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To meet the real-time and low power consumption demands in MEMS navigation and guidance field, an improved Kalman filter
algorithm for GNSS/INS was proposed in this paper named as one-step prediction of P matrix. Quantitative analysis of field test
datasets was made to compare the navigation accuracy with the standard algorithm, which indicated that the degradation caused
by the simplified algorithm is small enough compared to the navigation errors of the GNSS/INS system itself. Meanwhile, the
computation load and time consumption of the algorithm decreased over 50% by the improved algorithm. The work has special
significance for navigation applications that request low power consumption and strict real-time response, such as cellphone,
wearable devices, and deeply coupled GNSS/INS systems.

1. Introduction

For the general dynamic navigation or mid- and low-end
accuracy navigation applications, such as land-vehicle nav-
igation (LVN), the equipment is required to be small, of
low cost, and rugged; meanwhile the navigation algorithm
should be optimized to achieve high efficiency, real-time
response, and low power consumption. In general dynamic
navigation field, the most popular and effective method is
integrated navigation system combining global navigation
satellite system (GNSS) and inertial navigation system (INS)
[1]. GNSS has advantages of all-weather work, high precision,
and low cost but is easy to be interfered by environment and
external signals [2]. INS is a self-contained navigation system
with fine short-term accuracy, but its navigation accuracywill
degrade with time due to the errors produced by the sensors
[3]. GNSS and INS have strong complementarity with each
other in many aspects like error characteristics. GNSS/INS
draws the world’s attention as the “gold combination,” which
has broad application prospects in both military and civilian
fields.The fusion of the navigation information from INS and
GNSS is usually made by Kalman filter (KF).

Kalman filter is a linear minimum variance estimation
proposed for the first time in 1960 [4]. With the knowledge

of the system state model, measurement state model, and the
state noise and the measurement noise, Kalman filter can
estimate dynamic system state from a series of noisy sensor
data. Kalman filter is the most popular method of all the
present filteringmethods, which has been used inmany fields
of communication, navigation, guidance, and control. One of
the most successful applications is the integrated navigation
system.

In the early age of computer technology, the algorithm
complexity is strictly restricted by the computer’s memory
and operation speed. Algorithm simplification of the nav-
igation system, including the Kalman filter for integrated
navigation, caught the attention of the researchers as a
necessary job. Then, as computer hardware advanced with
Moore’s law, the algorithm simplification became unneces-
sary for the new processors with more and more power
and memory. Until microelectromechanical system (MEMS)
inertial measurement unit (IMU) is widely used recently
in consumer electronics products, like cellphone, wearable
devices, and so on, the algorithm simplification arouses
researcher’s interests again because inertial navigation algo-
rithm has to keep running at backstage all the time in
principle so as to provide seamless location data. For such
consumer portable applications, it has certain requirements

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 109267, 13 pages
http://dx.doi.org/10.1155/2015/109267



2 Mathematical Problems in Engineering

to the power consumption and the real-time performance of
the GNSS/INS yet is not severe on the navigation accuracy. In
order to meet the needs of low power consumption and real-
time response, the improvement work based on the standard
integrated navigation algorithm is particularly important and
necessary.

GNSS/INS algorithm is mainly composed of two parts:
INS mechanization and Kalman filter. INS algorithm
improvement has been well studied to minimize the
computation load. Zhang et al. modified position, velocity,
and attitude update by omitting rotation correction and
sculling correction as minor terms and assuming the angular
rate as a constant in a short sampling interval [5]. Shin
and Bortz et al. made intensive discourses on the INS error
equations and presented new simplified INS mechanization
[6, 7]. However, the INS computations are not the major part
of the computational load of a GNSS/INS algorithm, so the
simplified analysis to the INS mechanization did not fulfill
the demands of improving the computational efficiency well.

As is known to all, Kalman filter occupies a large amount
of calculation as a result of its enormous matrix operations.
The theoretical analysis and application in practice indicate
that, in Kalman filter, the most time consuming process
is the prediction of the state covariance matrix (𝑃 matrix)
by approximate 70% of the whole Kalman filter operations.
Meanwhile, matrix outer product method was proposed to
decrease the KF prediction load by Xurong andDaxin in 1997
[8]. Based on this method, the system can achieve a speedup
of 8 over the standard Kalman filter. As we all know, the
state space model of GNSS/INS has some special character-
istics, including sparse system matrix 𝐹 and symmetric state
covariance matrix. Based on the above characteristics, Zhu et
al. proposed a rapid computation method, which makes the
prediction of state covariance matrix to be expanded rather
than computing by a generic matrix function, to further
reduce calculation load [9]. As early as in 1979, Maybeck
proposed a set of means to reduce the complexity of the
navigation Kalman filter to meet performance specifications
and the practical constraints imposed by the computer at
that time [10]. However, no theoretical derivation or result
analysis was made to provide an intuitive cognition of
the improvement of the algorithm complexity. Though the
computational efficiency of Kalman filter has been studied by
some people, few researches have achieved the demands of
reducing computation load and took actual applications and
implementation into analysis. Based on one of the methods
proposed inMaybeck’s book, which is to predict the 𝑃matrix
between measurement update epochs instead of INS update
epochs, this paper further deduces its rationality by equation
derivation, proves its applicability by the error loss analysis,
and shows its contribution by algorithm complexity analysis.
The method will be named as “one-step prediction of 𝑃

matrix” in Kalman filter for GNSS/INS integration in this
paper.

This paper is arranged as follows: Section 2 firstly derives
the improved Kalman filter algorithm “one-step prediction
of 𝑃 matrix” proposed in this paper, gives the Kalman
filter design applied for GNSS/INS briefly, and then investi-
gates the improved computation efficiency through counting

arithmetic operands. In Section 3, a field test data processing
is presented to verify the performance of the proposed
improved algorithm through the analysis of the navigation
accuracy degradation and the percentage of computation
saving. Section 4 is the summary and conclusion.

2. Methodology

2.1. Kalman Filtering Algorithm Improvement. Kalman
described the Kalman filter algorithm in detail [4]. And
the five basic equations of GNSS/INS integrated navigation
system (loosely coupled as example) are expressed as follows
[4, 11].

Prediction:

𝑥𝑘,𝑘−1 = Φ𝑘,𝑘−1𝑥𝑘−1, (1)

𝑄𝑘−1 =
1
2
(Φ𝑘,𝑘−1𝑄+𝑄Φ

𝑇

𝑘,𝑘−1) Δ𝑡𝑘, (2)

𝑃𝑘,𝑘−1 = Φ𝑘,𝑘−1𝑃𝑘−1Φ
𝑇

𝑘,𝑘−1 +𝑄𝑘−1. (3)

Update:

𝐾𝑘 = 𝑃𝑘,𝑘−1𝐻
𝑇

𝑘
(𝐻𝑘𝑃𝑘,𝑘−1𝐻

𝑇

𝑘
+𝑅𝑘)
−1

, (4)

𝑥𝑘 = 𝑥𝑘,𝑘−1 +𝐾𝑘 (𝑧𝑘 −𝐻𝑘𝑥𝑘,𝑘−1) , (5)

𝑃𝑘 = (𝐼 −𝐾𝑘𝐻𝑘) 𝑃𝑘,𝑘−1 (𝐼 −𝐾𝑘𝐻𝑘)
𝑇
+𝐾𝑘𝑅𝑘𝐾

𝑇

𝑘
, (6)

where 𝑥 is the state vector; Φ stands for the transition
matrix; 𝑄 is the system noise covariance matrix; 𝑃 is the
state covariance matrix as mentioned before; 𝐻 is the design
matrix; 𝑅 is the observation noise covariance matrix; 𝐾 is
the Kalman gain matrix which determines the weights of
GPS information when status is updated; 𝑧 is the observation
vector;Δ𝑡𝑘means the time interval from epoch 𝑘−1 to epoch
𝑘 (Δ𝑡𝑘 = 𝑡𝑘−𝑡𝑘−1). All the subscripts indicate the state change;
for example,𝑥𝑘,𝑘−1 represents the state vector from epoch 𝑘−1

to epoch 𝑘.
In standard integrated navigation algorithm of GNSS/

INS, the prediction is conducted for each INS epoch (such
as 200Hz); however, the update is carried out only when
the GNSS information is available (e.g., 1 Hz). And, from the
analysis of (1) to (6), we can find that the function of 𝑃 only
determines the weighting and provides the accuracy index of
the estimation results but is not so critical to the estimation
values.Thus, the times of calculating 𝑃matrix prediction can
be reduced to save computation load. For example, only one
𝑃 matrix prediction step is taken in one update cycle, which
makes the prediction frequency the same as themeasurement
update so as to save significant computation under the
condition of acceptable accuracy. The proposed method is
named as “one-step prediction of 𝑃 matrix,” which is a
kind of simplified GNSS/INS navigation algorithm that can
improve the efficiency. The flow charts of the standard and
the improved integrated navigation algorithms of GNSS/INS
are shown in Figure 1.

In Figure 1(b), the prediction of state vector is omitted due
to its resetting to zero after Kalman filter update and feedback



Mathematical Problems in Engineering 3

INS mechanization

Kalman filter prediction

GPS
information?

Kalman filter
update

Yes

No

x̂k,k−1 = Φk,k−1x̂k−1

Pk,k−1 = Φk,k−1Pk−1Φ
T

k,k−1
+ Qk−1

Qk−1 =
1

2
[Φk,k−1Q + QΦ

T

k,k−1
]Δtk

(a) Standard algorithm

INS mechanization

Kalman filter prediction

GPS
information?

Yes

No

Calculate Φk

Pk,k−1 = ΦkPk−1Φ
T

k
+ Qk−1

Kalman filter
update

Qk−1 =
1

2
[ΦkQ+ QΦ

T

k
]Δtk

(b) Improved algorithm

Figure 1: The flow charts of GNSS/INS integrated navigation algorithms.

each time,whichmakes it have no sense to be predicted. From
comprehensive analysis of (1) to (6), the update accuracy is
determined by the state transition matrix Φ. Therefore, the
solution ofΦ is put forward for consideration.

The state transition matrix is determined by correspond-
ing time navigation state and time interval. Based on the
navigation state, three different simplified methods were
proposed to calculateΦ:

(1) The median: Φ is taken into calculation with the use
of the median navigation state between two measurement
updates.

(2) The mean: Φ is taken into calculation with the use
of the mean navigation state from the previous measurement
update to the current measurement update.

(3)Themultiplication:Φ is taken into calculation by each
epoch, and then all the Φ between the adjacent epochs are
multiplied one by one to get the total state transition matrix.
Before Kalman filter update, take the multiplicative value of
Φ into (2) and (3). The theoretical derivation process is given
in detail as follows.

In standard Kalman filter, prediction is taken at each
epoch. Taking two adjacent epochs as example, 𝑃 matrices
predicted from epoch 𝑘 to epoch 𝑘 + 2 have two steps as
follows. Here we assume that the measurement update of
Kalman filter in the (𝑘 + 1)th epoch is unavailable.

At epoch 𝑘, define

𝑄𝑘 = 𝐺𝑘 (𝑡) 𝑄 (𝑡) 𝐺𝑘 (𝑡)
𝑇 (7a)

and then

𝑄𝑘 =
1
2
(Φ𝑘+1,𝑘𝑄𝑘 +𝑄𝑘Φ

𝑇

𝑘+1,𝑘) Δ𝑡𝑘+1, (7b)

𝑃𝑘+1,𝑘 = Φ𝑘+1,𝑘𝑃𝑘Φ
𝑇

𝑘+1,𝑘 +𝑄𝑘. (8)

At epoch 𝑘 + 1, define

𝑄𝑘+1 = 𝐺𝑘+1 (𝑡) 𝑄 (𝑡) 𝐺𝑘+1 (𝑡)
𝑇 (9a)

and then

𝑄𝑘+1 =
1
2
(Φ𝑘+2,𝑘+1𝑄𝑘+1 +𝑄𝑘+1Φ

𝑇

𝑘+2,𝑘+1] Δ𝑡𝑘+2, (9b)

𝑃𝑘+2,𝑘+1 = Φ𝑘+2,𝑘+1𝑃𝑘+1Φ
𝑇

𝑘+2,𝑘+1 +𝑄𝑘+1, (10)

where 𝑄(𝑡) is the spectral density matrix which is constant
and 𝐺(𝑡) is the noise-input mapping matrix which is related
to the attitudes [12].

Apply the proposed one-step 𝑃 matrix prediction to the
above example. Prediction from epoch 𝑘 to epoch 𝑘 + 1

is skipped; thus the expression of predicted 𝑃𝑘+2,𝑘+1 matrix
should be changed as

𝑃𝑘+2,𝑘+1 = Φ𝑘+2,𝑘+1𝑃𝑘+1Φ
𝑇

𝑘+2,𝑘+1 +𝑄𝑘+1

= Φ𝑘+2,𝑘+1 (Φ𝑘+1,𝑘𝑃𝑘Φ
𝑇

𝑘+1,𝑘 +𝑄𝑘)Φ
𝑇

𝑘+2,𝑘+1

+𝑄𝑘+1

= (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘) 𝑃𝑘 (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘)
𝑇

+𝑄𝑘+1 +Φ𝑘+2,𝑘+1𝑄𝑘Φ
𝑇

𝑘+2,𝑘+1.

(11)
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In (11), the second and third terms of the right side
(named as 𝑠1 and 𝑠2 hereafter) are calculated as follows:

𝑠1 = 𝑄𝑘+1 =
1
2
(Φ𝑘+2,𝑘+1𝑄𝑘+1 +𝑄𝑘+1Φ

𝑇

𝑘+2,𝑘+1) Δ𝑡𝑘+2,

𝑠2 = Φ𝑘+2,𝑘+1𝑄𝑘Φ
𝑇

𝑘+2,𝑘+1

= Φ𝑘+2,𝑘+1 [
1
2
(Φ𝑘+1,𝑘𝑄𝑘 +𝑄𝑘Φ

𝑇

𝑘+1,𝑘) Δ𝑡𝑘+1]

⋅Φ
𝑇

𝑘+2,𝑘+1 =
1
2
Φ𝑘+2,𝑘+1 (Φ𝑘+1,𝑘𝑄𝑘 +𝑄𝑘Φ

𝑇

𝑘+1,𝑘)

⋅ Φ
𝑇

𝑘+2,𝑘+1Δ𝑡𝑘+1

=
1
2
[(Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘) (𝑄𝑘Φ

𝑇

𝑘+2,𝑘+1)

+ (Φ𝑘+2,𝑘+1𝑄𝑘) (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘)
𝑇
] Δ𝑡𝑘+1.

(12)

Relative to the standard Kalman filter, the algorithm
accuracy of (11) has no loss so far. But the third term of the
right side of the equation shows that 𝑄 matrix in the 𝑘th
epoch needs to be used in the (𝑘 + 1)th epoch. When the
predicted frequency is far higher than the update frequency,
the storage of 𝑄 matrix will be increased greatly, which
improves the complexity of the algorithm. So, to keep the
same shape with the first term of the right side in (11) and
simplify the computation load simultaneously, (13) are put
forward to replace (12). Consider

𝑠3 =
1
2
[(Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘) 𝑄𝑘+1

+𝑄𝑘+1 (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘)
𝑇
] Δ𝑡𝑘+2,

𝑠4 =
1
2
[(Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘) 𝑄𝑘+1

+𝑄𝑘+1 (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘)
𝑇
] Δ𝑡𝑘+1.

(13)

To a stable navigation system, the sampling interval is
normally equal and minor (e.g., 0.005 s for INS):

Δ𝑡𝑘+2 = Δ𝑡𝑘+1 = Δ𝑡. (14)

Besides, the system noise modeled as white noise is time-
independent, and (15) is acceptable. Consider

𝑄𝑘 ≈ 𝑄𝑘+1. (15)

Based on the previous conditions, the difference between
𝑠1 + 𝑠2 and 𝑠3 + 𝑠4 is 2nd-order small quantity of Δ𝑡 and can
be approximated to zero matrix (see Appendix A for detailed
derivation):

V = (𝑠3 + 𝑠4) − (𝑠1 + 𝑠2) ≈ 0. (16)

Finally, the expression of 𝑃 matrix predicted from epoch
𝑘 directly to epoch 𝑘 + 2 turns to

𝑃𝑘+2,𝑘 = (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘) 𝑃𝑘 (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘)
𝑇

+𝑄𝑘+1,2Δ𝑡,
(17)

where

𝑄𝑘+1,2Δ𝑡 =
1
2
[(Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘) 𝑄𝑘+1

+𝑄𝑘+1 (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘)
𝑇
] ⋅ 2Δ𝑡.

(18)

Similarly, extend the above derivation to the one-step
prediction of 𝑛 epochs, that is, prediction from epoch 𝑘 and
to epoch 𝑘+𝑛; the𝑃matrix prediction has the following form:

𝑃𝑘+𝑛,𝑘 = Φ𝑘+𝑛,𝑘𝑃𝑘Φ
𝑇

𝑘+𝑛,𝑘

+
1
2
(Φ𝑘+𝑛,𝑘𝑄𝑘+𝑛−1 +𝑄𝑘+𝑛−1Φ

𝑇

𝑘+𝑛,𝑘
) ⋅ 𝑛Δ𝑡,

(19)

where

Φ𝑘+𝑛,𝑘 = Φ𝑘+𝑛,𝑘+𝑛−1Φ𝑘+𝑛−1,𝑘+𝑛−2 ⋅ ⋅ ⋅ Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘. (20)

To the general dynamic navigation with GNSS/INS, one-
step prediction of 𝑃 matrix may save lots of calculations;
and the consequent navigation error will be investigated in
Section 3.

2.2. Kalman Filter for GNSS/INS Integration. Kalman filter is
the most popular technique for GNSS/INS integration. The
linear continuous-time system of augmentation of an INS
error model with the sensor error models can be expressed
as follows [12]:

𝑥̇ = 𝐹𝑥+𝐺𝑤, (21)

where𝐹 is the dynamicsmatrix;𝐺 is the noise-inputmapping
matrix;𝑤 is the system noise vector; 𝑥 is the 21-state vector of
the following form:

𝑥 = [𝛿𝑟
𝑛

𝛿V𝑛 𝜓
𝑛

𝑏𝑔 𝑏𝑎 𝑠𝑔 𝑠𝑎]
𝑇
, (22)

where 𝛿𝑟𝑛, 𝛿V𝑛 are the position and velocity error vector;𝜓𝑛 is
the attitude error; 𝑏𝑔 and 𝑏𝑎 are the gyros and accelerometers
biases; 𝑠𝑔 and 𝑠𝑎 are the gyros and accelerometers scale factor
errors.

The observation equation is designed as follows using the
loosely coupled implementation of GNSS/INS integration as
example [12]:

𝑧 = 𝐻𝑥+ V, (23)

where 𝐻 is the design matrix; V is the measurement noise; 𝑧
is the measurement vector which is the difference between
GNSS and INS navigation state. At last the estimated state
vector is fed back as compensation to the INS.

2.3. Analysis on Computation Load. The efficiencies of the
four algorithms (i.e., the standard and the three simplified)
can be compared in arithmetic operands (e.g., adds and
subtracts (A&S), multiples (M), divisions (D), square roots
(SR), and trigonometric (T)) [10]. Concretely, only Kalman
filter was investigated in detail in one GNSS measurement
update cycle (1 s), because Kalman filter occupies the major
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Table 1: Comparisons on arithmetic operand number (in 1 s cycle) and improved efficiency between standard and simplified GNSS/INS
algorithm.

A&S M D SR T
Standard algorithm 3701430 3847308 1852 303 717
Median algorithm 64716 (98.3%) 67560 (98.2%) 70 (96.2%) 6 (98.0%) 24 (96.7%)
Mean algorithm 66326 (98.2%) 67810 (98.2%) 183 (90.1%) 107 (64.7%) 343 (52.2%)
Multiplication algorithm 953226 (74.2%) 1008366 (73.8%) 169 (90.8%) 105 (65.3%) 24 (96.7%)

proportion in the whole GNSS/INS integrated navigation
algorithm.

Table 1 presents the number of operations required for
one complete Kalman filter cycle (1 s). From this table, it
is clear that the simplified algorithms have much higher
computation efficiency than the standard one, which reduced
the arithmetic operands by about 98%, 98%, and 74%,
respectively. Obviously, the simplified algorithm will have
significant contribution in terms of power saving and real-
time response.

3. Results and Analysis

The detailed introduction of the improved algorithm is
given in previous description; meanwhile the efficiency
improvement has been shown through arithmetic operands
statistics. To verify the impact on navigation accuracy and
actual computation time saving of the proposed simplified
algorithms, wemade evaluations through processing field test
datasets.

3.1. Test Description. Field test was conducted at Wuhan city
in 2013, covering both urban and suburban areas. The test
trajectory is shown in Figure 2, composed of straight, turns,
and the other typical land-vehicle motions. Road scenes are
rich, containing open sky and Global Positioning System
(GPS) signal block sections.

The test takes X-sens MTi-G module as a typical low-end
MEMS IMU and SPAN-FSAS as a middle-grade IMU.Mean-
while, a high accuracy navigation system combining GPS
RTK with navigation grade IMU is included to provide the
navigation reference [13, 14]. Table 2 gives the specifications
of MTi-G and FSAS based on lab testing after calibration.

It is known that the statistic summary of the navigation
errors, such as RMS, max, and mean values, is used as metric
for evaluating the navigation performance of GNSS/INS
integration systems, whenGNSS information is available [15].
But for INS, the error drifting with time can be well mitigated
by the continuous GNSS update. Hence the estimation to the
simplified algorithm should be taken when INS works alone,
like during simulated GNSS signal outages. In another word,
the position drift error under the condition of GPS signal
outages (e.g., 60 seconds each) is used to evaluate whether the
GNSS/INS is working properly [16].Therefore, the navigation
errors obtained for each processing scenario during suchGPS
blockage were then used to evaluate the performance of the
navigation system in all cases.

Three sets of data were collected through the test,
including low-end MTi-G and middle-grade FSAS. By the

Figure 2: Trajectory of the GPS/INS field test.

Table 2: IMU characteristics after lab calibration.

Measurement
MTi-G FSAS

Gyros
Bias (∘/h) 36 0.75

ARW (∘/√h) 3 0.1
Scale factor (ppm) 300 300

Accelerometers
Bias (mGal) 2000 1000

VRW (m/s/√h) 0.12 0.03
Scale factor (ppm) 300 300

analysis of the postprocessing results of these data, we have
found that navigation accuracy degradation and efficiency
improvement have no relation with the IMU grade. Thus, to
make the conciseness of this paper, only one MTi-G dataset’s
processing result and analysis are given in detail, along with
the brief summary results of the other two datasets.

3.2. Navigation Accuracy Evaluation. Navigation accuracy
evaluation is to analyze the navigation errors of position,
velocity, and attitude. However, only the horizontal error
(position drift error in GPS signal outages) is considered
in our paper since the vertical errors are not the major
concern in general dynamic navigation. Meanwhile, the
corresponding standard deviations (STD) of the estimation
error from the Kalman filter are compared to the actual error
level to verify whether the filter is working correctly.

However, the median method and the mean method
all result in unacceptable degradation of yaw error over
40% compared to the standard algorithm. Thus, only the
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Figure 3: Navigation errors of standard GPS/INS algorithm (#MTi-G).
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Figure 4: Navigation errors of simplified GPS/INS algorithm (#MTi-G).

results of the multiplication method will be given in this
section. The comprehensive analysis including navigation
accuracy evaluation and time efficiency verification using
the multiplication method is given with one set of data.
(See Appendix B for the results of the other two simplified
methods.)

Firstly, we will compare the discrepancy of navigation
errors with standard and simplified GPS/INS algorithms.

Figures 3 and 4 show the navigation errors when using the
standard and the simplified GPS/INS integrated navigation
algorithms, respectively. From the comparison of Figures 3
and 4, the navigation errors of these two algorithms are at the
same grade.

To get a more specific comparison, quantitative analysis
to the navigation errors was made as shown in Table 3.
The degradation in Table 3 means the error degradation
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Table 3: Statistic values of the navigation errors and the estimated standard deviations of the standard and the simplified GPS/INS algorithms
(#MTi-G).

Mean RMS Max STD (sqrt of 𝑃matrix)

Position

North (m)
Standard 0.022 0.030 0.186 0.033
Simplified 0.022 0.030 0.188 0.025

Degradation (%) 0.00 0.00 1.08 —

East (m)
Standard 0.020 0.026 0.194 0.031
Simplified 0.020 0.026 0.194 0.023

Degradation (%) 0.00 0.00 0.00 —

Velocity

North (m/s)
Standard 0.014 0.019 0.167 0.026
Simplified 0.014 0.019 0.169 0.019

Degradation (%) 0.00 0.00 1.20 —

East (m/s)
Standard 0.013 0.017 0.086 0.026
Simplified 0.013 0.017 0.086 0.019

Degradation (%) 0.00 0.00 0.00 —

Attitude

Roll (∘)
Standard 0.073 0.091 0.433 0.094
Simplified 0.074 0.092 0.436 0.085

Degradation (%) 1.37 1.10 0.69 —

Pitch (∘)
Standard 0.105 0.125 0.506 0.093
Simplified 0.105 0.125 0.507 0.084

Degradation (%) 0.00 0.00 0.20 —

Heading (∘)
Standard 0.698 0.861 2.596 0.719
Simplified 0.677 0.838 2.549 0.705

Degradation (%) −3.01 −2.67 −1.81 —

percent with respect to the standard algorithm results of
navigation errors. Table 3 shows that the degradations of
position, velocity, and attitude errors are all less than 2%.Here
please note that only one corresponding standard deviation
is calculated after the prediction and update in one single
filter period (i.e., P+) for the simplified algorithm since it has
only one-step prediction of 𝑃 matrix, while, for the standard
algorithm, the corresponding standard deviation is calculated
in every epoch after the filter prediction (i.e., P−) or update
(i.e., P+). So the statistic value of the corresponding standard
deviations of the simplified algorithm is slightly smaller
than that of the standard algorithm, which is reasonable in
theory. According to Table 3, for both the standard algorithm
and the simplified algorithm, the corresponding standard
deviations and the actual navigation errors level (RMS values)
are consistent in general. This implies that the Kalman filter
works in a healthy status in this case.

According to Figures 3 and 4 and Table 3, it can be
concluded that the navigation accuracy can be guaranteed
by the simplified GPS/INS algorithm when GPS update is
available.

As mentioned at the beginning of this section, the best
way to verify the performance of GNSS/INS is to simulate
GPS signal outages and then analyze the drift errors of INS.
Totally 19 GPS signal outages (60 s each) were simulated
during the postprocessing of the field test data to evaluate the
performance of the simplifiedGPS/INS integrated navigation
algorithm.

Figures 5 and 6 are the navigation errors of the standard
and the simplified GPS/INS algorithms with GPS outages.

Table 4: Statistic values of the position drift error and estimated
position standard deviation of standard and simplified GPS/INS
algorithms during GPS outages (#MTi-G).

Position drift error (m) Position STD

Mean
Standard 67.556 —
Simplified 67.306 —

Degradation (%) −0.37 —

RMS
Standard 81.364 87.289
Simplified 81.108 86.856

Degradation (%) −0.31 —

Max
Standard 183.590 —
Simplified 183.423 —

Degradation (%) −0.09 —

Most position drift errors are less than 100 meters after losing
GPS update for 60 s, which fit the performance of low-end
MEMS INS. Figures 5 and 6 show great similarity again. In
fact, the INS drift errors are almost the same case by case.

The statistic summary of the position drift error during
GPS outages is given in Table 4. According to Table 4, the
difference of the standard and the simplified algorithms are
almost the same (less than 1%).The position drift errors of the
corresponding standard deviations match the actual position
drift errors well. Furthermore, the position drift errors of
corresponding standard deviations between standard and
simplified algorithms are close enough to each other.



8 Mathematical Problems in Engineering

0
100
200

Po
sit

io
n

er
ro

r (
m

)

Height
GPS gap

10.95 1.05 1.1 1.21.15 1.25 1.3 1.35 1.4

North
East

×10
4

−100

GPS time − 270000 (s)

(a)

0
10
20

−10

Ve
lo

ci
ty

er
ro

r (
m

/s
)

10.95 1.05 1.1 1.21.15 1.25 1.3 1.35 1.4

North
East
Down

×10
4

GPS time − 270000 (s)

(b)

0
20
40

10.95 1.05 1.1 1.21.15 1.25 1.3 1.35 1.4

Roll
Pitch
Yaw

×10
4

−20

At
tit

ud
e

er
ro

r (
de

g)

GPS time − 270000 (s)

(c)

Figure 5: Navigation errors of standard GPS/INS algorithm with simulating GPS outages (#MTi-G).
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Figure 6: Navigation errors of simplified GPS/INS algorithm with simulated GPS outages (#MTi-G).

According to the results analysis above, it is clear that the
simplified algorithm does not degrade the navigation accu-
racy of low-end GNSS/INS system, and the filter provides
consistent standard deviation of the estimation errors. In
order to verify the generality of this conclusion, the results
of the other two datasets in the field test were also compared.
Here only the statistic summary of the navigation accuracy
results during GPS outages is given as representative results.

Table 5 gives the RMS of position drift errors and the cor-
responding estimated standard deviations for another MTi-
G dataset and FSAS dataset during GPS outages. From this
table, the simplified algorithm has almost no degradation,
not only for low-end MEMS system but also for middle-
grade system; meanwhile the RMS of position drift errors
is coincident with the estimated standard deviations from
Kalman filter.
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Table 5: Statistic values (RMS) of position drift error and estimated position standard deviation of standard and simplified GPS/INS
algorithms during GPS outages (2nd MEMS dataset and a middle grade dataset).

Horizontal position (m) Position STD

RMS

MTi-G (#2)
Standard 88.053 87.553
Simplified 87.550 83.565

Degradation (%) −0.57 —

FSAS
Standard 3.540 3.854
Simplified 3.540 3.708

Degradation (%) 0 —

In summary, the proposed simplified GPS/INS algorithm
does not cause degradation of navigation accuracy. In other
words, the algorithm simplification does not sacrifice accu-
racy.

3.3. Time Efficiency Verification. Arithmetic operands do not
have a one-to-one relationship with the executing time of
the program. In order to have a more intuitive evaluation
to the efficiency of the proposed improved algorithm, the
program running time is counted by the timing function.
However, the program running time is associated with not
only the algorithm complexity, but also the current run-
ning computer software and hardware performance, such as
computer configuration and running applications, making
it impossible to calculate absolute algorithm running time.
Thus the approximate time acquired in the same environment
is only used to make relative comparison.

Table 6 presents the time consumption of the standard
algorithm and the improved algorithm that process three
GPS/INS road test datasets. The durations of these datasets
are 1.8 hours, 2.5 hours, and 2.6 hours, respectively, while
FSAS has double sampling rate of MTi-G. Similar to Table 1,
the simplified algorithm takes much less time in processing
the datasets. All results of the three datasets show that
the time consumption decreases by 54% approximately.
This value indicates that the time saving by the simplified
algorithm is not related to the data length to be processed.
However, it is not completely consistent with the result
of Table 1 because of incomplete statistics of arithmetic
operands, different CPU occupancy time of different opera-
tion types, and the other background running threats of the
computer as mentioned above. For the GNSS/INS integrated
navigation algorithm, it has made a great reduction in time
consumption, which can promote the real-time implementa-
tion of GNSS/INS navigation algorithm effectively.

4. Conclusions

In this paper, a GNSS/INS navigation algorithm improve-
ment, that is, one-step prediction of P matrix in Kalman
filter, is proposed and evaluated. By reducing the prediction
rate to be the same as the GNSS update rate, the one-
step prediction algorithm saves dramatic computation load.
Field test data processing results were used to evaluate
the new algorithm in terms of accuracy degradation and
computation efficiency. Compared to the standard algorithm,

Table 6: Time consumption comparison of standard and simplified
GPS/INS algorithms.

Standard
algorithm (s)

Simplified
algorithm (s)

Increased
efficiency (%)

MTi-G (#1) 108.01 48.91 54.7
MTi-G (#2) 199.24 91.15 54.3
FSAS 395.26 183.86 53.5

the navigation result degradations of the new algorithm are
all less than 3%, which is utterly acceptable.The field test data
processing also proved the expected computation efficiency.
Compared to the standard algorithm, one-step prediction
algorithm reduces the time consumption for over 50%, which
is meaningful saving to the real-time response and power
consumption of navigation system. In general, the negligible
accuracy loss, effective computation time saving, and low
power consumption brought by the improved algorithm can
all make great contribution to the real-time realization of
navigation algorithm and promote the use of low-costMEMS
IMUs.

The future work is to apply the proposed one-step
prediction of 𝑃 matrix algorithm to the real applications
that request strict real-time response, such as deeply coupled
GNSS/INS systems.

Appendices

A. Detailed Deviation of (16)

Proof (16) is approximate zero matrix:

V = (𝑠3 + 𝑠4) − (𝑠1 + 𝑠2) = (𝑠3 − 𝑠1) + (𝑠4 − 𝑠2)

=
1
2
Φ𝑘+2,𝑘+1 (Φ𝑘+1,𝑘𝑄𝑘+1 −𝑄𝑘+1) Δ𝑡𝑘+2

+
1
2
(𝑄𝑘+1Φ

𝑇

𝑘+1,𝑘 −𝑄𝑘+1)Φ
𝑇

𝑘+2,𝑘+1Δ𝑡𝑘+2

+
1
2
Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘 (𝑄𝑘+1 −𝑄𝑘Φ

𝑇

𝑘+2,𝑘+1) Δ𝑡𝑘+1

+
1
2
(𝑄𝑘+1 −Φ𝑘+2,𝑘+1𝑄𝑘) (Φ𝑘+2,𝑘+1Φ𝑘+1,𝑘)

𝑇
Δ𝑡𝑘+1.

(A.1)
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Figure 7: Navigation errors of simplified GPS/INS algorithm based on the median method (#MTi-G).

It is known that if Δ𝑡 is very small, the state transition
matrix can be calculated by the following numerical approx-
imation:

Φ (𝑡) ≈ (𝐼 + 𝐹Δ𝑡) . (A.2)

Then suppose that

Φ𝑘+1,𝑘 = 𝐼 +𝐹1Δ𝑡𝑘+1,

Φ𝑘+2,𝑘+1 = 𝐼 +𝐹2Δ𝑡𝑘+2.
(A.3)

Considering (14) and (15), (A.1) can be derived as follows:

V =
1
2
(𝐼 + 𝐹2Δ𝑡) (𝐼 + 𝐹1Δ𝑡)𝑄𝑘+1Δ𝑡

−
1
2
(𝐼 + 𝐹2Δ𝑡)𝑄𝑘+1Δ𝑡

+
1
2
𝑄𝑘+1 [(𝐼 + 𝐹2Δ𝑡) (𝐼 + 𝐹1Δ𝑡)]

𝑇
Δ𝑡

−
1
2
𝑄𝑘+1 (𝐼 + 𝐹2Δ𝑡)

𝑇
Δ𝑡

+
1
2
(𝐼 + 𝐹2Δ𝑡) (𝐼 +𝐹1Δ𝑡)𝑄𝑘+1Δ𝑡

−
1
2
(𝐼 + 𝐹2Δ𝑡) (𝐼 +𝐹1Δ𝑡)𝑄𝑘+1 (𝐼 + 𝐹2Δ𝑡)

𝑇
Δ𝑡

+
1
2
𝑄𝑘+1 [(𝐼 + 𝐹2Δ𝑡) (𝐼 + 𝐹1Δ𝑡)]

𝑇
Δ𝑡

−
1
2
(𝐼 + 𝐹2Δ𝑡)𝑄𝑘+1 [(𝐼 + 𝐹2Δ𝑡) (𝐼 + 𝐹1Δ𝑡)]

𝑇
Δ𝑡

=
1
2
(𝐹1Δ𝑡 +𝐹2Δ𝑡 ⋅ 𝐹1Δ𝑡)𝑄𝑘+1Δ𝑡

−
1
2
(𝐼 + 𝐹2Δ𝑡) (𝐼 + 𝐹1Δ𝑡)𝑄𝑘+1𝐹2

𝑇
(Δ𝑡)

2

+
1
2
𝑄𝑘+1 [(𝐹1Δ𝑡 +𝐹2Δ𝑡 ⋅ 𝐹1Δ𝑡)]

𝑇
Δ𝑡

−
1
2
𝐹2𝑄𝑘+1 [(𝐼 + 𝐹2Δ𝑡) (𝐼 + 𝐹1Δ𝑡)]

𝑇
(Δ𝑡)

2

=
1
2
(𝐹1Δ

2
𝑡 + 𝐹2𝐹1Δ

3
𝑡) 𝑄𝑘+1

+
1
2
𝑄𝑘+1 (𝐹1Δ

2
𝑡 + 𝐹2𝐹1Δ

3
𝑡)
𝑇

−
1
2
(Δ

2
𝑡 + 𝐹1Δ

2
𝑡 + 𝐹2Δ

2
𝑡 + 𝐹2𝐹1Δ

4
𝑡)𝑄𝑘+1𝐹2

𝑇

−
1
2
𝐹2𝑄𝑘+1 (Δ

2
𝑡 + 𝐹1Δ

2
𝑡 + 𝐹2Δ

2
𝑡 + 𝐹2𝐹1Δ

4
𝑡)
𝑇

.

(A.4)

In (A.4), all terms are high-order small quantity of Δ𝑡. So
it is acceptable to approximate (A.4) to zero matrix.

B. Navigation Accuracy Evaluations for the
Other Two Simplified Methods

In this appendix, the navigation accuracy evaluations based
on the median method and the mean method will be done.

Figures 7 and 8 present the navigation errors of the
simplified GPS/INS algorithms based on the median and the
mean methods, respectively. Compared with Figure 3, not
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Figure 8: Navigation errors of simplified GPS/INS algorithm based on the mean method (#MTi-G).

Table 7: Statistic values of the navigation errors and the estimated standard deviations of the standard and the simplified GPS/INS algorithms
(based on the median method) (#MTi-G).

Mean RMS Max STD (RMS)

Position

North (m)
Standard 0.022 0.030 0.186 0.033
Simplified 0.025 0.033 0.201 0.023

Degradation (%) 13.51 10.81 7.96 —

East (m)
Standard 0.020 0.026 0.194 0.031
Simplified 0.022 0.028 0.189 0.022

Degradation (%) 11.17 6.49 −2.53 —

Velocity

North (m/s)
Standard 0.014 0.019 0.167 0.026
Simplified 0.013 0.018 0.186 0.025

Degradation (%) −7.64 −5.82 11.57 —

East (m/s)
Standard 0.013 0.017 0.086 0.026
Simplified 0.012 0.016 0.083 0.025

Degradation (%) −6.77 −6.32 −3.02 —

Attitude

Roll (∘)
Standard 0.073 0.091 0.433 0.094
Simplified 0.077 0.095 0.483 0.093

Degradation (%) 4.92 4.62 11.38 —

Pitch (∘)
Standard 0.105 0.125 0.506 0.093
Simplified 0.107 0.129 0.531 0.092

Degradation (%) 2.01 2.72 4.98 —

Heading (∘)
Standard 0.698 0.861 2.596 0.719
Simplified 0.977 1.204 2.928 0.596

Degradation (%) 40.06 39.77 12.78 —

much discrepancy can be found as the scale of the vertical
axis. Comparisons with navigation errors of the standard
algorithm will be made with the quantitative data analysis as
shown in Tables 7 and 8.

FromTable 7, somemore distinct differences have existed
by about 10.8% and 6.5% in north and east position degrada-
tion, and the heading degradation is even up to 40%. Table 8
shows similar result to Table 7, but its heading degradation



12 Mathematical Problems in Engineering

Table 8: Statistic values of the navigation errors and the estimated standard deviations of the standard and the simplified GPS/INS algorithms
(based on the mean method) (#MTi-G).

Mean RMS Max STD (RMS)

Position

North (m)
Standard 0.022 0.030 0.186 0.033
Simplified 0.026 0.034 0.212 0.023

Degradation (%) 17.12 14.19 13.77 —

East (m)
Standard 0.020 0.026 0.194 0.031
Simplified 0.022 0.029 0.192 0.022

Degradation (%) 13.20 9.92 −1.03 —

Velocity

North (m/s)
Standard 0.014 0.019 0.167 0.026
Simplified 0.013 0.018 0.196 0.025

Degradation (%) −7.64 −5.82 17.81 —

East (m/s)
Standard 0.013 0.017 0.086 0.026
Simplified 0.012 0.016 0.089 0.025

Degradation (%) −6.77 −6.32 3.37 —

Attitude

Roll (∘)
Standard 0.073 0.091 0.433 0.094
Simplified 0.077 0.096 0.497 0.093

Degradation (%) 5.20 5.38 14.58 —

Pitch (∘)
Standard 0.105 0.125 0.506 0.093
Simplified 0.104 0.126 0.548 0.092

Degradation (%) −0.57 0.24 8.38 —

Heading (∘)
Standard 0.698 0.861 2.596 0.719
Simplified 1.013 1.313 3.813 0.576

Degradation (%) 45.23 52.44 46.86 —

is more severe (52%). This tremendous accuracy loss is not
acceptable.

The principle of algorithm simplification is under the
premise of guarantee accuracy. The median and mean meth-
ods have broken this bottom line, whichmakes itmeaningless
to take further time efficiency verification.
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