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Nature-inspired algorithms are becoming popular among researchers due to their simplicity and flexibility. The nature-inspired
metaheuristic algorithms are analysed in terms of their key features like their diversity and adaptation, exploration and exploitation,
and attractions and diffusion mechanisms. The success and challenges concerning these algorithms are based on their parameter
tuning and parameter control. A comparatively new algorithm motivated by the social hierarchy and hunting behavior of grey
wolves is Grey Wolf Optimizer (GWO), which is a very successful algorithm for solving real mechanical and optical engineering
problems. In the original GWO, half of the iterations are devoted to exploration and the other half are dedicated to exploitation,
overlooking the impact of right balance between these two to guarantee an accurate approximation of global optimum. To overcome
this shortcoming, a modified GWO (mGWO) is proposed, which focuses on proper balance between exploration and exploitation
that leads to an optimal performance of the algorithm. Simulations based on benchmark problems and WSN clustering problem
demonstrate the effectiveness, efficiency, and stability of mGWO compared with the basic GWO and some well-known algorithms.

1. Introduction

Metaheuristic algorithms are powerful methods for solving
many real-world engineering problems.Themajority of these
algorithms have been derived from the survival of fittest
theory of evolutionary algorithms, collective intelligence of
swarm particles, behavior of biological inspired algorithms,
and/or logical behavior of physical algorithms in nature.

Evolutionary algorithms are those who mimic the evolu-
tionary processes in nature. The evolutionary algorithms are
based on survival of fittest candidate for a given environment.
These algorithms begin with a population (set of solutions)
which tries to survive in an environment (definedwith fitness
evaluation). The parent population shares its properties of
adaptation to the environment to the children with various
mechanisms of evolution such as genetic crossover and
mutation. The process continues over a number of gener-
ations (iterative process) till the solutions are found to be
most suitable for the environment. Some of the evolutionary
algorithms are Genetic Algorithm (GA) [1], Evolution Strate-
gies (ES) [2], Genetic Programming (GP) [3], Differential

Evolution (DE) [4], and Biogeography-Based Optimization
(BBO) [5–9].

Thephysical algorithms are inspired by physical processes
such as heating and cooling of materials (Simulated Anneal-
ing [10]), discrete cultural information which is treated as in
between genetic and culture evolution (Memetic Algorithm
[11]), harmony of music played by musicians (Harmony
Search [12, 13]), cultural behavior of frogs (Shuffled Frog-
LeapingAlgorithm [14]), Gravitational Search algorithm [15],
Multiverse Optimizer (MVO) [16], and Chemical Reaction
Optimization (CRO) [17].

Swarm intelligence is the group of natural metaheuristics
inspired by the “collective intelligence” of swarms. The col-
lective intelligence is built up through a population of homo-
geneous agents interacting with each other and with their
environment. Example of such intelligence is found among
colonies of ants, flocks of birds, schools of fish, and so forth.
Particle Swarm Optimization [18] is developed based on the
swarm behavior of birds. The firefly algorithm [19] is formu-
lated based on the flashing behavior of fireflies. Bat Algorithm
(BA) [20] is based on the echolocation behavior of bats.
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Ant Colony Optimization (ACO) [21, 22] is inspired by the
pheromone trail laying behavior of real ant colonies. A new
evolutionary optimization algorithm, Cuckoo Search (CS)
Algorithm [23], is inspired by lifestyle of cuckoo birds. The
major algorithms include Ant Colony Optimization (ACO)
[21, 22], Particle Swarm Optimization (PSO) [18], Artificial
Bee Colony (ABC) Algorithm [24], Fish Swarm Algorithm
(FSA) [25], Glowworm Swarm Optimization (GSO) [26],
Grey Wolf Optimizer (GWO) [27], Fruit Fly Optimization
Algorithm (FFOA) [28], Bat Algorithm (BA) [20], Novel
Bat Algorithm (NBA) [29], Dragonfly Algorithm (DA) [30],
Cat Swarm Optimization (CSO) [31], Cuckoo Search (CS)
Algorithm [23], Cuckoo Optimization Algorithm (COA)
[32], and Spider Monkey Optimization (SMO) Algorithm
[33].

The biologically inspired algorithms comprise natural
metaheuristics derived from living phenomena and behav-
ior of biological organisms. The intelligence derived with
bioinspired algorithms is decentralized, distributed, self-
organizing, and adaptive in nature under uncertain environ-
ments. The major algorithms in this field include Artificial
Immune Systems (AIS) [34], Bacterial ForagingOptimization
(BFO) [35], and Krill Herd Algorithm [36].

Because of their inherent advantages, such algorithms
can be applied to various applications including power
systems operations and control, job scheduling problems,
clustering and routing problems, batch process scheduling,
image processing, and pattern recognition problems.

GWO is recently developed heuristics inspired from the
leadership hierarchy and hunting mechanism of grey wolves
in nature and has been successfully applied for solving eco-
nomic dispatch problems [37], feature subset selection [38],
optimal design of double later grids [39], time forecasting
[40], flow shop scheduling problem [41], optimal power flow
problem [42], and optimizing key values in the cryptography
algorithms [43]. A number of variants are also proposed
to improve the performance of basic GWO that include
binary GWO [44], a hybrid version of GWO with PSO [45],
integration of DE with GWO [46], and parallelized GWO
[47, 48].

Every optimization algorithm stated above needs to
address the exploration and exploitation of a search space.
In order to be successful, an optimization algorithm needs to
establish a good ratio between exploration and exploitation.
In this paper, a modified GWO (mGWO) is proposed to
balance the exploration and exploitation trade-off in original
GWO algorithm. Different functions with diverse slopes are
employed to tune the parameters of GWO algorithm for
varying exploration and exploitation combinations over the
course of iterations. Increasing the exploration in comparison
to exploitation increases the convergence speed and avoids
the local minima trapping effect.

The rest of the paper is organized as follows. Section 2
gives the overview of original GWO. The proposed mGWO
algorithm is explained in Section 3. The experimental results
are demonstrated in Section 4. Section 5 solves the clustering
problem in WSN for cluster head selection to demonstrate
the applicability of the proposed algorithm. Finally, Section 6
concludes the paper.

2. Overview of Grey Wolf Optimizer Algorithm

Grey Wolf Optimizer (GWO) is a typical swarm-intelligence
algorithm which is inspired from the leadership hierarchy
andhuntingmechanismof greywolves in nature.Greywolves
are considered as apex predators; they have average group size
of 5–12. In the hierarchy of GWO, alpha (𝛼) is considered
the most dominating member among the group. The rest of
the subordinates to 𝛼 are beta (𝛽) and delta (𝛿) which help
to control the majority of wolves in the hierarchy that are
considered as omega (𝜔). The 𝜔 wolves are of lowest ranking
in the hierarchy.

The mathematical model of hunting mechanism of grey
wolves consists of the following:

(i) Tracking, chasing, and approaching the prey.

(ii) Pursuing, encircling, and harassing the prey until it
stops moving.

(iii) Attacking the prey.

2.1. Encircling Prey. Grey wolves encircle the prey during the
hunt which can be mathematically written as [27]
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where 𝑡 indicates the current iteration, 𝐴⃗ and 𝐶⃗ are coefficient
vectors, 󳨀󳨀→𝑋𝑝 is the position vector of the prey, and 𝑋⃗ indicates
the position vector of a grey wolf.

The vectors 𝐴⃗ and 𝐶⃗ are calculated as follows:
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where components of 𝑎 are linearly decreased from 2 to 0 over
the course of iterations and 𝑟1 and 𝑟2 are random vectors in
[0, 1].

2.2. Hunting. Hunting of prey is usually guided by 𝛼 and
𝛽, and 𝛿 will participate occasionally. The best candidate
solutions, that is, 𝛼, 𝛽, and 𝛿, have better knowledge about
the potential location of prey. The other search agents (𝜔)
update their positions according to the position of three best
search agents. The following formulas are proposed in this
regard:
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2.3. Attacking Prey. In order to mathematically model for
approaching the prey, we decrease the value of 𝑎⃗. The
fluctuation range of 𝐴⃗ is also decreased by 𝑎⃗. 𝐴⃗ is a random
value in the interval [−𝑎, 𝑎]where 𝑎 is decreased linearly from
2 to 0 over the course of iterations.When random values of 𝐴⃗
are in [−1, 1], the next position of a search agent can be in any
position between its current position and the position of the
prey. The value |𝐴| < 1 forces the wolves to attack the prey.

After the attack again they search for the prey in the next
iteration, wherein they again find the next best solution 𝛼
among all wolves. This process repeats till the termination
criterion is fulfilled.

3. Modified GWO Algorithm

Finding the global minimum is a common, challenging task
among all minimization methods. In population-based opti-
mization methods, generally, the desirable way to converge
towards the global minimum can be divided into two basic
phases. In the early stages of the optimization, the individuals
should be encouraged to scatter throughout the entire search
space. In other words, they should try to explore the whole
search space instead of clustering around local minima. In
the latter stages, the individuals have to exploit information
gathered to converge on the global minimum. In GWO, with
fine-adjusting of the parameters 𝑎 and 𝐴, we can balance
these two phases in order to find global minimum with fast
convergence speed.

Although different improvements of individual-based
algorithms promote local optima avoidance, the litera-
ture shows that population-based algorithms are better in
handling this issue. Regardless of the differences between
population-based algorithms, the common approach is the
division of optimization process to two conflicting mile-
stones: exploration versus exploitation. The exploration
encourages candidate solutions to change abruptly and
stochastically. This mechanism improves the diversity of the
solutions and causes high exploration of the search space. In
contrast, the exploitation aims for improving the quality of
solutions by searching locally around the obtained promising
solutions in the exploration. In this milestone, candidate
solutions are obliged to change less suddenly and search
locally.

Exploration and exploitation are two conflicting mile-
stones where promoting one results in degrading the other.
A right balance between these two milestones can guaran-
tee a very accurate approximation of the global optimum
using population-based algorithms. On the one hand, mere

exploration of the search space prevents an algorithm from
finding an accurate approximation of the global optimum.On
the other hand,mere exploitation results in local optima stag-
nation and again low quality of the approximated optimum.

In GWO, the transition between exploration and
exploitation is generated by the adaptive values of 𝑎 and𝐴. In
this, half of the iterations are devoted to exploration (|𝐴| ≥ 1)
and the other half are used for exploitation (|𝐴| < 1), as
shown in Figure 1(a). Generally, higher exploration of search
space results in lower probability of local optima stagnation.
There are various possibilities to enhance the exploration
rate as shown in Figure 1(b), in which exponential functions
are used instead of linear function to decrease the value of 𝑎
over the course of iterations. Too much exploration is similar
to too much randomness and will probably not give good
optimization results. But too much exploitation is related
to too little randomness. Therefore, there must be a balance
between exploration and exploitation.

In GWO, the value of 𝑎 decreases linearly from 2 to 0
using the update equation as follows:

𝑎 = 2 (1 −

𝑡

𝑇

) , (6)

where 𝑇 indicates the maximum number of iterations and
𝑡 is the current iteration. Our mGWO employs exponential
function for the decay of 𝑎 over the course of iterations.
Consider

𝑎 = 2(1 −

𝑡
2

𝑇
2
) (7)

as shown in Figure 1(c). Using this exponential decay func-
tion, the numbers of iterations used for exploration and
exploitation are 70% and 30%, respectively.

The pseudocode of mGWO is given in Algorithm 1.

4. Results and Discussion

This section investigates the effectiveness of mGWO in
practice. It is common in this field to benchmark the
performance of algorithms on a set ofmathematical functions
with known global optima. We also follow the same process
and employ 27 benchmark functions for comparison.The test
functions are divided to four groups: unimodal, multimodal,
fixed-dimension multimodal, and composite benchmark
functions. The unimodal functions (𝐹1–𝐹7) are suitable for
benchmarking the exploitation of algorithms since they have
one global optimum and no local optima. On the contrary,
multimodal functions (𝐹8–𝐹13) have a large number of local
optima and are helpful to examine exploration and local
optima avoidance of algorithms.

Themathematical formulation of the employed test func-
tions is presented in Tables 1–4. We consider 30 variables
for unimodal and multimodal test function for further
improving their difficulties.

Since heuristic algorithms are stochastic optimization
techniques, they have to be run at least more than 10
times to generate meaningful statistical results. It is again
a common strategy that an algorithm is run on a problem
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Figure 1: (a) Updating the value of 𝑎 for GWO, (b) some samples of possible functions for updating 𝑎 over the course of iterations, and (c)
updating the value of 𝑎 over the course of iterations for mGWO.

𝑚 times and average/standard deviation/median of the best
obtained solution in the last iteration are calculated as the
metrics of performance. We follow the same method to
generate and report the results over 30 independent runs.
In order to verify the performance of mGWO algorithm,
PSO, BA, CS, and GWO algorithms are chosen. Note that we

utilized 30 search agents and 3000 iterations for each of the
algorithms.

The convergence curves of unimodal, multimodal, fixed-
dimensionmultimodal, and composite benchmark functions
for the competitive optimization algorithms are given in
Figures 2, 3, 4, and 5, respectively. As Table 5 shows,
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Initialize the search agent (grey wolf) population𝑋𝑖 (𝑖 = 1, 2, . . . , 𝑛)
Initialize 𝑎, 𝐴 and 𝐶
Calculate the fitness of each search agent
𝑋𝛼 = the best (or dominating) search agent
𝑋𝛽 = the second best search agent
𝑋𝛿 = the third best search agent
while (𝑡 <Maximum number of iterations)

for each search agent
update the position of the current search agent by (5)

end for
update 𝑎 by (7)
update 𝐴 and 𝐶 by (2)
calculate the fitness of all search agents
update𝑋𝛼, 𝑋𝛽 and𝑋𝛿
𝑡 = 𝑡 + 1

end while
Return𝑋𝛼

Algorithm 1: Pseudocode of mGWO algorithm.

Table 1: Unimodal benchmark functions.

Function Dim Range 𝑓min

𝐹1 (𝑥) =

𝑛

∑

𝑖=1

𝑥
2

𝑖
30 [−100, 100] 0

𝐹2 (𝑥) =

𝑛

∑

𝑖=1

|𝑥𝑖| +

𝑛

∏

𝑖=1

|𝑥𝑖| 30 [−10, 10] 0

𝐹3 (𝑥) =

𝑛

∑

𝑖=1

(

𝑖

∑

𝑗−1

𝑥𝑗)

2

30 [−100, 100] 0

𝐹4 (𝑥) = max
𝑖
{
󵄨
󵄨
󵄨
󵄨
𝑥𝑖

󵄨
󵄨
󵄨
󵄨
, 1 ≤ 𝑖 ≤ 𝑛} 30 [−100, 100] 0

𝐹5 (𝑥) =

𝑛−1

∑

𝑖=1

[100 (𝑥𝑖+1 − 𝑥
2

𝑖
)

2

+ (𝑥𝑖 − 1)
2
] 30 [−30, 30] 0

𝐹6 (𝑥) =

𝑛

∑

𝑖=1

([𝑥𝑖 + 0.5])
2 30 [−100, 100] 0

𝐹7 (𝑥) =

𝑛

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random (0, 1) 30 [−1.28, 1.28] 0

mGWO algorithm provides the best results in 5 out of 7
unimodal benchmark test functions. The mGWO algorithm
also provides very competitive results compared to CS on 𝐹5
and 𝐹6. As discussed above, unimodal functions are suitable
for benchmarking exploitation of the algorithms. Therefore,
these results evidence high exploitation capability of the
mGWO algorithm.

The statistical results of the algorithms on multimodal
test function are presented in Table 6. It may be seen that
mGWO algorithm highly outperforms other algorithms on
𝐹9,𝐹10,𝐹11, and𝐹12. It should be noted thatmGWOalgorithm
outperforms other algorithms on these multimodal test
functions except PSO for 𝐹13. The results of multimodal test
function strongly prove that high exploration of mGWO
algorithm is a suitable mechanism for avoiding local solu-
tions. Since the multimodal functions have an exponential
number of local solutions, the results show that mGWO
algorithm is able to explore the search space extensively and

find promising regions of the search space. In addition, high
local optima avoidance of this algorithm is another finding
that can be inferred from these results.

The rest of the results, which belong to 𝐹14–𝐹23 and
𝐹24–𝐹27, are provided in Tables 7 and 8, respectively. The
results are consistent with those of other test functions, in
which mGWO shows very competitive results compared to
other algorithms.

5. Cluster Head Selection in
WSN Using mGWO

Cluster head (CH) selection problem is a well-known prob-
lem in the field of wireless sensor networks (WSNs) in
which the energy consumption cost of the network should
be minimized [49–53]. In this paper, this problem is solved
using mGWO algorithm and compared with GA, PSO, BA,
CS, and GWO.

The main challenges in designing and planning the
operations ofWSNs are to optimize energy consumption and
prolong network lifetime. Cluster-based routing techniques,
such as the well-known low-energy adaptive clustering hier-
archy (LEACH) [50], are used to achieve scalable solutions
and extend the network lifetime until the last node dies
(LND). In order to achieve prolonged network lifetime in
cluster-based routing techniques, the lifetime of the CHs
plays an important role. Improper cluster formation may
cause some CHs to be overloaded. Such overload may
cause high energy consumption of the CH and degrade
the overall performance of the WSN. Therefore, proper CH
selection is the most important issue for clustering sensor
nodes. Designing an energy efficient clustering algorithm
is not an easy task. Therefore, nature-inspired optimization
algorithms may be applied to tackle cluster-based routing
problem in WSN. Evolutionary algorithms (EAs) have been
used in recent years as metaheuristics to address energy-
aware routing challenges by designing intelligent models
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Table 3: Fixed-dimension multimodal benchmark functions.

Function Dim Range 𝑓min

𝐹14 (𝑥) = (

1

500

+

25

∑

𝑗=1

1

𝑗 + ∑
2

𝑖=1
(𝑥𝑖 − 𝑎𝑖𝑗)

6
)

−1

2 [−65, 65] 1

𝐹15 (𝑥) =

11

∑

𝑖=1

[𝑎𝑖 −

𝑥1 (𝑏
2

𝑖
+ 𝑏𝑖𝑥2)

𝑏
2
𝑖
+ 𝑏𝑖𝑥3 + 𝑥4

]

2

4 [−5, 5] 0.00030

𝐹16 (𝑥) = 4𝑥
2

1
− 2.1𝑥

4

1
+

1

3

𝑥
6

1
+ 𝑥1𝑥2 − 4𝑥

2

2
+ 4𝑥
4

2 2 [−5, 5] −1.0316

𝐹17 (𝑥) = (𝑥2 −

5.1

4𝜋
2
𝑥
2

1
+

5

𝜋

𝑥1 − 6)

2

+ 10 (1 −

1

8𝜋

) cos𝑥1 + 10 2 [−5, 5] 0.398

𝐹18 (𝑥) = [1 + (𝑥1 + 𝑥2 + 1)
2
(19 − 14𝑥1 + 3𝑥

2

1
− 14𝑥2 + 6𝑥1𝑥2 + 3𝑥

2

2
)]

⋅ [30 + (2𝑥1 − 3𝑥2)
2
(18 − 32𝑥1 + 12𝑥

2

1
+ 48𝑥2 − 36𝑥1𝑥2 + 27𝑥

2

2
)]

2 [−2, 2] 3

𝐹19 (𝑥) = −

4

∑

𝑖=1

𝑐𝑖 exp(−
3

∑

𝑗=1

𝑎𝑖𝑗 (𝑥𝑗 − 𝑝𝑖𝑗)

2

) 3 [1, 3] −3.86

𝐹20 (𝑥) = −

4

∑

𝑖=1

𝑐𝑖 exp(−
6

∑

𝑗=1

𝑎𝑖𝑗 (𝑥𝑗 − 𝑝𝑖𝑗)

2

) 6 [0, 1] −3.32

𝐹21 (𝑥) = −

5

∑

𝑖=1

[(𝑋 − 𝑎𝑖) (𝑋 − 𝑎𝑖)
𝑇
+ 𝑐𝑖]

−1

4 [0, 10] −10.1532

𝐹22 (𝑥) = −

7

∑

𝑖=1

[(𝑋 − 𝑎𝑖) (𝑋 − 𝑎𝑖)
𝑇
+ 𝑐𝑖]

−1

4 [0, 10] −10.4028

𝐹23 (𝑥) = −

10

∑

𝑖=1

[(𝑋 − 𝑎𝑖) (𝑋 − 𝑎𝑖)
𝑇
+ 𝑐𝑖]

−1

4 [0, 10] −10.5363

that collaborate together to optimize an appropriate energy-
aware objective function [52]. GWO is one of the powerful
heuristics that can be applied for efficient load balanced
clustering. In this paper, mGWO based clustering algorithm
is used to solve the abovementioned load balancing problem.
The algorithm forms clusters in such a way that the overall
energy consumption of the network is minimized. Total
energy consumption in the network is the sum of the total
energy dissipated from the non-CHs to send information to
their respective CHs and the total energy consumed by CH
nodes to aggregate the information and send it to the base
station (BS).

Consider a WSN of 𝑛 sensor nodes randomly deployed
in the sensing field and organized into 𝐾 clusters:
𝐶1, 𝐶2, . . . , 𝐶𝐾. The fitness function for the energy consump-
tion may be defined as

𝑓 = (

𝐾

∑

𝑖=1

∑

𝑠∈𝐶𝑖

𝐸TX𝑠,CH𝑖
+ 𝐸RX + 𝐸DA) +

𝐾

∑

𝑖=1

𝐸TXCH𝑖 ,BS
, (8)

where 𝐾 is the total number of CHs, 𝑠 ∈ 𝐶𝑖 is a non-CH
associated with the 𝑖th CH, and 𝐸TXnode1,node2

is the energy
dissipated for transmitting data from node1 to node2.

In order to calculate radio energy transmission and
reception costs, a 𝑘-bit message and also the transmitter-
receiver separation distance 𝑑 are given by

𝐸TX =
{

{

{

𝑘𝐸elec + 𝑘𝜀friss amp𝑑
2
, if 𝑑 < 𝑑0

𝑘𝐸elec + 𝑘𝜀two ray amp𝑑
4
, if 𝑑 ≥ 𝑑0.

(9)

The term 𝐸elec denotes the per-bit energy dissipation during
transmission. The per-bit amplification energy is propor-
tional to 𝑑4 when the transmission distance exceeds the
threshold 𝑑0 (called crossover distance) and otherwise is
proportional to 𝑑2. The parameters 𝜀friss amp and 𝜀two ray amp
denote transmitter amplification parameters for free-space
and multipath fading models, respectively. The value of 𝑑0 is
given by

𝑑0 = √

𝜀friss amp

𝜀two ray amp
. (10)

The reception energy of the 𝑘-bit data message can be
expressed by

𝐸RX = 𝑘𝐸elec, (11)

where 𝐸elec denotes the per-bit energy dissipation during
reception.
𝐸DA is the data aggregation energy expenditure and is set

as 𝐸DA = 5 nj/bit. The values of other parameters are set to
𝐸elec = 50 nj/bit, 𝜀friss amp = 100 pj/bit/m

2, and 𝜀two ray amp =

0.0013 pj/bit/m4, respectively [51].
For the simulation setup, 100 nodes are randomly

deployed in a 100m × 100m area of the sensing field. BS
is placed at the center of the field. The initial energy of all
homogeneous nodes is set to 𝐸0 = 1 J. During this analysis,
three parameters, namely, first node dead (FND), half nodes
dead (HND), and last node dead (LND) are employed to
outline the network lifetime.
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Table 4: Composite benchmark functions.

Function Dim Range 𝑓min

𝐹24 (CF1):

10 [−5, 5] 0

𝑓1, 𝑓2 = Rastrigin’s function
𝑓3, 𝑓4 =Weierstrass’ function
𝑓5, 𝑓6 = Griewank’s function
𝑓7, 𝑓8 = Ackley’s function
𝑓9, 𝑓10 = sphere function
[𝜎1, 𝜎2, 𝜎3, . . . , 𝜎10] = [1, 1, 1, . . . , 1]

[𝜆1, 𝜆2, 𝜆3, . . . , 𝜆10] = [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

𝐹25 (CF2):

10 [−5, 5] 0

𝑓1, 𝑓2 = Ackley’s function
𝑓3, 𝑓4 = Rastrigin’s function
𝑓5, 𝑓6 = sphere function
𝑓7, 𝑓8 =Weierstrass’s function
𝑓9, 𝑓10 = Griewank’s function
[𝜎1, 𝜎2, 𝜎3, . . . , 𝜎10] = [1, 2, 1.5, 1.5, 1, 1, 1.5, 1.5, 2, 2]

[𝜆1, 𝜆2, 𝜆3, . . . , 𝜆10] = [2 ∗ 5/32, 5/32, 2 ∗ 1, 1, 2 ∗ 5/100, 5/100, 2 ∗ 10, 10, 2 ∗ 5/60, 5/60]

𝐹26 (CF3):

10 [−5, 5] 0

𝑓1, 𝑓2 = expanded Schaffer Rosenbrock’s function
𝑓3, 𝑓4 = Rastrigin’s function
𝑓5, 𝑓6 = expanded Griewank’s and Rosenbrock’s function
𝑓7, 𝑓8 =Weierstrass’s function
𝑓9, 𝑓10 = Griewank’s function
[𝜎1, 𝜎2, 𝜎3, . . . , 𝜎10] = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]

[𝜆1, 𝜆2, 𝜆3, . . . , 𝜆10] = [5 ∗ 5/100, 5/100, 5 ∗ 1, 1, 5 ∗ 1, 1, 5 ∗ 10, 10, 5 ∗ 5/200, 5/200]

𝐹27 (CF4):

10 [−5, 5] 0

𝑓1 =Weierstrass’s function
𝑓2 = expanded Schaffer Rosenbrock’s function
𝑓3 = expanded Griewank’s and Rosenbrock’s function
𝑓4 = Ackley’s function
𝑓5 = Rastrigin’s function
𝑓6 = Griewank’s function
𝑓7 = expanded Schaffer Rosenbrock’s noncont function
𝑓8 = Rastrigin’s noncont function
𝑓9 = elliptic function
𝑓10 = sphere noise function
[𝜎1, 𝜎2, 𝜎3, . . . , 𝜎10] = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

[𝜆1, 𝜆2, 𝜆3, . . . , 𝜆10] = [10, 5/20, 1, 5/32, 1, 5/100, 5/50, 1, 5/100, 5/100]

Table 5: Results of unimodal benchmark functions.

𝐹

PSO BA CS GWO mGWO
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

𝐹1 5.31𝐸 − 11 9.76𝐸 − 11 22546.833 6668.3781 2.89𝐸 − 16 3.33𝐸 − 16 2.65𝐸 − 155 1.18𝐸 − 154 6.44E − 205 0.00E + 00
𝐹2 5.67𝐸 − 07 1.26𝐸 − 06 2864.8141 9441.2388 5.92𝐸 − 09 5.43𝐸 − 09 7.23𝐸 − 92 8.41𝐸 − 92 3.34E − 119 4.95E − 119
𝐹3 3228.8636 1932.4945 61977.294 26054.622 1.0408052 0.9448328 1.78𝐸 − 42 4.14𝐸 − 42 2.74E − 52 1.19E − 51
𝐹4 40.759779 16.786821 56.421446 10.918884 10.803036 3.0246624 5.86𝐸 − 37 2.57𝐸 − 36 1.20E − 51 4.25E − 51
𝐹5 62.716929 49.490404 18305153 12467683 22.524975 15.539303 26.799858 0.5767914 26.900044 0.852116
𝐹6 2.89𝐸 − 11 4.27𝐸 − 11 19775.038 7361.6353 4.99E − 16 1.30E − 15 0.7070627 0.2983174 0.7862954 0.2449287
𝐹7 0.0542038 0.0175609 5.0503673 1.6183878 0.0466985 0.0214709 0.0003805 0.0002072 0.0002609 0.000176
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Figure 2: Continued.
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Figure 2: Convergence graph of unimodal benchmark functions.

Table 6: Results of multimodal benchmark functions.

𝐹

PSO BA CS GWO mGWO
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

𝐹8 — — — — −9958.7573 382.10737 −5697.6258 1036.3742 −5712.462 924.47382
𝐹9 65.433009 14.197664 96.065525 32.511237 33.785055 6.9716023 0 0 0 0
𝐹10 10.769295 9.1708499 17.231924 1.1118681 0.9966469 0.4914999 8.88𝐸 − 15 2.27𝐸 − 15 7.82E − 15 7.94E − 16
𝐹11 0.0173265 0.0205398 237.38699 81.345844 0.0008613 0.0038519 0.0025395 0.0066692 0 0
𝐹12 0.3185579 0.5824145 18644754 18385611 0.1635701 0.4113459 0.0478581 0.0208711 0.0469178 0.0216789
𝐹13 0.020326 0.0488385 76481054 53670684 0.3009574 1.1566959 0.6303231 0.1787968 0.6051939 0.1740609

Table 7: Results of fixed-dimension multimodal functions.

𝐹

PSO BA CS GWO mGWO
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

𝐹14 0.9980038 0 9.7544907 7.0552637 0.9980038 0 4.1298947 4.2619933 4.8165637 4.3097562
𝐹15 0.0011042 0.0003066 0.0032289 0.005698 0.0003075 1.11E − 19 0.0044241 0.0081813 0.007327 0.0098145
𝐹16 −1.0316285 2.28𝐸 − 16 −0.9908202 0.1825 −1.0316285 2.28E − 16 −1.0316285 1.75𝐸 − 09 −1.0316284 4.86𝐸 − 09

𝐹17 0.3978874 0 0.3978874 1.34E − 10 0.3978874 0 0.3978978 4.63𝐸 − 05 0.3978876 5.08𝐸 − 07

𝐹18 3 8.15E − 16 12.45 20.119315 3 1.39𝐸 − 15 7.0500022 18.11215 3.0000017 2.87𝐸 − 06

𝐹19 −3.8627821 2.24E − 15 −3.8627821 1.72𝐸 − 08 −3.8627821 2.28𝐸 − 15 −3.862402 0.0016777 −3.8611515 0.00319
𝐹20 −3.2625486 0.0609909 −3.2566017 0.0606853 −3.3219952 5.19E − 16 −3.1770991 0.26433 −3.2734635 0.0609917
𝐹21 −6.5146454 3.1931088 −5.7607751 3.1257537 −10.1532 3.65E − 15 −9.6433311 1.569109 −9.2742029 2.1934501
𝐹22 −7.9202597 3.4833672 −5.2362723 2.7999111 −10.402941 1.95E − 15 −10.402879 4.66𝐸 − 05 −10.136952 1.1884781
𝐹23 −7.8374538 3.4395208 −5.9516938 3.8940879 −10.53641 1.95E − 15 −9.724888 2.4976263 −10.536237 0.0001251

Table 9 shows the best results obtained for the
CH selection problem in WSN. The results of Table 9
show that mGWO algorithm is able to find the best
results compared to other algorithms. The results of
mGWO are closely followed by the CS and GWO
algorithms.

6. Conclusion

This paper proposed a modification to the Grey Wolf Opti-
mizer named mGWO, inspired by the hunting behavior of
grey wolves in nature. An exponential decay function is used
to balance the exploration and exploitation in the search
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Figure 3: Convergence graph of multimodal benchmark functions.
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Figure 4: Continued.
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Figure 4: Convergence graph of fixed-dimension multimodal functions.

Table 8: Results of composite functions.

𝐹

PSO BA CS GWO mGWO
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

𝐹24 375.1142 149.1547 774.141 269.3536 413.6706 177.65048 337.9168 173.3873 371.8084 194.0954
𝐹25 167.0097 31.86513 490.7166 180.3477 132.158 24.5817 133.9568 23.17741 132.3655 25.86431
𝐹26 955.6119 280.8871 1476.118 117.9418 915.0283 262.3901 943.7718 277.9337 911.9168 319.8876
𝐹27 437.6602 183.1154 1328.464 177.0158 395 267.08204 559.3846 301.082 390.904 279.606
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Figure 5: Convergence graph of composite functions.

Table 9: Comparison results of CH selection problem in WSN.

Algorithm Optimal
cost of FF FND HND LND

GA 39.798mJ 2047.1 2678.2 3337.5
PSO 39.854mJ 2034.8 2665.2 3324.6
BA 40.324mJ 1996.7 2654.8 3298.9
CS 38.412mJ 2079.2 2702.5 3372.4
GWO 38.560mJ 2073.9 2696.3 3369.8
mGWO 38.209mJ 2084.6 2714.4 3382.2

space over the course of iterations. The results proved that
the proposed algorithm benefits from high exploration in
comparison to the standard GWO.

The paper also considered the clustering problem inWSN
in which the CH selection is performed using the proposed
mGWO algorithm, which is a challenging and NP hard
problem.The results show that the proposedmethod is found
to be very effective for real-world applications due to fast
convergence and fewer chances to get stuck at local minima.
It can be concluded that the proposed algorithm is able to
outperform the current well-known and powerful algorithms
in the literature. The results prove the competence and
superiority of mGWO to existing metaheuristic algorithms
and it has an ability to become an effective tool for solving
real word optimization problems.
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