎ
𝜋𝑖ℎ (𝑦1, . . . , 𝑦𝑁, 𝑦ℎ)

𝑖 = 1, 2, . . . , 𝑁.

(2)

According to the proposed mechanism, the system vari-
ables have the following equations. When the server begins
the service on 𝑄𝑖+1 at 𝑡𝑛+1, we have

𝜉𝑗 (𝑛 + 1) =
{

{

{

𝜉𝑗 (𝑛
∗
) + 𝜂𝑗 (]ℎ) 𝑗 ̸= ℎ

0 𝑗 = ℎ.

(3)

V𝑗(𝑛) is the service time in 𝑄𝑗 and 𝜂𝑘(V𝑗) is the number of
arrivals to 𝑄𝑘 during V𝑗(𝑛).

The server just finishes the service of 𝑄ℎ in an exhaustive
manner and starts the polling on 𝑄𝑖+1 at 𝑡𝑛+1. Such a
functional equation of exhaustive service has already been
derived in [12]. Applying these results to our case, we obtain

𝐺𝑖+1 (𝑧1, 𝑧2, . . . , 𝑧𝑁, 𝑧ℎ) = lim
𝑛→∞

𝐸[

[

𝑁

∏

𝑗=1

𝑧
𝜉𝑖(𝑛+1)

𝑗
𝑧
𝜉ℎ(𝑛+1)

ℎ
]

]

= 𝐺𝑖ℎ(𝑧1, 𝑧2, . . . , 𝑧𝑁,

𝐵ℎ(

𝑁

∏

𝑗=1

𝐴𝑗 (𝑧𝑗) 𝐹ℎ(

𝑁

∏

𝑗=1

𝐴𝑗 (𝑧𝑗)))) .

(4)

The expression can be interpreted as follows. At the start
of the visit period at 𝑄𝑖+1, type-𝑖 customers are those at
the polling epoch of 𝑄ℎ plus the new customers arriving at
each queue during the service period of the 𝑄ℎ in exhaustive
scheme, and no type-ℎ customer resumes at that moment.

When the server begins the service on 𝑄ℎ at 𝑡
∗

𝑛
, we have

𝜉𝑗 (𝑛
∗
) =

{{{{

{{{{

{

𝜉𝑗 (𝑛) + 𝜂𝑗 (]𝑖) , 𝑗 ̸= 𝑖 ̸= ℎ,

𝜉𝑖 (𝑛) + 𝜂𝑖 (]𝑖) − 1, 𝑗 = 𝑖 𝜉𝑖 (𝑛) ̸= 0,

𝜂𝑗 (]𝑖) , 𝑗 = ℎ,

𝜉𝑗 (𝑛
∗
) =

{{{{

{{{{

{

𝜉𝑗 (𝑛) , 𝑗 ̸= 𝑖 ̸= ℎ,

0, 𝑗 = 𝑖 𝜉𝑖 (𝑛) = 0,

0, 𝑗 = ℎ

(5)
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]𝑗(𝑛) is the service time in 𝑄𝑗, and 𝜂𝑘(]𝑗) is the number of
arrivals to 𝑄𝑘 during ]𝑗(𝑛).

In our case, for normal queues, the server just polls the
active queues with customers in parallel 1-limitedmanner. To
gain more insight in the state-dependent service discipline,
let 𝑃𝑖 denote the queue length at the service epoch in an
M/G/1 queue with the same arrival process and service-time
distribution as 𝑄𝑖. We assume that the 𝑘 customers have
waited in 𝑄𝑖 at the start of the busy period with probability
𝑝𝑘 ∈ [0, 1), ∑∞

𝑘=0
𝑝𝑘 = 1. Then we can acquire the queue

length generating function at the service epoch as 𝑃𝑖(𝑧𝑖) =

𝐴 𝑖(𝑧𝑖) ∑
∞

𝑘=0
𝑝𝑘𝑧
𝑘

𝑖
, where 𝐴 𝑖(𝑧𝑖) is the PGF of the arrival

process as defined in Section 2. Specifically, the server does
not provide service when the queue length is zero, so we
assume that 𝑘∗ customers resumed after the end of the busy
time in 1-limited service with the probability of 𝑝∗

𝑘
∈ [0, 1),

and 𝑝
∗

𝑘
= 𝑝𝑘+1 for 𝑘 = 0, 1, . . .. Consequently, the probability

space could be rebuilt as

𝑃
∗

𝑖
(𝑧𝑖) = 𝐵𝑖 (𝐴 𝑖 (𝑧𝑖)) 𝐴 𝑖 (𝑧𝑖)(𝑝0 +

∞

∑

𝑘=0

𝑝
∗

𝑘
𝑧
𝑘

𝑖
)

= 𝐵𝑖 (𝐴 𝑖 (𝑧𝑖)) (
∑
∞

𝑘=0
𝑝𝑘𝑧
𝑘

𝑖
− 𝑝0𝑧

0

𝑖

𝑧𝑖

+ 𝑝0𝑧
0

𝑖
) .

(6)

With the definition of 𝑃𝑖(𝑧𝑖), we have

𝑃
∗

𝑖
(𝑧𝑖) = 𝐵𝑖 (𝐴 𝑖 (𝑧𝑖))

(𝑃𝑖 (𝑧𝑖) − 𝑃𝑖 (𝑧𝑖)
𝑧𝑖=0

)

𝑧𝑖

+ 𝑃𝑖 (𝑧𝑖)
𝑧𝑖=0

.

(7)

Applying these results to our case, we obtain

𝐺𝑖ℎ (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ) = lim
𝑛→∞

𝐸[

[

𝑁

∏

𝑗=1

𝑧
𝜉𝑖(𝑛
∗
)

𝑗
𝑧
𝜉ℎ(𝑛
∗
)

ℎ
]

]

=
1

𝑧𝑖

⋅ 𝐵𝑖(

𝑁

∏

𝑗=1

𝐴𝑗 (𝑧𝑗)𝐴ℎ (𝑧ℎ))

⋅ [𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ) − 𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧𝑖=0

]

+ 𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧𝑖=0

− 𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧1 ,...,𝑧𝑁,𝑧ℎ=0

+

𝑁

∏

𝑗=1

𝐴𝑗 (𝑧𝑗)𝐴ℎ (𝑧ℎ) 𝐺𝑖 (𝑧1, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧1 ,...,𝑧𝑁,𝑧ℎ=0

.

(8)

The expression can be interpreted as follows. At the start
of the visit period at𝑄ℎ, in the case that the former𝑄𝑖 is active,
one type-𝑖 customer would have been served at 𝑡∗

𝑛
and new

customers arrived at each queue during the service period of
the exact type-𝑖 customer. The server would skip 𝑄𝑖 to 𝑄𝑖+1

when𝑄𝑖 is empty; in that case, the distribution of the number
of customers in the systems is represented by the generating
function 𝐺𝑖(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁−1, 𝑧ℎ)|𝑧𝑖=0

, with the exception
as the system is entirely empty, which is represented by the
generating function 𝐺𝑖(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁−1, 𝑧ℎ)|𝑧1 ,...,𝑧𝑁−1,𝑧ℎ=0

.
When the system is entirely empty, the server will stop
providing service for one time slot until new customers
arrive during this time slot, and this number of customers is
represented by the last partition of the addition formula.

3.2. Expression for the Mean Waiting Time. Now we have
derived expressions for the PGF 𝐺𝑖+1(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)

and 𝐺𝑖ℎ(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ) pertaining to the queue length
at polling epoch of𝑄𝑖+1 and𝑄ℎ, we use these results to obtain
𝐸[𝑊𝑖], the mean waiting time of type-𝑖 normal customers,
and 𝐸[𝑊ℎ], the mean waiting time of type-ℎ high priority
customers.

3.2.1. The First and Second Moment of 𝐺𝑖+1(𝑧1, . . . , 𝑧𝑖, . . .,
𝑧𝑁, 𝑧ℎ) and𝐺𝑖ℎ(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ). To start the analysis of
mean waiting time of type-𝑗 customers, we need to calculate
the generating functions and its derivation at the point
z = 1, z is the abbreviation of the (1 × 𝑁 + 1) vector of
(𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ), and 1 is the (1 × 𝑁 + 1) vector with 1.

𝐺𝑖+1(z) is the PGF of the joint queue length at the polling
epoch of 𝑄𝑖, so we have

𝐺𝑖 (𝑧1, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑖=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 𝑧
𝑥𝑖

𝑖
⋅ ⋅ ⋅ 𝑧
𝑥𝑛

𝑁
𝑧
𝑥ℎ

ℎ
𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑖 (𝑛) = 𝑥𝑖, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ)

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑖=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 𝑧
𝑥𝑖

𝑖
⋅ ⋅ ⋅ 𝑧
𝑥𝑛

𝑁
𝑧
𝑥ℎ

ℎ
𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ | 𝜉𝑖 (𝑛) = 𝑥𝑖) 𝑃 (𝜉𝑖 (𝑛) = 𝑥𝑖) .

(9)

Taking the 𝑘th derivative with respect to 𝑧𝑖 yields

𝜕
𝑘
𝐺𝑖 (𝑧1, 𝑧2, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)

𝜕𝑧
𝑘

𝑖

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 𝑧
𝑥𝑖−𝑘

𝑖
⋅ ⋅ ⋅ 𝑧
𝑥𝑁

𝑁
𝑧
𝑥ℎ

ℎ

⋅
𝑥𝑖!

(𝑥𝑖 − 𝑘)!
𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ | 𝜉𝑖 (𝑛) = 𝑥𝑖) 𝑃 (𝜉𝑖 (𝑛) = 𝑥𝑖) .

(10)
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Setting 𝑧𝑖 = 0 yields

𝜕
𝑘
𝐺𝑖 (𝑧1, 𝑧2, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)

𝜕𝑧
𝑘

𝑖

𝑧𝑖=0

=

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 𝑧

𝑥𝑁

𝑁
𝑧
𝑥ℎ

ℎ
𝑘!𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ | 𝜉𝑖 (𝑛) = 𝑘) 𝑃 (𝜉𝑖 (𝑛) = 𝑘)

= 𝑘!𝑃 (𝜉𝑖 (𝑛) = 𝑘)

∞

∑

𝑥1=0

⋅ ⋅ ⋅

∞

∑

𝑥𝑁=0

∞

∑

𝑥ℎ=0

𝑧
𝑥1

1
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 𝑧

𝑥𝑁

𝑁
𝑧
𝑥ℎ

ℎ
𝑃 (𝜉1 (𝑛) = 𝑥1, . . . , 𝜉𝑁 (𝑛) = 𝑥𝑁, 𝜉ℎ (𝑛) = 𝑥ℎ | 𝜉𝑖 (𝑛) = 𝑘)

= 𝑘!𝑃 (𝜉𝑖 (𝑛) = 𝑘) 𝐸 [𝑧
𝜉1(𝑛)

1
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 𝑧

𝜉𝑁(𝑛)

𝑁
𝑧
𝜉ℎ(𝑛)

ℎ
| 𝜉𝑖 (𝑛) = 𝑘] .

(11)

Rearranging terms and setting 𝑘 = 0, we have

𝐺𝑖 (𝑧1, 𝑧2, . . . , 𝑧𝑖, . . . , 𝑧𝑁, 𝑧ℎ)
𝑧𝑖=0

= 𝑃 (𝜉𝑖 (𝑛) = 0)

⋅ 𝐸 [𝑧
𝜉1(𝑛)

1
⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 𝑧

𝜉𝑁(𝑛)

𝑁
𝑧
𝜉ℎ(𝑛)

ℎ
| 𝜉𝑖 (𝑛) = 0] ,

𝐺𝑖 (1𝑖) = 𝑃 (𝜉𝑖 (𝑛) = 0) .

(12)

Extending this result we have

𝐺𝑖 (0) = 𝑃 {𝜉1 (𝑛) = 0, . . . , 𝜉𝑖 (𝑛) = 0, . . . , 𝜉𝑁 (𝑛)

= 0, 𝜉ℎ (𝑛) = 0} .

(13)

0 is the (1 × 𝑁 + 1) vector with 0, and 1𝑗 is the (1 × 𝑁 + 1)

vector with 0 in 𝑗th position and 1 in all other entries.
Define the first derivative of 𝐺𝑖(z) and 𝐺𝑖ℎ(z) at z = 1 as

𝑔𝑖 (𝑗) = lim
𝑧1 ,...,𝑧𝑖 ,...,𝑧𝑁,𝑧ℎ→1

𝜕𝐺𝑖 (z)
𝜕𝑧𝑗

,

𝑔𝑖ℎ (𝑗) = lim
𝑧1 ,...,𝑧𝑖 ,...,𝑧𝑁,𝑧ℎ→1

𝜕𝐺𝑖ℎ (z)
𝜕𝑧𝑗

,

𝑗, 𝑘 = 1, 2, . . . , 𝑁, ℎ.

(14)

𝑔𝑖ℎ (𝑗) = 𝛽𝑖𝜆𝑗 [1 − 𝐺𝑖 (1𝑖)] + 𝑔𝑖 (𝑗) + 𝜆𝑗𝐺𝑖 (0) (15)

𝑔𝑖ℎ (𝑖) = (𝛽𝑖𝜆𝑖 − 1) [1 − 𝐺𝑖 (1𝑖)] + 𝑔𝑖 (𝑖) + 𝜆𝑖𝐺𝑖 (0) (16)

𝑔𝑖ℎ (ℎ) = 𝛽𝑖𝜆ℎ [1 − 𝐺𝑖 (1𝑖)] + 𝜆ℎ𝐺𝑖 (0) (17)

𝑔𝑖+1 (𝑖) = 𝑔𝑖ℎ (𝑖) + 𝑔𝑖ℎ (ℎ) 𝛽ℎ𝜆𝑖 (1 + 𝐹


ℎ
(1)) (18)

𝑔𝑖+1 (𝑗) = 𝑔𝑖ℎ (𝑗) + 𝑔𝑖ℎ (ℎ) 𝛽ℎ𝜆𝑗 (1 + 𝐹


ℎ
(1)) . (19)

Calculate ∑
𝑁

𝑗=1
𝑔𝑗+1(𝑘) yields

1 − 𝐺𝑖 (1𝑖) =
𝑁𝜆𝑖𝐺𝑖 (0)

1 − 𝜌ℎ − 𝑁𝜌
. (20)

Define the second derivative of 𝐺𝑖(z) and 𝐺𝑖ℎ(z) at z = 1 as

𝑔𝑖 (𝑗, 𝑘) = lim
𝑧1 ,...,𝑧𝑖,...,𝑧𝑁,𝑧ℎ→1

𝜕
2
𝐺𝑖 (z)

𝜕𝑧𝑗𝜕𝑧𝑘

𝑔𝑖0 (𝑗, 𝑘) = lim
𝑧1 ,...,𝑧𝑖−1,𝑧𝑖+1,...,𝑧𝑁,𝑧ℎ→1

𝜕
2
𝐺𝑖 (z)

𝑧𝑖=0

𝜕𝑧𝑗𝜕𝑧𝑘

𝑔𝑖00 (𝑗, 𝑘) = lim
𝑧1 ,...,𝑧𝑁,𝑧ℎ→0

𝜕
2
𝐺𝑖 (z)

𝑧1 ,...,𝑧𝑁,𝑧ℎ=0

𝜕𝑧𝑗𝜕𝑧𝑘

𝑔𝑖ℎ (𝑗, 𝑘) = lim
𝑧1 ,...,𝑧𝑁,𝑧ℎ→1

𝜕
2
𝐺𝑖ℎ (z)

𝜕𝑧𝑗𝜕𝑧𝑘

𝑖 = 1, 2, . . . , 𝑁 𝑗, 𝑘 = 1, 2, . . . , 𝑁, ℎ.

(21)

Substitute (4) and (8) into the above second derivative
formulas.

We assume the𝑁 normal queues are symmetrical; that is,
𝜆𝑖 = 𝜆, 𝛽𝑖 = 𝛽, 𝑖 = 1, 2, . . . , 𝑁. Then simplifying these we get
the second derivative of 𝐺𝑖(z) and 𝐺𝑖ℎ(z) at z = 1 as follows:

𝑔𝑖ℎ (ℎ, ℎ) = 𝐵

(1) 𝜆
2

ℎ
(1 − 𝐺𝑖 (1𝑖)) + 𝛽𝐴



ℎ
(1) (1

− 𝐺𝑖 (1𝑖)) + 𝐴


ℎ
(1) 𝐺𝑖 (0) .

(22)

𝑔𝑖 (𝑖) =
1 − 𝐺𝑖 (1𝑖)

2
{

1

(1 − 𝜌ℎ − 𝑁𝜌) (1 − 𝜌ℎ)
[𝜌ℎ

⋅
𝐴

(1)

𝜆
(1 − 𝜌

2

ℎ
+ 𝐴


ℎ
𝛽
2

ℎ
+ 𝜆ℎ𝐵



ℎ
) + 𝑁𝐵


(1) 𝜆
2

+ 𝑁𝛽𝐴

(1)] +

𝜆

(1 − 𝜌ℎ)
+

𝜆ℎ𝜆𝐵


ℎ
(1)

1 − 𝜌ℎ − 𝑁𝜌
} + 1

− 𝐺𝑖 (1𝑖) .

(23)

Remark 1. Though 𝑔𝑖(𝑖) is the first derivative at z = 1 𝐺𝑖(z)
in definition, it is clear that it contains the second moment
parameter as 𝐴



𝑗
(1) and 𝐵



𝑗
(1). So, 𝑔𝑖(𝑖) is a second moment

parameter for the system performance.
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3.2.2. Analysis of 𝐸[𝑊ℎ] and 𝐸[𝑊𝑖]. Define 𝑊ℎ and 𝑊𝑖 as the
waiting time of type-ℎ and type-𝑖 customers, which denotes
the time from the epochwhen a customer arrives at the queue
to the time it is served. In the present model, high priority
type-ℎ customers are served in the exhaustive service and
normal type-𝑖 customers are served in 1-limited service. Based
on the related research works in [14], the mean waiting time
of type-ℎ customers 𝐸[𝑊ℎ] and the type-𝑖 customers 𝐸[𝑊𝑖]

can be calculated as follows:

𝐸 [𝑊ℎ] =
𝑔𝑖ℎ (ℎ, ℎ)

2𝜆ℎ𝑔𝑖ℎ (ℎ)
−

𝐴


ℎ
(1)

2𝜆
2

ℎ
(1 + 𝜌ℎ)

+
𝜆ℎ𝐵


ℎ
(1)

2 (1 − 𝜌ℎ)
, (24)

𝐸 [𝑊𝑖] =
1

𝜆 (1 − 𝐺𝑖 (1𝑖))
𝑔𝑖 (𝑖) −

1

𝜆
−

𝐴

(1)

2𝜆2
. (25)

Taking (17), (22) in (24) in the above expressions, we have

𝐸 [𝑊ℎ] =
1

2 (1 − 𝜌ℎ)
(1 − 𝜌ℎ + 𝑁𝜆𝐵


(1) + 𝜆ℎ𝐵



ℎ
(1))

−
1

2𝜆ℎ
2
(1 + 𝜌ℎ)

𝐴


ℎ
(1) .

(26)

Taking (17), (22), and (23) in (25) in the above expres-
sions, we have

𝐸 [𝑊𝑖] =
1

2𝜆
{

1

(1 − 𝜌ℎ − 𝑁𝜌) (1 − 𝜌ℎ)
[𝜌ℎ

⋅
𝐴

(1)

𝜆𝑖

(1 − 𝜌
2

ℎ
+ 𝐴


ℎ
𝛽
2

ℎ
+ 𝜆ℎ𝐵



ℎ
) + 𝑁𝐵


(1) 𝜆
2

+ 𝑁𝛽𝐴

(1)] +

𝜆

(1 − 𝜌ℎ)
+

𝜆ℎ𝜆𝐵


ℎ
(1)

1 − 𝜌ℎ − 𝑁𝜌
}

−
𝐴

(1)

2𝜆2
.

(27)

4. Numerical Study

In this section we study the accuracy of the theoretical
analysis and compare the mean waiting time of the present
model with two existing two-level polling models. Consider
an𝑁+ 1 queues’ model with one high priority queue𝑄ℎ and
𝑁 normal queues 𝑄𝑖 (𝑖 = 1, . . . , 𝑁) defined as follows: the
service times of all customers are exponentially distributed
with mean 𝛽 in 𝑄𝑖 and 𝛽ℎ in 𝑄ℎ. The arrival processes are
Poisson process with rate 𝜆 in 𝑄𝑖 and 𝜆ℎ in 𝑄ℎ. The relative
parameter values are listed in Table 1, in which {𝑎 : 𝑘 : 𝑏}

means the parameter is varied between 𝑎 and 𝑏 in steps of 𝑘.
From Figure 1, we can clearly see that, firstly, the theoreti-

cal value and the simulation result coincided with each other.
Secondly, when the total offered load grew with the arrival
rate, service time, and the number of queues, with the mean
waiting time increasing distinctly in 𝑄𝑖, while the perfor-
mances in 𝑄ℎ are much better, both queue and mean waiting
time are much lower than normal queues, and the growth in
𝑄ℎ with the total offered load presents much more smoothly.

It is worth considering whether the state-dependent
mechanism improves the performance of the system compar-
ing with the existing two-level polling systems. In order to
answer this question, we compare a classical two-level system
with switch-over time [6], abbreviated as classical system and
a parallel two-level system [8], abbreviated as parallel system
in Figure 2. The service discipline in the comparisons is 1-
limited service for normal queues and exhaustive service for
the key queue. Overall models have the same test bed as
shown in Table 1. We just vary the working mechanism.

Figure 2 shows the mean waiting time of normal queues
in (a) and mean waiting time of key queue in (b). Comparing
with the forgoing, the state-dependent system achieves a
better performance in delay guarantee and stability. It is clear
in Figure 2(a), for lower load, in most of the cases, that there
is no customer in the buffers; thus a switch-over time is
necessary when the server switches between𝑄𝑖 and𝑄ℎ in the
classical and parallel system, while the empty queues would
be skipped in the present model. Therefore, customers in the
state-dependent system achieve a lower mean waiting time,
which is under 20% of the forgoing. In the heavy traffic,
the server could not provide service in the necessary switch-
over time for the classical system; consequently, it becomes
unstable when the arrival rate of 𝑄𝑖 grows over 0.06 in this
case.Theparallel system and the state-dependent systemhave
better performance in system stability; especially in state-
dependent system, the mean waiting time of the normal
customers has less than 50%ofwhich in the parallel system.A
conclusion can be drawn from a comparison between Figures
2(a) and 2(b), which is that for all three two-level models the
mean waiting time of the customers in key queue is signifi-
cantly lower than that in normal queues, and as illustrated in
Figure 2(b), the mean waiting time for ℎ-type customers in
state-dependent system is lower than that of the others.

5. Conclusion

When comparing the model of the present paper with the
existing literature, the contribution of the present paper is
twofold. One of the most striking differences is the queues
which are partitioned as active queue and idle queue by
their buffer condition, and only active queues with customers
waiting in the buffer could be visited by the server in a two-
level order. As illustrated in the numerical example, both
𝑖-type customers in normal queues and ℎ-type customers
in key queue acquire better delay performance than those
in systems without queue-stated differentiation. Another
notable contribution of the paper is that we achieve the
closed-form exact expressions of the mean waiting time
for customers in normal queues and key queue, under the
assumption of the symmetric of normal queues. The total
unknowns in these equations are all first moments of random
variables and, thus, no correlation terms are required.
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Figure 1:Theoretical and simulation values of𝐸[𝑊
ℎ
] and𝐸[𝑊

𝑖
] from different values of the load increasing with the increasing of the number

of normal queues. (a) is the total offered load increasingwith the growth of the number of normal queues. (b) is the total offered load increasing
with the growth of the arrival rate of𝑄ℎ. (c) is the total offered load increasing with the growth of the arrival rate of𝑄𝑖. (d) is the total offered
load increasing with the growth of the service time of 𝑄ℎ. (e) is the total offered load increasing with the growth of the service time of 𝑄𝑖.
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Table 1: Test bed used to compare the mean waiting time.

Parameter Number of normal queues Arrival rate Service time Switch over time
Notation value 𝑁 𝜆 𝜆

ℎ
𝛽 𝛽

ℎ
𝛾

Figure 1(a) {1 : 1 : 9} 0.04 0.1 2 2
Figure 1(b) 4 0.02 {0.1 : 0.05 : 0.4} 1 2 —
Figure 1(c) 4 {0.02 : 0.02 : 0.18} 0.1 1 2 —
Figure 1(d) 4 0.02 0.1 2 {1 : 1 : 9} —
Figure 1(e) 4 0.02 0.1 {1 : 1 : 10} 2 —
Figure 2 4 {0.01 : 0.01 : 0.09} 0.1 2 2 1
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Figure 2: Comparing ofmeanwaiting time among the classical two-level system [6], the parallel two-level system [8], and the state-dependent
two-level system. (a) is the theoretical value comparison of 𝐸[𝑊𝑖] with the growth of the arrival rate in 𝑄𝑖. (b) is the theoretical value
comparison of 𝐸[𝑊ℎ] with the growth of the arrival rate in 𝑄𝑖.
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