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Recent technological advances have created challenges for geneticists and a need to adapt to a wide range of new bioinformatics
tools and an expanding wealth of publicly available data (e.g., mutation databases, and software). This wide range of methods and
a diversity of file formats used in sequence analysis is a significant issue, with a considerable amount of time spent before anyone
can even attempt to analyse the genetic basis of human disorders. Another point to consider that is although many possess “just
enough” knowledge to analyse their data, they do not make full use of the tools and databases that are available and also do not
fully understand how their data was created. The primary aim of this review is to document some of the key approaches and
provide an analysis schema to make the analysis process more efficient and reliable in the context of discovering highly penetrant
causal mutations/genes.This review will also compare themethods used to identify highly penetrant variants when data is obtained
from consanguineous individuals as opposed to nonconsanguineous; and when Mendelian disorders are analysed as opposed to
common-complex disorders.

1. Introduction

Next generation sequencing (NGS) and other high through-
put technologies have brought new challenges concomitantly.
The colossal amount of information that is produced has led
researchers to look for ways of reducing the time and effort
it takes to analyse the resulting data whilst also keeping up
with the storage needs of the resulting files, which are in the
magnitude of gigabytes each. The recently emerged variant
call format (VCF) has somewhat provided a way out of this
complex issue [1]. Using a reference sequence and comparing
it with the query sequence, only the differences (i.e., variants)
between the two are encoded into a VCF file. Not only are
VCF files substantially smaller in size (e.g., for whole-exome
data, <300x in relation to BAM files which store all raw read
alignments), they alsomake the data relatively easy to analyse

since there are many bioinformatics tools (e.g., annotation
andmutation effect prediction) which accept the VCF format
as standard input. The genome analysis toolkit (GATK)
made available by the Broad Institute also provides useful
suggestions to bring a universal standard for the annotation
and filtering of variants in VCF files [2].The abovementioned
reasons have made the VCF the established format for the
sharing of genetic variation produced from large sequencing
projects (e.g., 1000 Genomes Project, NHLBI Exome Project,
also known as EVS). However the VCF does have some
disadvantages.Thefiles can be information dense and initially
difficult to understand and parse. Comprehensive informa-
tion about the VCF and its companion software VFCtools [1]
is available online (http://vcftools.sourceforge.net/).

Because of the substantial decrease in the price of
DNA sequencing and SNP chip arrays [3], there has
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been a sharp increase in the number of genetic associa-
tion studies being carried out, especially in the form of
genome-wide association studies (GWAS, statistics available
at http://www.genome.gov/gwastudies/). As whole genome
sequencing (WGS) is prohibitively expensive for large genetic
association studies [4–6], whole exome sequencing (WES)
has emerged as the attractive alternative, where only the
protein coding region of the genome (i.e., exome) is targeted
and sequenced [7]. The decision to carry out WES over WGS
is not solely influenced by the cost which currently stands
at one-third in comparison [8], but also by the fact that
most of the known Mendelian disorders (∼85%) are caused
by mutations in the exome [9]; and reliably interpreting
variation outside of the exome is still challenging as there
is little consensus on interpreting their functional effects
(even with ENCODE data [10] and noncoding variant effect
prediction tools such as CADD [11], FATHMM-MKL [12],
and GWAVA [13]). For complex diseases, WES can provide
more evidence for causality compared to GWAS, assuming
that the causal variants are exonic. This is because the
latter uses linkage disequilibrium (LD) patterns between
common markers [14] whereas WES directly associates
the variant itself with the trait/disorder. Therefore using
GWAS, especially in gene-dense regions, one cannot usually
make conclusive judgements about which gene(s) is causal
without further sequencing or functional analysis. WES has
been successfully used in identifying and/or verifying over
300 causal variants for Mendelian disorders (statistics from
http://omim.org/) (also see references [15, 16] for discussion
of the use and benefits of WES in clinical genetics). WES
currently stands at approximately $1000 for 50x read depth
(variable prices, less for larger studies). However since there
is a great deal of variation in the human genome [17], finding
the causal variant(s), especially ones with low penetrance, is
not going to be trivial. This problem can be exacerbated by
the nature of the disorder(s) analysed. It is relatively easier to
map variants causing rare monogenic diseases (when several
affected individuals/families are available for analysis), as
there is most likely to be a single variant present in the
cases that is not in the controls; but in contrast, common
complex (polygenic) disorders are much harder to dissect
when searching for causal variants.

In this paper, our aims are to (i) provide a guide for
genetic association studies dealing with sequencing data to
identify highly penetrant variants (ii) compare the different
approaches taken when data is obtained from unrelated
or consanguineous individuals, and (iii) make suggestions
about how to rank single nucleotide variation (SNV) and/or
insertion/deletions (indels) following the standard filter-
ing/ranking steps if there are several candidate variants,
using annotated variants within VCF files as examples. To
aid the process of analysing sequencing data obtained from
consanguineous individuals, we have also made available
an autozygosity mapping algorithm (AutoZplotter) which
takes VCF files as input and enables manual identification
of regions that have longer stretches of homozygosity than
would be expected by chance.

2. Stage 1: Quality Control and Variant Calling

Before any genetic analysis, it is important to understand
how the raw data were produced and processed to make
better judgements about the reliability of the data received.
Thorough quality control steps are required to ensure the
reliability of the dataset. Lack of adequate prior quality
control will inevitably lead to loss of statistical power and
increase false positive and false negative findings. Fully
comprehending each step during the creation of the dataset
will have implications on the interpretation stage, where
genotyping errors (also known as “phantom” mutations [18])
may turn out to be statistically associated (e.g., batch effects
between case and control batches) or the causal variant
may not be identified due to poorly applied quality control
(QC) and/or filtering methods. The most fitting example for
this comes from a recent primary ciliary dyskinesia (PCD)
study [19], where the causal variant was only detected after
the authors manually noticed an absence of reads in the
relevant region of the genome (personal communicationwith
authors). The subsequent variant was not only missing in
the VCF files, but also in the initial BAM files, requiring
remapping of reads. Another point of consideration from this
findingwould be that the authors knewwhere to look because
theRSPH9 gene (the p.Lys268delmutation) was one of their a
priori candidates [20]. This is also an example demonstrating
the importance of deep prior knowledge and screening for
known variants as it is impossible for one to manually check
the whole exome (or the genome) for sequencing and/or
mapping errors.

2.1. Targeted Sequencing. As far as WES projects are con-
cerned, questions about coverage arise right from the start
(Figure 1). Since knowledge concerning exons in our own
genome is far from complete, there are differing definitions
about the human exome coordinates. Therefore, the targeted
regions by the commonly used and commercially available
Agilent SureSelect [21] and the Nimblegen SeqCap EZ [22]
exome capture kits are not entirely overlapping [23]. Thus it
is possible that the missing regions of the exome due to the
chosen probe kit may turn out to have the functional region
in relation to the disorder analysed. One must also bear in
mind that the kits available for targeting the exome are not
fully efficient due to a certain quantity of poorly synthesized
and/or designed probes not being able to hybridize to the
target DNA. Next step is target enrichment where high
coverage is vital as NGS machines produce more erroneous
base calls compared to other techniques [24]; therefore,
especially for rare variant analyses, it is important to have data
with high average read depth (i.e., ≥50x).

2.2. Mapping Sequence Reads. The raw reads produced
should then be aligned to a reference genome (e.g., GRCh38,
see NCBI Genome Reference Consortium) and there are
many open sources and widely applied tools (Table 1). How-
ever, solely depending on automated methods and software
can leave many reads spanning insertions and deletions
(indels) misaligned; therefore postreviewing the data for
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Figure 1: Steps in whole-exome sequencing. Understanding how the VCF file was created is important, as it can give an idea about where
something may have gone wrong. The stages proceed from top to bottom and we have proposed “consideration points” for each step (below
each title).

Table 1: Tools for aligning reads to a reference genome.

Name References Comment
BFAST
Bowtie 2

[73]
[74]

These aligners use similar algorithms
to determine contiguous sequences;
however MAQ and BWA are widely
used and have been praised for their

computational efficiency and
multiplatform compatibility [75].

BWA
MAQ
SOAP2

[76]
[77]
[78]

These are some of themany tools built for aligning reads produced from high
throughput sequencing. Some have made speed their main purpose whereas
others have paid more attention to annotating the files produced (such as
mapping quality).

mismapping is always a good practice, especially in the can-
didate regions. Attempting to remap misaligned reads with a
lower stringency using software such as Pindel would be an
ideal way to go about solving such a problem [25]. GATK also
provides a base recalibration and indel realignment algorithm
for this purpose.

Effective variant calling depends on accurate mapping to
a dependable reference sequence. If available, using a popu-
lation specific reference genome would be most ideal to filter
out known neutral SNPs existing within the region of origin
of the analysed subjects (e.g., East-Asian reference genome
for subjects of Japanese origin). Inclusion of ambiguity codes
(e.g., IUPAC codes) for known polyallelic variants to create a
composite reference genome can also be useful (although not
essential).

2.3. Variant Calling. There are many tools available for the
identification of SNVs, indels, splice-site variants, and CNVs
present in the query sequence(s). Each variant calling tool has
advantages and disadvantages and has made compromises
relating to issues such as speed of analysis, annotation,
and reliability of the output file (Table 2). Separating true
variation from sequencing artefacts still represents a consid-
erable challenge. When dealing with very rare disorders, the
candidate regions in the output VCF (or BAM) files should
be reviewed either by reviewing the QC scores in the VCF
or by visualising the alignments in IGV [26]. Performing this
step could highlight sequencing errors such as overcoverage
(due to greater abundance of capture probes for the region
or double capturing due to poorly discriminated probes
hybridising to the same region) or undercoverage (due to
probes not hybridising because of high variability in the
region). For rare Mendelian disorders, since there is going to
be a single causal variant it is more important to make sure
that the variants in the dataset are reliable. Therefore setting
strict parameters for read depth (e.g.,≥10x), base quality score
(e.g., ≥100), and genotype quality scores (e.g., ≥100) initially
can eliminate wrong base and genotype calls.This can then be
adjusted subsequently (i.e., made less stringent) if no variants
with a strong candidacy for causality are found after filtering
(also see Best Practices section of GATK documentation for
variant analysis).

As mentioned above, there are many tools available for
the identification of variants present in the query sequence
(see Table 2). GATK [2] is one of the most established
SNP discovery and genome analysis toolkits, with extensive
documentation and helpful forums. It is a structured pro-
gramming framework which makes use of the programming
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philosophy of MapReduce to solve the data management
challenge of NGS by separating data access patterns from
analysis algorithms. GATK is constantly updated and cited
and also has a vibrant forumwhich ismaintained continually.

SAMtools [27] is a variant caller which uses a Bayesian
approach and has been used in manyWGS andWES projects
including the 1000 Genomes Project [17]. SAMtools also
offers many additional features such as alignment viewing
and conversion to a BAM file. A recent study has compared
GATK, SAMtools, and Atlas2 and found GATK to perform
best inmany settings (see reference [28] for details). However
all three were highly consistent with an overlapping rate of
∼90%. SOAPsnp is another highly used SNP and genotype
caller and is part of the reliable SOAP family of bioinformatics
tools (http://soap.genomics.org.cn/).

2.4. Additional Checks of Autozygosity. For data obtained
from consanguineous families, confirming expected autozy-
gosity (i.e., homozygous for alleles inherited from a common
ancestor) would be an additional check worth carrying out.
If the individual is the offspring of first cousins then the level
of autozygosity would be approximately 6.25% (𝐹 = 0.0625)
and 12.5% (𝐹 = 0.125) for offspring of double first cousins (or
uncle-niece unions, see Figure S1 in Supplementary Material
available online at http://dx.doi.org/10.1155/2015/923491 for a
depiction of these). These values will be higher in endog-
amous populations (e.g., for offspring of first cousins: 6.25%+
autozygosity brought about due to endogamy, see Figure
S3 for an example). Autozygosity could be checked by
inspecting long runs of homozygosity (LRoH) for each
individual by using tools such as Plink (for SNP chip data)
[29], EXCLUDEAR (for SNP chip data) [30], AgilentVariant-
Mapper (for WES data) [31], and AutoSNPa (for SNP
chip data) [32] and dividing total autozygous regions by
total length of autosomes in the human genome (can
be obtained from http://www.ensembl.org/Homo sapiens/
Location/Genome). AutoZplotter (available to download in
Supplementary Materials) that we developed takes VCF files
as input, enabling easy and reliable visualisation and analysis
of LRoH for any type of data (WGS, WES or SNP chip). The
code (written in the Python programming language) can also
be adapted relatively easily for use in analyses of other species.

3. Stage 2: Filtering/Ranking of Variants

Once the quality control process is complete and VCF
files are deemed “analysis ready,” the approach taken will
depend on the type of disorder analysed. For rare Mendelian
disorders, many filtering and/or ranking steps can be taken to
reduce the thousands of variants to a few strong candidates.
Screening previously identified genes for causal variants is
a good starting point. Carrying out this simple check will
allow the identification of the causal variant even from a
single proband thus saving time, effort, and funding. If
no previously identified variant is found in the proband
analysed, there are several stepswhich can be taken to identify
novel mutations.

3.1. Using Prior Information to Rank/Filter Variants. Locus
specific databases (see http://www.hgvs.org/dblist/glsdb.html
for a comprehensive list) and “whole-genome” mutation
databases such as HGMD [33], ClinVar [34], LOVD [35],
and OMIM [36] are very informative resources for this
task. Finding no previously identified variants indicates a
novel variant in the proband analysed. For rare Mendelian
disorders, the look for the variant can begin by removal
of known neutral and/or common variants (≥0.1%) as this
would provide a smaller subset of potentially causal variants.
This is a pragmatic choice as Mendelian disease causal
variants are likely to be very rare in the population or unique
to the proband. If the latter is true, the variant should be
absent frompublic databases. For this process to be thorough,
an automated annotation tool such as Ensembl VEP or
ANNOVARcan be used (see reference [37] for a reviewon the
caveats of using these consequence predictors). Ensembl VEP
enables incorporation of allele frequency (labelled as GMAF,
global minor allele frequency) information from the EVS and
the 1000 Genomes Project (see Supplementary Material and
Methods for details).

3.2. Using Effect Prediction Algorithms to Rank/Filter Variants.
Ranking this subset of variants based on consequence (e.g.,
stop gains would rank higher than missense) and scores
derived from mutation prediction tools (e.g., “probably
damaging” variants would rank higher than “possibly dam-
aging” according to Polyphen-2 prediction) would enable
assessment of the predicted impact of all rare mutations.
It is important to understand what is assumed at each
filtering/ranking stage; and comments are included about
each assumption and their caveats in Figure 2.

For individuals of European ancestry, a VCF file will have
between eighty and ninety thousand variants for WES (more
for individuals with African ancestry [38]); and approxi-
mately a tenth will be variants with “predicted high impact”
(also known as Φ variants, i.e., rare nonsense, missense,
splice-site acceptor or donor variants, exonic indels, and
start losses [39]). There are many algorithms which predict
the functional effect of these variants (Table 3). A large
proportion of these algorithms utilize sequence conservation
within a multiple sequence alignment (MSA) of homologous
sequences to identify intolerant substitutions, for example,
a substitution falling within a conserved region of the
alignment is less likely to be tolerated than a substitution
falling within a diverse region of the alignment (see reference
[40] for a review). A handful of these algorithms also utilize
structural properties, such as the protein secondary structure
and solvent accessible surface area, in order to boost
performance. Well known examples of a sequence-based and
structure-based algorithm are SIFT [41] and PolyPhen [42],
respectively. Newer software such as FATHMM [43] and
MutPred [44], which use state-of-the-art hidden Markov
models and machine learning paradigms, are worth using
for their performance. There are also several tools such
as CONDEL-2 [45] which combine the output of several
prediction tools to produce a consensus deleteriousness
score. Although SIFT and Polyphen are highly cited tools,
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Initial VCF file

“candidate” regions/variants

Annotation of variants

prediction tools

Identification of variants in 
control data bases

dbSNP, internal databases, EVS

Subset of “candidate” SNVs 

At this stage: need to gather available 
information about the disorder/disease under 
analysis (e.g, dominant/recessive mode of
inheritance, gene functions, and translational 
data)

Identification of candidate 
genes

Assumptions
Causal variant is most 
likely to alter the protein
sequence

Notes
Advisably, f eed the data into multiple prediction 
tools (Table 3) and apply weight according to
consistency of predictions. Rank indels, 
nonsense and splice donor/acceptor mutations in 
exons highest, then predicted “damaging” SNVs 
higher than “tolerated” ones 

Assumptions
Causal variant is most 
likely coding 

Notes
Either filter variants in noncoding
regions or use CADD C-score to rank all 
variants (or your chosen tool)

Assumptions
The variant responsible 
for Mendelian disorders 
will not be present in 
publicly available 
control databases (or
will be rare)

Notes
Rank SNVs according to frequency in 
1000 genomes project, EVS and dbSNP; 
ranking very rare/unique variants higher 
than common ones-or filter all common
ones (e.g, >1%)

Assumptions
Previous literature is 
reliable

Notes
If there are genes known to be associated 
with the disorder/pathway, rank them higher 
than the others (i.e, for PCD, the prime 
candidates would be genes affecting the 
relevant organ/organelles involved in the 
respiratory pathway such as the lung and 
cilia). GeneCards website provides 
comprehensive information about every gene

∙ Cross check amongst different 

∙ Check: 1000 genomes project, 

∙ Gene ontology terms
∙ OMIM info

∙ a priori knowledge

∙ Manual review of a priori

Figure 2: Post-VCF file procedures (example for sequencing data). Every step here can be automated through the use of pipelines and
bioinformatics tools. Whilst performing the steps listed above, one must always bear in mind the assumptions behind the procedures. Where
feasible, ranking of rare SNVs would be advised over filtering as it allows the researcher to observe all variants as a continuum from most
likely to least likely.

comparative analyses carried out by Thusberg et al. and
Shihab et al. found FATHMM, MutPred, and SNPs&GO to
perform better using the VariBench benchmarking dataset
containing missense mutations [43, 46]. For predicting the
effects of noncoding variants, FATHMM-MKL [12], GWAVA
[13], and/or CADD [11] should be used. Also Human Splice
Finder (latest: v3.0) can be used for intronic variants which
predicts whether splicing is affected by the variant or not
[47]. Many of these tools can be incorporated into the
analyses through the Ensembl website (http://www.ensembl
.org/info/docs/tools/vep/index.html) where VCF files are
annotated [48].

These prediction algorithms are, as their name suggests,
only there to make predictions about whether a variant is
expected to be functionally disruptive or not. Thus their
main purpose is to enable researchers to rank certain variants
higher than others in order for them to be studied in a
systematic way. Thus they do not “prove” anything about the
causality of the variant. The variants predicted “deleterious”
still require following up through replication and/or func-
tional studies. Also disagreements amongst different tools can
be observed which can lead to different interpretations about
the evolutionary history of the variant (e.g., same function
conserved throughout different species or a recently acquired
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function). Users of prediction algorithms should be aware
of how these algorithms derive their predictions and then
decide whether the tool can be generalized to their datasets.
For example, those interested in somatic mutations should
choose cancer-specific algorithms for example, FATHMM-
Cancer [49] and SPF-Cancer [50], given that germline vari-
ant prediction algorithms are incapable of discriminating
between cancer driver mutations and other germline muta-
tions.

3.3. Further Filtering/Ranking. With current knowledge,
there are approximately fifty synonymous mutations with
proven causality, complex traits and Mendelian disorders
combined [51]. This is a very small proportion when com-
pared to the thousands of published clinically relevant non-
synonymous (i.e., missense and nonsense) mutations. There-
fore, when filtering variants for rare monogenic disorders,
not taking noncoding variants and synonymous variants into
account in the initial stages is a pragmatic choice. If ranking
is preferred, then tools such as SilVA [52], which ranks
all synonymous variants, and CADD [11] which ranks all
variants (including synonymous variants) in the VCF files
should be used.

Highly penetrant (Mendelian or common-complex) dis-
ease causal variants are expected to be very rare; therefore
most of them should not appear in publicly available datasets.
However filtering all variants present in dbSNP which is
common practice should not be carried out as amplification
and/or sequencing errors as well as potentially causal variants
are known tomake theirway into this database (see references
[53, 54] for details). Thus use of a MAF threshold (e.g., ≤0.1%
in 1000 genomes and/or EVS) is a wiser choice in contrast to
using absence in dbSNP as a filter. Upon completion of these
steps, a smaller subset of variants with strong candidacy will
remain for further follow up to determine causality.

Another initially pragmatic choice is to filter out all
the annotations except for the “canonical” transcripts (i.e.,
longest transcript of a gene, if several exist) as this can
reduce the amount of variants present in the Ensembl VEP
(or ANNOVAR) annotated files considerably (∼5x fold).
However, this can be a problem for genes where the canonical
transcript does not contain all the exons present within the
gene, as a mutation which falls in an exon which is not
present in the canonical transcript will not be observed
in the filtered file (coded “CANONICAL” in Ensembl VEP
annotated variants).

As many online tools are expected to keep logs of
the processes undergoing in their servers, to protect the
confidentiality of genetic information, downloading a local
version of the chosen tools (or the VEP cache from the
Ensembl website) is recommended. VEP also enables the
incorporation of many other annotations (e.g., conservation
scores, is variant position present in HGMD public version,
whether variant is cited in PubMed), which will make the
screening and filtering steps more manageable.

4. Stage 3: Building Evidence for Causality

Figure 3 suggests an example route to take to help differen-
tiate causal variant(s) from noncausal ones for Mendelian
disorders. At this stage one must gather all information that
is available about the disorder and use it to determine which
inheritance pattern fits the data andwhat complications there
might be (e.g., the possibility of compound heterozygotes in
disorders which show allelic heterogeneity). Figure S2 can be
used to observe the contrast between the routes taken when
analysing Mendelian (Figure 3) and complex disorders.

4.1. Public Data as a Source of Evidence. Having a candidate
gene list based on previously published literature (e.g., by
using OMIM or a disease/pathway specific database such
as the Ciliome database [55]) and knowledge about the
biology of the disorder (e.g., biological pathways) is useful.
Software such as STRING and KEGG predicts protein-
protein interactions using a variety of sources [56, 57].
SNPs3D has a user friendly interface which is designed to
suggest candidates for different disorders [58]. UCSC Gene
Sorter (accessible from https://genome.ucsc.edu/) is another
useful tool for collating a candidate gene list as it groups
genes according to several features such as protein homology,
co-expression and gene ontology (GO) similarity. Uniprot’s
(http://www.uniprot.org/) Blast and Align functions can
provide essential information about the crucial role a certain
residue plays within a protein if it is highly conserved
throughout many species. This is especially important for
SNVs where the SNV loci itself should be causal (e.g.,
missense mutations, excludeing nonsense mutations as they
truncate the gene product, thus the deleted segment of the
protein requires further follow-up to prove causality, not just
the loci where the mutation occurred as in other SNVs).

An example of the filtering process for an autosomal
recessive disorder such as PCD is depicted in Figure 5. If
several variants pass the filtering steps, information about
the relevant genes should be gathered using databases
such as GeneCards (http://www.genecards.org/) and NCBI
Gene (http://www.ncbi.nlm.nih.gov/gene) for functional
information, GEO Profiles (http://www.ncbi.nlm.nih.gov/
geoprofiles) and Unigene (http://www.ncbi.nlm.nih.gov/
unigene) for translational data about the gene’s product;
and if available, one can check if a homologue is present
in different species using databases such as HomoloGene
(http://www.ncbi.nlm.nih.gov/homologene) and whether
a similar phenotype is observed in model organisms. For
example, if the disorder affects the cerebral cortex but the
gene product is only active in the tissues located in the foot,
then one cannot make a good argument about the identified
variant in the respective gene as being “causal.”

There are many complications that may arise depending
on the disorder such as genetic (locus) heterogeneity [59],
allelic heterogeneity [60] and incomplete penetrance [61].
Therefore gathering as many cases from the same family
is helpful. However for very rare Mendelian disorders this
may not be possible, thus it is important to seek other lines
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Collection of “ranked” 
variants per individual

Does the disease/disorder 
follow a dominant or recessive 

mode of inheritance?

Dominant Recessive

Identify most biologically plausible 
variants

tissue/region?

(e.g, knockouts)

Yes No

Return to Figure 2 and recheck
assumptions

(If possible) replicate

unrelated individuals (founder 
mutations?)

How prevalent is the 
disorder?

Common disorders (e.g, 
Finnish heritage disorders)

Dominant Recessive

Remove alleles present in 
unaffected family members

Remove heterozygote alleles 
present in other affected family 
members, and homozygotes in 
unaffected ones

Fit data into recessive model 
(i.e, allele must be in 
homozygous state in most (if 
not all) affected individuals)

Fit data into dominant model 
(i.e, allele must be in 
heterozygous state in most (if 
not all) affected individuals)

(If possible) replicate
Genotype candidate SNVs in more family

members (check for consistency)

Publish
Include as many candidate SNVs in paper
as possible for potential future analyses by 

other groups

Rank variants according to biological 
plausibility

tissue/region?

Replicated?

Publish

∗Familial disorders

∙ Predicted functional effect (see Table 3)
∙ Is the gene product active in the 

∙ Homologues in different species?
∙ Functional analyses in model organisms 

∙ Genotype allele in other related and 

∙ Predicted functional effect (see Table 3)
∙ Is the gene product active in the 

∙ Homologues in different species
∙ Functional analyses in mouse knockouts

∙ Independent cohorts

Figure 3: Finding “the one” inMendelian disorders. Searching for the causal variant (using aWES example). After potentially causal variants
are identified, one must put into practice what past literature suggests about the disorder and make certain decisions about which path to
follow in Figure 3. Familial (very rare) disorders are more likely to be following a recessive mode of inheritance; thus family data is crucial
(to rule out the possibility of de novo mutations). Also it is crucial to include as many family members as possible. For common Mendelian
disorders, if the disorder is following a recessive inheritance model, the possibility of the existence of compound heterozygotes should be
taken into account when fitting the data into a recessive model. Finally, functional postanalysis of candidate variant(s), especially in mouse
knockouts, can be crucial.This figure is here to serve as an example and by nomeans reflects an exhaustive model; there are alternative routes
that researchers can take to identify Mendelian causal variants. ∗If a consanguineous family, identifies regions where there are long runs of
homozygosity (LRoH) for each individual, and amongst these regions, the ones which are shared by the affected and not by the unaffected.
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of evidence for causality (e.g., animal models, molecular
analyses).

4.2.MappingCausal Loci within Families. For rareMendelian
disorders, familial information can be crucial.The availability
of an extended pedigree can be very informative in mapping
which variant(s) fits the mode of inheritance in the case(s)
and not in the unaffected members of the family (e.g., for
autosomal recessive mutations, confirming heterozygosity in
the parents is a must). This will provide linkage data where
its importance is best displayed by Sobreira et al. where WES
data from a single proband was sufficient in discovering
the causal variants in two different families [62]. Where
available, previously published linkage data (i.e., associating
a chromosomal region to a Mendelian disorder) should also
made use of.

Traditionally a LOD score of 3 (Prob. = 1/1000) is required
for a variant/region to be accepted as causal. Reaching this
threshold requires many large families with many affected
individuals. However this is not feasible for most disease
causal variants (which are very rare by nature) and other lines
of evidence such as animal knockouts, molecular studies and
local sequence alignments (by using UniProt as mentioned
above) are required to make a case for the causality of
variants, especially mutations which are not stop gains (e.g.,
missense).

As mentioned previously, understanding the character-
istics of a Mendelian disorder is important. If the disorder
is categorised as “familial” (i.e., occurs more in families
than by chance alone), which are usually very rare by
nature, then availability of familial data becomes crucial, as
unaffected members of the family are going to be the main
source of information when determining neutral alleles. Any
homozygous (and rare) stop gains, splice-site acceptor/donor
variants and start losses in previously identified genes would
be prime candidates.

Approach taken in families is different from the
approaches taken when analysing commonMendelian disor-
ders using unrelated individuals. For common Mendelian
disorders (e.g., Finnish Heritage disorders [63–65]), fitting
the dataset into a recessive inheritance model requires
most (if not all) affected individuals to have two copies of
the disease allele, enabling the identification of founder
mutations as they will be overrepresented in the cases. These
variants will be homozygous through endogamy and not
consanguinity.

4.3. Autozygosity Mapping. For consanguineous subjects, the
causal mutation usually lies within an autozygous region
(characterised by long regions of homozygosity, LRoH,which
are generally >5Mb, see [66]), thus checking whether any
candidate genes overlaps with an LRoH can narrow region(s)
of interest. There are several tools which can identify LRoHs
such as Plink, AutoSNPa andAgilentVariantMapper.Wehave
made available a user-friendly python script (AutoZplotter)
to plot heterozygosity/homozygosity status of variants in
VCF files to allow for manual screening of short autozygous
regions as well as LRoHs.

4.4. AutoZplotter. There are several software which can
detect long runs of homozygosity reliably (>5Mb), however
they struggle to identify regions that are shorter. There-
fore we developed AutoZplotter which plots homozygos-
ity/heterozygosity state and enables quick visualisation of
suspected autozygous regions (requires Xming or other X11
display server). These regions can then be followed up in
more detail if any overlaps with a candidate gene/region.The
input format of AutoZplotter is VCF thus it suits any type of
genetic data (e.g., SNP array, WES, WGS). AutoZplotter was
used for this purpose in a previous study by Alsaadi et al. [19].

4.5. Exceptional Cases. There can always be exceptional
cases (in consanguineous families also) such as compound
heterozygotes (i.e., individuals carrying different variants
in the two copies of the same gene). This would require
haplotype phasing and the confirmation of variant status (i.e.,
heterozygosity for one allele and absence of the other) in the
parents and the proband(s) by sequencing of PCR amplicons
containing variant or genotyping the variant directly. Beagle
and HAPI-UR are two widely used haplotype phasing tools
for their efficiency and speed [67, 68].

4.6. Identifying Highly Penetrant Variants for Common-
Complex Disorders. For common complex disorders, iden-
tifying causal variants in outbred populations has proven to
be a difficult and costly process (Supp. Figure S2); and these
disorders can have many unknowns such as the significance
of environmental factors on the disorder (see two examples
of differential environmental influence on disease/traits in
references [69, 70]) and epistasis [71]. Many of the causal
variants may be relatively rare (and almost always in het-
erozygous state) in the population introducing issues with
statistical power. Traditional GWAS do not attempt to analyse
them thus they are largely ignored, leaving a lot of heritabil-
ity of common complex disorders unexplained. Analysing
individuals with extreme phenotypes where the segregation
of disease mimics autosomal recessive disorders (e.g., in
consanguineous families) can be useful in identifying highly
penetrant causal genes/mutations for complex disorders (e.g.,
obesity and leptin genemutations [72]).The genetic influence
in these individuals is predicted to be higher and is expected
to have a single highly penetrant variant in homozygous
state.These highly penetrantmutations canmimicMendelian
disorders causal variants.Therefore similar study designs can
be used as stated above (e.g., Autozygosity/homozygosity
mapping).

5. Conclusions

The NGS era has brought data management problems to
traditional geneticists. Many data formats and bioinformatics
tools have been developed to tackle this problem. One can
easily be lost in the plethora of databases, data formats and
tools. “Which tools are out there? How do I use it? What do I
do next with the data I have?” are continually asked questions.
This review aims to guide the reader in the rapidly changing
and ever expanding world of bioinformatics. Figure 4 depicts
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Next generation 
sequencing

DNA extraction

Exome capture and 
amplification

Output: raw reads in FASTA format

Align reads to reference 
genome (e.g, hg19) using 

duplicated reads

Output: alignment files in BAM format 

Call SNPs using SOAPsnp 
and call InDels using 
SAMtools (mpileup)

Output: raw SNP and indels in CNS or SAM format

Validate variants using
GATK

Output: validated SNP and indels in VCF file format

Annotate variants in VCF 
file using Ensembl VEP 

Output: annotated SNP/inDels in VEP format

Variant effect predictions from 
SIFT, Polyphen-2, FATHMM, 

CONDEL-2, CADD

Note: these predictions can be done via Ensembl VEP

Rank/filter variants

E.g, according to consequence, candidate genes, mode of 
inheritance, autozygosity mapping and frequency in public and 
internal databases (see Figure 5 and supp. Material and Methods) 

Check literature on the 
candidate gene/variants 
using GeneCards and

PubMed

Note: autozygosity mapping is a powerful technique for 
analysis of autosomal recessive disorders in consanguineous
individuals

Autozygosity mapping using Plink and
AutoZplotter in consanguineous individuals 

BWA + use picard to mark

Figure 4: Summary of whole analysis process. DNA sample to identification of variant. The tools mentioned here are the ones we prefer to
use for a variety of reasons such as having user-friendly documentation, ease of use, performance, multiplatform compatibility, and speed.
See Supplementary Material and Methods for examples of parameters/commands to use where applicable.
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88000 SNPs and indels

35000 SNPs and indels

5000 SNPs and indels

300 SNPs and indels

1 SNV and 1 insertion

1 SNV

Homozygous state

Within suspected ciliome genes

Frequency in dbSNP, internal databases, 
EVS, and 1000 GP

Comparison with family members (affected and 
unaffected)

Number of mutations left in 
analysis

Filtering steps and notes

Φ mutations

Figure 5: Filtering steps applied to all mutations in the exome (primary ciliary dyskinesia example). After all the filtering steps in the above
figure are applied, the total will be reduced to a single candidate. The numbers here are for illustration purposes only (adapted from [39]).
Homozygosity step is added as PCD is an autosomal recessive disorder. Φ mutations are “predicted high impact” mutations as proposed by
Alsaadi et al. [39] (see PHI SO terms.txt in Supplementary data).

a summary of the analysis process from DNA extraction to
finding the causal variant, putting into perspective which file
formats are expected at each step and which bioinformatics
tools we prefer due to reasons mentioned before. Researchers
can then appreciate the stage that they are at and how many
other steps are required for completion as well as knowing
what to do at each step.

Whole exome sequencing is the current gold standard in
the discovery of highly penetrant disease causal mutations.
As knowledge on the noncoding parts of the genome can
still be considered to be in its early days, the human exome
is still a pragmatic target for many. As approx. 1600 known
Mendelian disorders (and ∼3500 when suspected ones are
included) and most common-complex disorders are still
waiting for their molecular basis to be figured out (from

http://omim.org/statistics/entry, true as of 15/07/14), future
genetic studies have much to discover. However for these
projects to be fruitful, careful planning is needed to make full
use of available tools and databases (see Table 4).

Finally, with this paper we have also made AutoZplot-
ter available (input format: VCF), which plots homozy-
gosity/heterozygosity state and enables quick visualisation
of suspected autozygous regions. This can be important
for shorter autozygous regions where other autozygosity
mappers struggle.
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Table 4: What is needed for a genetic study?

Material Notes
“Sufficient” number of
high-quality
sequencing/genotype data

Amount needed can vary from one proband and a few family members (for very rare Mendelian
disorders) to thousands of cases and controls (for certain common complex disorder/traits)

List of candidate genes Websites such as http://omim.org/ and http://ghr.nlm.nih.gov/; and software such as SNPs3D can be
helpful

Identification of variant calling
tool Such as in Table 2

Identification of variant effect
predictor tool Such as in Table 3; tools usually require conversion of VCF to VEP format (Ensembl website)

Knowledge of human
population variation databases That is, HapMap, 1000 Genomes Project, EVS, dbSNP, and internal databases

Knowledge of databases storing
information about genes and
their products

That is, OMIM, Gene (NCBI), GeneCards, Unigene (NCBI), GEO Profiles (NCBI), HomoloGene
(NCBI), and Mouse knockout databases (such as http://www.informatics.jax.org/,
http://www.tigm.org/database/ and http://www.nc3rs.org.uk/category.asp?catID=8). Search the
literature using PubMed and/or Web of Science.

Themost important factors when carrying out a genetic association study are (i) the availability of reliable data (ii) bioinformatics and biological expertise, and
(iii) careful planning.
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Marth, “Pyrobayes: an improved base caller for SNP discovery
in pyrosequences,” Nature Methods, vol. 5, no. 2, pp. 179–181,
2008.

[81] R. Li, Y. Li, X. Fang et al., “SNP detection for massively parallel
whole-genome resequencing,” Genome Research, vol. 19, no. 6,
pp. 1124–1132, 2009.

[82] D. Li, Y. Guo, H. Shao et al., “Genetic diversity, molecular
phylogeny and selection evidence of the silkworm mitochon-
dria implicated by complete resequencing of 41 genomes,” BMC
Evolutionary Biology, vol. 10, no. 1, article 81, 2010.

[83] S. Li, S. Wang, Q. Deng et al., “Identification of genome-wide
variations among three elite restorer lines for hybrid-rice,” PLoS
ONE, vol. 7, no. 2, Article ID e30952, 2012.

[84] V. Boeva, T. Popova, K. Bleakley et al., “Control-FREEC: a
tool for assessing copy number and allelic content using next-
generation sequencing data,” Bioinformatics, vol. 28, no. 3, pp.
423–425, 2012.

[85] D.Challis, J. Yu,U. S. Evani et al., “An integrative variant analysis
suite for whole exome next-generation sequencing data,” BMC
Bioinformatics, vol. 13, article 8, 2012.

[86] B. Howie, J. Marchini, and M. Stephens, “Genotype imputation
with thousands of genomes,”G3: Genes, Genomes, Genetics, vol.
1, no. 6, pp. 457–470, 2011.

[87] Y. Li, C. J. Willer, J. Ding, P. Scheet, and G. R. Abecasis, “MaCH:
using sequence and genotype data to estimate haplotypes and
unobserved genotypes,”Genetic Epidemiology, vol. 34, no. 8, pp.
816–834, 2010.

[88] N.-L. Sim, P. Kumar, J. Hu, S. Henikoff, G. Schneider, and
P. C. Ng, “SIFT web server: predicting effects of amino acid
substitutions on proteins,” Nucleic Acids Research, vol. 40, no.
1, pp. W452–W457, 2012.

[89] P. Kumar, S. Henikoff, and P. C. Ng, “Predicting the effects of
coding non-synonymous variants on protein function using the
SIFT algorithm,” Nature Protocols, vol. 4, no. 7, pp. 1073–1081,
2009.

[90] E. V. Davydov, D. L. Goode, M. Sirota, G. M. Cooper, A. Sidow,
and S. Batzoglou, “Identifying a high fraction of the human
genome to be under selective constraint using GERP++,” PLoS
Computational Biology, vol. 6, no. 12, Article ID e1001025, 2010.

[91] G. M. Cooper, D. L. Goode, S. B. Ng et al., “Single-nucleotide
evolutionary constraint scores highlight disease-causing muta-
tions,” Nature Methods, vol. 7, no. 4, pp. 250–251, 2010.



16 BioMed Research International

[92] G. M. Cooper, E. A. Stone, G. Asimenos, E. D. Green, S. Bat-
zoglou, and A. Sidow, “Distribution and intensity of constraint
in mammalian genomic sequence,” Genome Research, vol. 15,
no. 7, pp. 901–913, 2005.

[93] K. S. Pollard, M. J. Hubisz, K. R. Rosenbloom, and A. Siepel,
“Detection of nonneutral substitution rates on mammalian
phylogenies,” Genome Research, vol. 20, no. 1, pp. 110–121, 2010.

[94] Y. Bromberg and B. Rost, “SNAP: predict effect of non-
synonymous polymorphisms on function,” Nucleic Acids
Research, vol. 35, no. 11, pp. 3823–3835, 2007.

[95] L. Conde, J. M. Vaquerizas, H. Dopazo et al., “PupaSuite:
finding functional single nucleotide polymorphisms for large-
scale genotyping purposes,” Nucleic Acids Research, vol. 34, pp.
W621–W625, 2006.

[96] J. Reumers, J. Schymkowitz, J. Ferkinghoff-Borg, F. Stricher,
L. Serrano, and F. Rousseau, “SNPeffect: a database mapping
molecular phenotypic effects of human non-synonymous cod-
ing SNPs,”Nucleic Acids Research, vol. 33, pp. D527–D532, 2005.

[97] B. Reva, Y. Antipin, and C. Sander, “Predicting the functional
impact of protein mutations: application to cancer genomics,”
Nucleic Acids Research, vol. 39, no. 17, article e118, 2011.

[98] P. D. Thomas, A. Kejariwal, M. J. Campbell et al., “PANTHER:
a browsable database of gene products organized by biological
function, using curated protein family and subfamily classifica-
tion,” Nucleic Acids Research, vol. 31, pp. 334–341, 2003.

[99] H. Mi, Q. Dong, A. Muruganujan, P. Gaudet, S. Lewis, and
P. D. Thomas, “PANTHER version 7: improved phylogenetic
trees, orthologs and collaboration with the Gene Ontology
Consortium,” Nucleic Acids Research, vol. 38, no. 1, Article ID
gkp1019, pp. D204–D210, 2009.

[100] R. Calabrese, E. Capriotti, P. Fariselli, P. L. Martelli, and
R. Casadio, “Functional annotations improve the predictive
score of human disease-related mutations in proteins,” Human
Mutation, vol. 30, no. 8, pp. 1237–1244, 2009.

[101] L. Bao, M. Zhou, and Y. Cui, “nsSNPAnalyzer: identifying
disease-associated nonsynonymous single nucleotide polymor-
phisms,”Nucleic Acids Research, vol. 33, no. 2, pp.W480–W482,
2005.

[102] E. Capriotti, R. Calabrese, and R. Casadio, “Predicting the
insurgence of human genetic diseases associated to single
point protein mutations with support vector machines and
evolutionary information,” Bioinformatics, vol. 22, no. 22, pp.
2729–2734, 2006.

[103] V. Ramensky, P. Bork, and S. Sunyaev, “Human non-
synonymous SNPs: server and survey,” Nucleic Acids Research,
vol. 30, no. 17, pp. 3894–3900, 2002.

[104] C. Ferrer-Costa, J. L. Gelpı́, L. Zamakola, I. Parraga, X. de la
Cruz, andM.Orozco, “PMUT: a web-based tool for the annota-
tion of pathological mutations on proteins,” Bioinformatics, vol.
21, no. 14, pp. 3176–3178, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Anatomy 
Research International

Peptides
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 International Journal of

Volume 2014

Zoology

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Molecular Biology 
International 

Genomics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Bioinformatics
Advances in

Marine Biology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Signal Transduction
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Evolutionary Biology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Biochemistry 
Research International

Archaea
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Genetics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Virolog y

Hindawi Publishing Corporation
http://www.hindawi.com

Nucleic Acids
Journal of

Volume 2014

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Enzyme 
Research

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Microbiology


