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The aim of this paper is to develop an automated system for epileptic seizure prediction from intracranial EEG signals based on
Hilbert-Huang transform (HHT) and Bayesian classifiers. Proposed system includes decomposition of the signals into intrinsic
mode functions for obtaining features and use of Bayesian networks with correlation based feature selection for binary classification
of preictal and interictal recordings. The system was trained and tested on Freiburg EEG database. 58 hours of preictal data, 40-
minute data blocks prior to each of 87 seizures collected from 21 patients, and 503.1 hours of interictal data were examined resulting
in 96.55% sensitivity with 0.21 false alarms per hour, 13.896% average proportion of time spent in warning, and 33.21 minutes of
average detection latency using 30-second EEG segments with 50% overlap and a simple postprocessing technique resulting in a
decision (a seizure is expected/not expected) every 5 minutes. High sensitivity and low false positive rate with reasonable detection
latency show that HHT based features are acceptable for patient specific seizure prediction from intracranial EEG data. Time spent
for testing an EEG segment was 4.1451 seconds on average, which makes the system viable for use in real-time seizure control
systems.

1. Introduction

Epilepsy is a neurological disorder that affects about 50
million people, in a wide age range from neonatal to elderly,
around the world [1]. It is characterized by spontaneous
recurrent seizures. A seizure occurs as a result of an excessive
electrical discharge in a group of brain cells. Although it lasts
for a short duration, a few seconds or minutes and rarely
longer, a seizure is known to be handicapping for an epilepsy
patient due to its unpredictable nature. However, patients
with medically controllable epilepsy might sustain a normal
life if they were able to predict an upcoming seizure in a
reasonable time period. A recent report released by theWorld
Health Organization shows that 70% of epilepsy patients
respond to medication and can completely take their seizures
under control [2]. Therefore prediction of an upcoming
seizure could improve the life quality of the majority of
epileptic patients by providing the time to take necessary

precautions to prevent or decrease the possible severe effects
of the seizure.

EEG is a widely accepted method for diagnosis of
epilepsy. Recently, a number of studies have shown that
EEG recordings also carry important information minutes
prior to the seizure onset to distinguish between preictal
and interictal states [3–15]. Besides, technological advances
in digital EEG and implantable devices for seizure control [16,
17] have increased the attention to algorithms for automated
epileptic seizure prediction systems based on EEG data with
high sensitivity and specificity [4, 9, 18]. Most of the studies
use analysis techniques for feature extraction and machine
learning algorithms to classify the features extracted from
EEG segments into interictal or preictal states. Various feature
extraction methods are used, such as spectral power [9],
wavelet coherence [19], wavelet energy and entropy [13],
short-time Fourier transform [20], mean phase coherence
[10], and empirical mode decomposition (EMD) [21–23].
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Figure 1: Flow chart of the proposed seizure prediction system.

Neural networks [20, 24] and support vector machines [9,
21, 25] are mostly preferred machine learning algorithms to
classify the features extracted from EEG segments. Recently,
Bayesian based methods are also employed in seizure predic-
tion systems [26, 27].

EEG signals are spontaneous electrical brain activities
that exhibit dynamic, stochastic, nonlinear, nonstationary,
and also complex behaviour. Traditional data analysis tech-
niques assume the time series to be linear and/or stationary. A
relatively new signal processing technique, known asHilbert-
Huang transform (HHT), is proposed by Huang et al. in
1998 [28], specifically for analysing data from nonlinear and
nonstationary processes. HHT was shown to be a powerful
tool to examine biosignals, such as EEG and ECG [29].
Moreover, a recent study was conducted on a method for
implementation of EMD for computationally efficient and
accurate real-time analysis and the method’s efficiency was
shown for EEG and ECG datasets [30].

In this paper, we present a patient specific algorithm for
seizure prediction based on HHT for feature extraction and
Bayes networks for classification.

2. Materials and Methods

In this paper we propose a method that includes prepro-
cessing of intracranial EEG (iEEG) data for noise removal
and obtaining data segments for sliding window analysis,
feature extraction using Hilbert-Huang transform, feature
selection using correlation based feature selection algorithm,
binary classification by Bayesian networks, and a simple
postprocessing algorithm to remove spurious detections.
Outline of the system is given in Figure 1. System is trained
and tested on the Freiburg database. Test datasets are not used
in classifier modelling.

2.1. EEG Database. The Freiburg EEG database, which
is available online (https://epilepsy.uni-freiburg.de/freiburg-
seizure-prediction-project/eeg-database) by request, is used
for training and testing the proposed system. This database
contains iEEG recordings collected from 21 patients with
medically intractable focal epilepsy during invasive presurgi-
cal epilepsy monitoring at the Epilepsy Center of the Univer-
sityHospital of Freiburg,Germany. Recordingswere acquired

at 256Hz (at 512Hz for interictal recordings of patient 12)
sampling rate with 16 bit A/D converter. Among the strip
and grid electrodes used for recordings, six electrodes were
identified by a certified epileptologist by visual inspection.
First three electrodes (focal electrodes) are selected close to
the region where the seizure occurs or the region where
early ictal activity is detected, and the other three (extrafocal
electrodes) are selected from the regions distal to the seizure
focus or the regions in which an ictal activity is not observed.
A total of 87 seizures, 504 h of interictal, and 73 h of preictal
or ictal data are available in the database. At least 50 minutes
of preictal data for each seizure and approximately 24 hours
of iEEG data for each patient without seizure activity are
available. Broader information can be obtained from [31].
Sample recordings of preictal, ictal, and interictal activities,
extracted IMFs, and corresponding Hilbert spectrums for
patient 2 are shown in Figure 2.

2.2. Preprocessing: Artifact Removal and Segmentation. We
started with removing the artifacts in iEEG data, which
were detected by an epileptologist visually and provided in
the database in a text file. Then we filtered the data by a
50Hz notch filter to remove the power line noise. For the
analysis, we preferred moving window analysis technique
and segmented the multichannel iEEG data into 30- second-
long (7680 data points) windows with 50% overlap. For
each window, we extracted HHT based features to feed the
classifier to make a decision.

2.3. Hilbert Huang Transform. HHT is the designated name
for an empirical and adaptive method which combines EMD,
introduced by Huang et al. in 1996 [32], and very well known
Hilbert spectral analysis (HSA). HHT is a time-frequency
analysis technique in which the basis functions are data
driven, in contrast to conventional data analysis techniques,
such as Fourier transform and wavelet transform, which
represent the signal by predetermined basis functions.

In this method, frequency component for each time
point, called instantaneous frequency, is considered. Instan-
taneous frequency (IF) provides important information
about the frequency content of the nonstationary signals. IF is
easily obtained for complex valued signals by differentiating
the phase of the signal with respect to time. However, it is
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Figure 2: Sample EEG recordings, extracted IMFs and Hilbert spectrums for preictal activity (a), ictal activity (b), and interictal activity (c).

ambiguous for real valued signals. A possible way to compute
IF for a real valued signal, 𝑔(𝑡), is to define an analytic signal,
𝑔(𝑡), by determining the complex conjugate of the signal,
𝑔(𝑡), using the Hilbert transform [33]. Hilbert transform is
simply defined as the convolution between the signal and the
Hilbert transformer, 1/(𝜋𝑡). Instantaneous frequency,𝑤(𝑡), is
defined as the derivative of the phase function with respect
to time; 𝑤(𝑡) = 𝑑𝜃(𝑡)/𝑑𝑡, where 𝐺(𝑡) is the instantaneous
amplitude and 𝜃(𝑡) is the phase function of the analytical
signal. Although the problem of obtaining the phase function
is solved by the use of Hilbert transform, application of
the Hilbert transform is limited to monocomponent signals
[34], in which there is only one frequency component or a
narrow range of frequencies varying as a function of time.
After the introduction of EMD, which is used to break
down a multicomponent signal into its components called
intrinsic mode functions (IMF), benefits of the method
became applicable formulticomponent signals. EMD is based
on the local characteristics of the data instead of predefined
basis functions. Therefore it is highly efficient and suitable
for analysing nonlinear and nonstationary signals. Process of
decomposing a signal into its IMFs is pretty well defined in
the literature [28, 32].

Assuming that we have a real valued signal, 𝑥(𝑡), EMD
process is applied to the signal to decompose the signal into

its IMFs. Considering the signal is decomposed into𝑁 IMFs,
the original signal can be expressed as the sum of IMFs, 𝑔

𝑖
(𝑡),

𝑖 = 1, . . . , 𝑁, and a residue, 𝑟
𝑁
. Consider

𝑥 (𝑡) =

𝑁

∑

𝑖=1

𝑔
𝑖 (𝑡) + 𝑟𝑁. (1)

After obtaining IMFs, Hilbert transform is applied to
extracted IMFs in order to obtain the time-frequency-energy
distribution of the signal. After removing the residue, the
original signal is now expressed as

𝑥 (𝑡) = Re{
𝑁

∑

𝑖=1

𝐺
𝑖 (𝑡) 𝑒
𝑗 ∫𝑤𝑖(𝑡)𝑑𝑡} . (2)

Equation (2) enables us to observe the signal’s energy
distribution as a function of time and frequency in a 3D plot
which is designated as the Hilbert spectrum, that is,𝐻(𝑤, 𝑡).
Sample iEEG segments, IMFs extracted from these segments
and their Hilbert spectrums are shown in Figure 2.

2.4. Feature Extraction. 30-second-long iEEG segments for
all six channels are decomposed into IMFs via EMD sepa-
rately. Employing all the extracted IMFs, Hilbert spectrums
of the signals are obtained.Then, the total energy,𝐸Tot, energy
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in 𝑗th frequency band, namely, 𝐸
𝑗
, where 𝑗 = {𝛿(0.5–

3Hz), 𝜃 (4–7Hz), 𝛼1 (8-9Hz), 𝛼2 (10–12Hz), 𝛽1 (13–17Hz),
𝛽2 (18–30Hz), 𝛾 (31–40, 41–50, 51–90, and 91–128Hz)}, and
contribution of 𝐸

𝑗
to the total energy, that is, 𝐸

𝑗
/𝐸Tot, are

computed. Note that wide gamma band was split into four
bands.

Assuming that 𝑔𝑘
𝑖
(𝑡) is the 𝑖th IMF for the 𝑘th channel,

𝑖 = 1, 2, . . . , 𝑁, 𝑘 = 1, 2, . . . , 6, 𝐻𝑘
𝑖
(𝑤, 𝑡) is the associated

Hilbert spectrum and 𝐻𝑘(𝑤, 𝑡) is the Hilbert spectrum of
the EEG data from 𝑘th channel. 𝐸𝑘

𝑗
is the energy in 𝑗th

frequency band and 𝐸𝑘Tot is the marginal energy for the 𝑘th
channel. Besides, groupiness factors of the energy in each
frequency band are also used as features. Groupiness factor
is frequently used in oceanography studies to examine wave
grouping characteristics. Funke and Mansard [35] defined
groupiness factor of a time series (or its spectral density)
to describe the degree of grouping activity as the standard
deviation of the time series over the mean of the time series.
Groupiness factor based on instantaneous energy obtained by
HHT was defined in [36]. Following this approach, in this
study, we used groupiness factor values, standard deviation
of the energy in previously defined frequency bands over
the mean of the same energy values, as features. Energy in
𝑗th frequency band from channel 𝑘 was used to compute
𝐺𝐹
𝑘

𝑗
. Listed features are estimated as in (3). Consequently,

31 features are obtained for each channel. Combining these
features for each segment, finally we obtain 186 features for
each window. Consider

𝐻
𝑘
(𝑤, 𝑡) =

𝑁

∑

𝑖=1

𝐻
𝑘

𝑖
(𝑤, 𝑡) ,

𝐸
𝑘

𝑗
(𝑡) = ∫

𝑤∈𝑗

(𝐻
𝑘
(𝑤, 𝑡))

2

𝑑𝑤,

𝐸
𝑘

𝑗
= ∫
𝑡

𝐸
𝑘

𝑗
(𝑡) 𝑑𝑡,

𝐸
𝑘

Tot = ∫
𝑡

∫
𝑤

(𝐻
𝑘
(𝑤, 𝑡))

2

𝑑𝑤𝑑𝑡,

𝐺𝐹
𝑘

𝑗
=

𝜎
𝑘

𝑗

𝐸
𝑘

𝑗

.

(3)

2.5. Feature Selection. Feature selection is a technique that
removes irrelevant and/or redundant features from the whole
feature set and selects themost relevant ones to build amodel
with a better performance. Filters [37] and wrappers [38] are
two general evaluation strategies for feature selection.

Wrappers search through the space of possible features
and evaluate each feature subset using classifier accuracy
as the objective function. Filter objective functions, on the
other hand, are usually simpler measures such as information
gain ratio or feature-feature and feature-class correlation.
Although best performance is obtained using exhaustive
search through all possible feature combinations, it is unfea-
sible and time consuming. Therefore, suboptimal but faster

Table 1: Most selected features selected by CFS.

Channel Feature
Channel 4 Total energy in 𝛾 (91–128)
Channel 2 Total energy in 𝛾 (41–50)
Channel 4 Total energy in 𝛾 (51–90)
Channel 6 Total energy in 𝛾 (91–128)
Channel 4 Total energy in 𝛾 (41–50)
Channel 5 Total energy in 𝛾 (51–90)
Channel 6 Total energy in 𝛾 (41–50)
Channel 6 Total energy In 𝛾 (51–90)
Channel 5 Total Energy in 𝛾 (91–128)
Channel 1 Total energy in 𝛾 (41–50)
Channel 1 Total energy in 𝛾 (91–128)
Channel 2 Total energy in 𝛼1 (8-9)
Channel 3 Total energy in 𝛾 (91–128)
Channel 2 Total energy in 𝛾 (51–90)
Channel 2 GF in 𝛾 (91–128)
Channel 5 Total energy in 𝛾 (41–50)
Channel 6 Total energy in 𝛽2 (18–30)

search functions, such as hill-climbing, genetic, best first, and
random, are usually chosen.

In this study, we employed a filtering type of feature
selection, correlation based feature selection (CFS) [39] with
best first search algorithm.The fundamental idea behind this
method is that a good feature set consists of the features that
are correlated with the class but are not correlated with each
other. In our study, the number of features is reduced from
186 to 14.49 on the average (𝜎 = 6.95). Table 1 shows the most
selected features that are selected more than 15 times in 87
trials by CFS.

2.6. Train-Test Files. In our study we used Freiburg database
for training and testing the system. Dataset used for testing is
left completely out of training dataset in order to presentmore
realistic sensitivity and specificity values. In the database
there are 87 seizures for 21 patients. In order to test the
system for all seizures, 87 patient specific training and testing
datasets are constructed considering the number of seizures
the patient has and the number of preictal files recorded for
the same patient. Assuming that 𝑖th patient has 𝑁

𝑖
seizures

and 𝑀
𝑖
files containing interictal recordings, 𝑁

𝑖
disjoint

datasets are obtained as shown in Figure 3. In the train-
test process, set 𝑘 (𝑘 = 1, 2, . . . , 𝑁

𝑖
) is left for testing and

the remaining datasets are combined for training assuring
that the test datasets are not used in classifier modelling.
Therefore, contiguous recordings, which are highly correlated
and might result in overoptimistic specificity results, were
included either in training or in testing sets. Note that inter-
ictal files contain about 1-hour-long recordings (𝜇filelength =
58.58minutes, 𝜎filelength = 6.97minutes).

2.7. Bayesian Networks Classifiers. Bayesian networks have
become increasingly popular and were applied in various
different areas, for example, biology, financial applications,
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causal learning, computer games, computer vision, data
mining, medicine, natural language processing, and speech
recognition [40]. Bayesian network method [41] is a directed
acyclic graph (DAG) that represents the joint probability
distribution over a set of random variables and searches for
the causal connections between variables using probability
and graph theory [42].

Considering a finite set of random variables, 𝑋 =

{𝑋
1
, . . . , 𝑋

𝑛
}, a Bayesian Network, 𝐵, for 𝑋 is a directed

acyclic graph. A DAG includes nodes, which correspond
to the random variables, and edges which represent the
conditional dependencies. Each node is annotated with a
conditional probability distribution, that is, Θ, which repre-
sents 𝑃(𝑋

𝑖
| par(𝑋

𝑖
)) where par(𝑋

𝑖
) denotes the parents of

𝑋
𝑖
. Finally the Bayesian Network represents a unique joint

probability distribution over𝑋:

𝑃
𝐵
(𝑋
1
, . . . , 𝑋

𝑛
) =

𝑛

∏

𝑖=1

𝑃
𝐵
(𝑋
𝑖
| par (𝑋

𝑖
))

=

𝑛

∏

𝑖=1

Θ
𝑋𝑖|par(𝑋𝑖).

(4)

To use a Bayesian Network as a classifier, we define the
variable set as 𝑋 = {𝑋

1
, . . . , 𝑋

𝑛
, 𝐶}, where 𝑋

𝑖
are the

attributes and 𝐶 is the class variable. A Bayesian Network,
𝐵 with joint probability distribution 𝑃

𝐵
(𝑋
1
, . . . , 𝑋

𝑛
, 𝐶) is

formed and for a given set of attributes 𝑥
1
, . . . , 𝑥

𝑛
, the class

label 𝑐, which maximizes the posterior probability 𝑃
𝐵
(𝑐 |

𝑥
1
, . . . , 𝑥

𝑛
), is obtained based on the network 𝐵.

In this work, we usedWEKA implementation of Bayesian
networks [43, 44] for classification.

2.8. Postprocessing. The ultimate goal of the study is to define
a system which could predict an upcoming seizure with
sufficient time to prepare for the seizure or to take the
necessary precautions to prevent it.The system could be used
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Figure 4: An example of postprocessing procedure shown for 3rd
seizure of patient 16. Upper row shows the probability of having
a seizure in near future obtained every 15 seconds (red rectangles
show 5-minute windows). Lower row shows the mean probabilities
of having a preictal state in 5-minute time intervals.

in or with an implantable device and triggers an alarm if
a seizure is expected. In presented system, such a decision
is made every 15 seconds. Considering the negative effects
of hearing an alarm every 15 seconds when a seizure is
expected, very simple postprocessing is performed bymaking
a decision every 5 minutes depending on the classification
probabilities in this time window. The average probability
of having a preictal state is computed for every 5-minute
decision window. This average probability value is used for
thresholding in performance assessment. For instance, for
a threshold value of 0.25, a preictal classification is made
only if the average probability in the five-minute decision
window is higher than 0.25 and no seizure is expected in near
feature (interictal classification) otherwise. Figure 4 shows
an example of the postprocessing applied on 40-minute-
long preseizure data. Figure 5 shows sample demonstration
of thresholding process for preictal and interictal recordings.

3. Results and Discussion

We tested our patient specific algorithm for all patients in
the Freiburg dataset. We examined a total of 58 hours (87
seizures ∗ 40min/seizure) of preictal data and 503.1 hours
of interictal data. Results are presented in sensitivity, mean
detection latency, number of false positives per hour (FPs/h),
and time spent in warning (FP%) measures to show the
performance of the algorithm. Detection latency is defined
as the time between the alarm and the seizure onset.

Sensitivity is calculated as the ratio of correctly predicted
seizures to all seizures. A correct prediction is assessed in
the sense of seizure prediction horizon (SPH) and seizure
occurrence period (SOP). SOP is the time period during
which the seizure onset is expected and SPH is defined as the
minimum timewindowbetween the alarm and the beginning
of the SOP [45]. In case of an alarm, the system holds on for a
time period of SPH + SOP; if a seizure occurs in this process
prediction is recorded as a true positive and as a false positive
otherwise. In this study we define SPH as 5 minutes and SOP
as 35 minutes. A prediction is accepted as correct only if the
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Figure 5: Sample demonstration of thresholding. Upper row shows the probability of having a seizure in near future. Middle row shows the
classification results using 0.25 as threshold. For this preictal recordings, seizure is accepted, predicted 35 minutes prior to the seizure; that
is, detection latency is 35 minutes. For the interictal recordings number of false positives is recorded as 5; consecutive alarm in a SPH + SOP
window is counted as one. Lower row shows the classification results using 0.5 as threshold and the detection latency now 10 minutes and
number of false positives is 1.

seizure occurs in a time period of 35 minutes starting five
minutes after the alarm.Therefore if an alarm is triggered the
patient will have at least fiveminutes to prepare but atmost 40
minutes to wait for the seizure onset. Mean detection latency
is recorded as the average time period between the alarms of
true predictions and the following seizure onsets.

In a realistic seizure prediction system, false positives
are inevitable. Number of excessive false positives, however,
would decrease the credibility of the system. Therefore, an
acceptable prediction system should provide a low number of
false positives while resulting in high sensitivity. Number of
false positives per hour (FPs/h) is a frequently used measure
to evaluate the seizure prediction systems. FPs/h is computed
as the division of the number of false predictions to the
total interictal time examined, in hours, in system evaluation.
Time spent in warning is also provided for each patient. A
sample set of classification results for interictal recordings is

given in Figure 7. Note that in this representation number of
FPs is 2 and the time spent in warning is 120 minutes.

Figure 6 shows the sensitivity versus FP/h values for
different threshold values. Threshold value of 0.99 in post-
processing yields 59.77% sensitivity with a FP/h rate of 0.048.
Sensitivity quickly increases to 88.51% for a FP/h value of
0.147. Best sensitivity (96.55%) for the lowest FP/h (0.205)
value is obtained for the threshold value of 0.25. For this
point on the curve, a preictal classification is made only if
the average classification probability in a five-minute time
interval is higher than or equal to 0.25; that is, at least half of
the windows are classified as ictal with a probability of 50%
or more on the average.

Table 2 shows the seizure prediction results, correspond-
ing to the FP/h value of 0.205, using the whole feature set and
using only the features that are selected to be relevant and
necessary using CFS algorithm. Note that CFS is employed
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warning.

independently for each trial. CFS dramatically decreased the
number of features to be used for seizure prediction which
shows that the feature sets chosen in the beginning are highly
correlated with each other. Another result of the correlated
features is that there were 11 features that are not selected in
any trial.These features are listed in Table 3. Features selected
more than 15 times by CFS algorithm in all trials (87 trials;
one for each seizure) are shown in Table 1. Table shows that
the total energy values in different frequency bands,mostly in
𝛾 band, are effective features in seizure prediction. However,
the number of times the features used in the trials shows
that there is no feature that is dominantly used in the trials.
Mostly chosen feature, 𝐸4

𝛾4
, was selected in 31 trials. Besides,

features selected for each patient are noticeably different from
each other and therefore starting feature selectionwith a large
feature set is reasonable for a better chance of finding the best
feature set for the patient, although the final feature set is
dramatically reduced after CFS.

Results show that presented prediction system has very
high sensitivity of 96.55 with a low rate of false positives,
compared to the seizure prediction systems tested on the
Freiburg EEG database. Earliest studies on Freiburg dataset
resulted in less than 60% sensitivity [3, 31, 45], with controlled
false positive rates. Average sensitivity for FP/h rate of 0.25
was reported as 57.95% in [31], andmaximum%42 sensitivity
was achieved for 0.15 FP/h value in [3, 45]. Later studies
achieved better performances: 77.8% sensitivity for 9 patients
[46], 71% sensitivity with no false positives for 15 patients
[47], and 74.2% sensitivity with less than 0.2 FPs/h for all

patients [19]. In [11], 11 patients with focal neocortical epilepsy
were examined using a rule based prediction system and
79.9% and 90.2% of the 49 seizures were predicted for 30min
and 50min SOP values with 0.17 and 0.11 FPs/h, respectively.
For the patients with 3 or more seizures, 95% sensitivity
was achieved in [14]. The best results on Freiburg database
are demonstrated in [9] for the same patients with 97.5%
sensitivity (78 of the 80 seizures were successfully predicted)
and FPs/h rate of 0.27 for 18 of the 21 patients. In the study
linear features of spectral power and support vectormachines
were used along with bipolar preprocessing and Kalman
filters for postprocessing. In this study, we examined all
patients in the database and obtained comparable sensitivity
(96.55%) with better FPs/h rate of 0.21 on the average. Besides
the detection latency is presented as 33.21 minutes. Note that
if patients 2, 8, and 13were excluded, as in the aforementioned
study, sensitivity would be equivalent (78 out of 80) to the
sensitivity reported in [9] with a better FP/h rate of 0.22 and
the detection latency would be 33.46 minutes.

In order to statistically validate the results, the prediction
performance of the system is compared to a random predic-
tor. Basically, a valid prediction method should be superior
to an unspecific random predictor that makes no use of any
information contained in the EEG data.

3.1. Statistical Validation. A prediction method is considered
to perform above chance level only if the performance is
shown to be statistically significant. We tested our seizure
prediction against a chance predictor, which is described
in [8]. The chance predictor is based on a Poisson process
where the interval between two consecutive alarms follows an
exponential distribution [5, 8]. Note that most of the seizure
prediction systems use this random predictor to show the
significance of the results presented [3, 5, 8–13].

Sensitivity of the chance predictor is defined as

𝑆
𝑛𝑐
= 1 − exp (−𝜆

𝑤 (SPH + SOP) + (1 − 𝑒
−𝜆𝑤SPH)) , (5)

where 𝜆
𝑤
is the Poisson rate for the chance predictor which

is calculated as

𝜆
𝑤
= −

1

(SPH + SOP)
ln (1 − 𝜌

𝑤
) , (6)

where 𝜌
𝑤
is the proportion of time spent in warning.

To assess the significance of the system’s sensitivity, 𝑃
value of the null hypothesis should be lower than a predefined
value, mostly chosen to be 0.05. Null hypothesis is stated as
“The sensitivity of the system presented is not different than the
sensitivity of the chance predictor.” Given that the algorithm
under evaluation correctly predicts 𝑛 of 𝑁 seizures, the one
sided 𝑃 value is estimated as [8]

𝑃 = 1 −

𝑛−1

∑

𝑘=0

(
𝑁

𝑘
) 𝑆
𝑘

𝑛𝑐
(1 − 𝑆

𝑛𝑐
)
𝑁−𝑘
, for 𝑛

𝑁
≥ 𝑆
𝑛𝑐
. (7)

Prediction results are shown to be significantly better than
a chance predictor for all patients except patient 19.
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Table 2: Evaluation of the proposed seizure prediction system.

Patient
number

Number of
Sz.

Interictal
hours

CFS No feature selection

Sens.
(%)

Det.
Lat.
(min)

FPs/h FP% 𝑃 value Sens.
(%)

Det.
Lat.
(min)

FPs/h FP% 𝑃 value

1 4 23.91 100 35 0 0 0 100 27.5 0 0 0
2 3 23.89 100 35 0.08 5.178 0.0001 66.67 27.5 0 0 0
3 5 23.73 100 34 0 0 0 100 29 0.08 5.296 0
4 5 23.91 100 33 0.04 2.500 0 100 33 0.04 2.500 0
5 5 23.64 100 27 0.51 35.000 0.0031 80 23.75 0.63 40.625 0.0067
6 3 23.56 100 35 0.42 33.443 0.0272 100 33.33 0.30 21.967 0.0075
7 3 24.50 100 35 0 0 0 100 35 0.16 10.760 0.0009
8 2 24.06 100 20 0.21 17.105 0.023 100 22.5 0.21 14.803 0.0172
9 5 23.84 100 35 0 0 0 100 35 0.04 2.477 0
10 5 24.35 100 35 0.21 16.109 0.0001 100 35 0.33 27.964 0.001
11 4 23.02 75 35 0 0 0 75 35 0.22 18.301 0.015
12 4 24.63 100 35 0.04 2.462 0 100 35 0.12 9.846 0.0001
13 2 23.78 50 35 0 0 0 0 — 0 0 1
14 4 23.30 100 31.25 0.39 25.566 0.0027 75 30 0.56 41.100 0.1485
15 4 23.75 100 35 0.08 6.349 0 100 35 0.25 17.143 0.0005
16 5 23.92 100 29 0.42 24.768 0.0005 100 31 0.42 24.768 0.0005
17 5 23.98 100 35 0.29 18.154 0.0001 100 35 0.38 21.231 0.0002
18 5 24.79 100 35 0.20 13.773 0 100 35 0.40 22.455 0.0003
19 4 24.25 75 35 0.82 53.125 0.2931 75 35 0.78 53.125 0.2931
20 5 24.79 100 35 0.52 32.537 0.0021 80 35 0.65 48.358 0.1224
21 5 23.85 100 31 0.04 4.334 0 100 35 0.25 20.433 0.0002

87 503.45 96.55 33.21 0.21 13.896 0.000 90.8 32.53 0.28 19.347 0.000

Table 3: Features never selected by CFS.

Channel Feature
Channel 1 𝐺𝐹

𝛼1
, 𝐸
𝛾1
/𝐸Tot

Channel 2 𝐸
𝛾1
/𝐸Tot

Channel 3 𝐺𝐹
𝛽1
, 𝐺𝐹
𝛽2

Channel 4 𝐸Tot, 𝐺𝐹𝜃, 𝐺𝐹𝛼1 , 𝐸𝛼1/𝐸Tot
Channel 5 𝐺𝐹

𝛼1
, 𝐺𝐹
𝛾1

4. Conclusions

In this paper, a seizure prediction system based on Hilbert-
Huang transform and Bayesian classification is presented.
The system, basically, has 4 steps after preprocessing, extract-
ing the features using HHT, selecting the best features for
each patient by CFS, classification by means of Bayesian
networks, and applying a simple postprocessing algorithm
which combines the individual probabilities, obtained after
classification task, in a 5-minute window. Results show that
such a system can successfully predict the seizures with high
sensitivity, 96.55% (84 out of 87 seizures) and a low false
positive rate of 0.21 per hour (about one false alarm every
4.88 hours on the average). Sensitivity results are validated to
be significantly better than a chance predictor for all patients

except patient 19 for a significance level of 0.05. Excluding
patient 19, the sensitivity would be 97.59% (81 of 83 seizures)
for a FP/h rate of 0.173 (11.92%).

The system perfectly predicts the seizures with a FP/h rate
of lower than 0.08 (1 FP in 12 hours) at least 31 minutes prior
to the seizure onsets for nine patients (patients 1–4, 7, 9, 12, 15,
and 21). Only 3 seizures (one for each patients 11, 13, and 19)
weremissed by the system. For four of the remaining patients,
seizures were predicted at least 20 minutes before the seizure
occurs with a chance of having only one false alarm in 3 hours
to 5 hours.

Presented system is a patient specific seizure prediction
system in which the system is trained and tested for each
patient separately. By examining the features selected for
each patient by CFS, there was no remarkable feature that
is significant for all patients. Therefore we can conclude
that the patterns followed by the extracted features for each
patient are different from each other and each patient should
be administered separately with the presented system. In
general, however, the energy contribution of the frequency
bands are shown to be the mostly selected features for the
system. Note that the band that makes the contribution is
different for each patient.

Performance of this system may be compared to other
seizure prediction systems which used the Freiburg EEG



Computational and Mathematical Methods in Medicine 9

database for training and testing. Some algorithms resulted
in low sensitivity (mostly less than 50%) [3, 31, 45]. Better
results are presented in other studies; however, in most of
the studies, results are given only for selected patients [9, 47].
The best results on Freiburg database are demonstrated in
[9] with 97.5% sensitivity with a FPs/h rate of 0.27 for 18 of
the 21 patients. In this study, we examined all patients of the
database and obtained comparable sensitivity (96.55%) with
a better FPs/h rate of 0.21 on the average, noting that the
same sensitivity is obtained for a FPs/h rate of 0.22 for those
18 patients examined in [9]. Besides detection latency is also
reported as 33.21 minutes on average.

The system was trained and tested on an average desktop
computer and analysis is performed using MATLAB. Time
spent for processing a 30-second EEG segment was 4.1451
seconds on average, which is much smaller than required
time to process 30-second data with 50% overlap (15 seconds)
which makes the system viable for use in a real-time system.
Average time spent on each step is as follows: 0.0754 seconds
for converting database file format (.asc) to MATLAB data
file format (.mat), 3.7848 seconds for obtaining IMFs from
filtered data, 0.1986 seconds for extracting features for all
channels and combining them into a one feature set, and
0.0863 seconds for testing and classifying the segment using
themodel based on the training set and applying postprocess-
ing.

This study shows thatHHT is a sensiblemethod to extract
the relevant features in a seizure prediction system. The
system may be improved by using different preprocessing
algorithms, choosing the optimal channels for feature extrac-
tion and employing wrapper methods for feature selection to
optimize the classifier performance.
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