
Research Article
A Hybrid Strategy of Differential Evolution and
Modified Particle Swarm Optimization for Numerical
Solution of a Parallel Manipulator

BingyanMao ,1,2 Zhijiang Xie,1 YongboWang,2 Heikki Handroos,2 and HuapengWu2

1State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
2Lappeenranta University of Technology, 53810 Lappeenranta, Finland

Correspondence should be addressed to Bingyan Mao; sucaogen@163.com

Received 19 July 2017; Revised 8 January 2018; Accepted 22 January 2018; Published 22 February 2018

Academic Editor: Giuseppe Fedele

Copyright © 2018 Bingyan Mao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a hybrid strategy combined with a differential evolution (DE) algorithm and a modified particle swarm
optimization (PSO), denominated as DEMPSO, to solve the nonlinear model of the forward kinematics. The proposed DEMPSO
takes the best advantage of the convergence rate of MPSO and the global optimization of DE. A comparison study between the
DEMPSO and the other optimization algorithms such as the DE algorithm, PSO algorithm, and MPSO algorithm is performed to
obtain the numerical solution of the forward kinematics of a 3-RPS parallel manipulator.The forward kinematicmodel of the 3-RPS
parallel manipulator has been developed and it is essentially a nonlinear algebraic equation which is dependent on the structure of
the mechanism. A constraint equation based on the assembly relationship is utilized to express the position and orientation of the
manipulator. Five configurations with different positions and orientations are used as an example to illustrate the effectiveness of
the proposed DEMPSO for solving the kinematic problem of parallel manipulators. And the comparison study results of DEMPSO
and the other optimization algorithms also show that DEMPSO can provide a better performance regarding the convergence rate
and global searching properties.

1. Introduction

Differential evolution (DE) is a heuristic and straightforward
strategy with the prominent features of global optimization
and only a few control parameters [1, 2]. Particle swarm
optimization (PSO) is a group theory based algorithm that
was inspired by fish schools, bird flocks, and others. The
disadvantage of PSO is that the individuals are easily influ-
enced by the best particle and best position so it may only
get the local optimum [3, 4]. The control parameters of
PSO can be modified according to the specific optimization
problems and applications [5–7]. This paper presents a
new method integrated with differential evolution (DE) and
modified particle swarm optimization (PSO). In particular,
this strategy aims to combine the advantages of DE and the
modified PSO together and then apply the hybrid algorithm
to the numerical solution of a parallel manipulator.

Parallel robots have been a hot research topic for many
years due to their superior performance such as high response
speed, high stiffness, high payload/weight ratio, low inertia,
and good dynamic performance [8–10].This paper focuses on
a spatial parallel manipulator with 3 DOFs which was devel-
oped by Lee and Shah [11]. The 3-RPS parallel manipulator
has three legs and each branch is a serial kinematic chain
[12]. To obtain the position and orientation of the moving
platform, it is necessary to define the forward kinematics of
the parallel manipulator based on the length of the branches
[13]. It should be noted that forward kinematics of parallel
manipulators is more complicated than that of serial ones,
and vice versa [14–16].

Analysis of kinematics can be divided into two approach-
es: analytical methods and numerical methods [17, 18]. In
numerical methods, the forward kinematic solution is found
by solving a nonlinear global optimization problem to find

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 9815469, 9 pages
https://doi.org/10.1155/2018/9815469

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/192730194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-1748-5599
https://doi.org/10.1155/2018/9815469

2 Mathematical Problems in Engineering

the numerical solution [19]. Many numerical calculation
methods for solving nonlinear equations have been utilized
in kinematic problems. Newton’s iteration method, together
with its improvements, is a common method that is very
efficient as regards convergence speed. However, Newton’s
iteration method is an arduous procedure which is sensitive
to initial values and involves a large number of calculation
steps [8]. Compared to PSO, the differential evolution (DE)
algorithm has received much more attention due to its
capability of global optimization [20, 21].

The nonlinearity and multiple solution properties of
the forward kinematics of a parallel manipulator make the
analytical method more difficult and sophisticated than the
numerical one. The numerical solution of the forward kine-
matics can be obtained using optimization methods such as
DE and PSO or other hybrid optimization methods [22, 23].
In this paper, somemodern intelligent optimizationmethods
will be utilized and compared with each other. A time-
saving hybrid strategy combined by differential evolution and
modified particle swarm optimization is developed for the
numerical solution of the forward kinematics of a 3-DOF
parallel manipulator.

2. A Hybrid Strategy of Differential Evolution
and Particle Swarm Optimization

The differential evolution (DE) optimization algorithm is a
simulation of the biological evolution process. It is capable
of handling nondifferentiable, nonlinear, and multimodal
objective functions. To start an optimization process, an
initial population must be randomly generated within a
predefined bound, and then a new population in the next
generation is generated through mutation, crossover, and
selection operations.

Particle swarm optimization (PSO) is a computational
algorithm that optimizes a problem by iteratively improving
a candidate solution with regard to a given measure require-
ment. The movements of the particles mimic the movement
of organisms in a bird flock or fish school and are guided by
their own best known position in the search space as well as
the entire swarm’s best known position.

Modified particle swarm optimization (MPSO) has the
user-defined constant parameters 𝜔, 𝑐1, and 𝑐2 which have a
great impact on the optimization performance. The param-
eter 𝜔 is utilized to adjust the velocity, the parameter 𝑐1 is
utilized to adjust 𝑝best(𝑡), which is the best position achieved
so far by every individual, and the parameter 𝑐2 is utilized
to adjust 𝑔best(𝑡), which is the best value obtained so far
by any particle in the population. In order to improve the
performance of PSO, time-varying acceleration coefficients
and time-varying inertia weight can be utilized. The inertia
weight can provide a balance between the local search and
global search during the optimization process:

𝜔 = (𝜔1 − 𝜔2) × (Itermax − Iter)
Itermax

+ 𝜔2, (1)

where 𝜔1 and 𝜔2 are the initial and the final inertia weight,
respectively, Iter is the current iteration number, and Itermax
is the maximum number of iterations.

By increasing the number of iterations, the weights of𝑝best(𝑡) and 𝑔best(𝑡) can have different convergence rates:

𝑐1 = (𝑐1min − 𝑐1max) × Iter
Itermax

+ 𝑐1max

𝑐2 = (𝑐2max − 𝑐2min) × Iter
Itermax

+ 𝑐2min,
(2)

where 𝑐max and 𝑐min are the maximum andminimum acceler-
ation coefficient of 𝑐1 and 𝑐2, respectively.

The hybrid strategy of DE and MPSO (DEMPSO) is the
new strategy. A key merit of DE algorithm is the efficient
global optimization. Furthermore, the diversity of the entire
population can be always maintained during the whole
evolution process, which can prevent the individuals from
falling into a local optimum. PSO, on the other hand, has the
advantage of fast convergence speed. The individual with the
best history and the best individual among the entire iteration
are saved to obtain the lowest fitness values.

Combining the advantages of DE and PSO, a new hybrid
DEMPSO strategy is proposed which aims to achieve both
fast convergence speed and efficient global optimization.
Since the population of PSO easily falls into a local optimum,
the proposed DEMPSO method uses the DE algorithm to
reduce the search space first, and then the obtained popu-
lations are taken over by the MPSO as an initial population
to get a fast convergence rate to the final global optimum.
The hybrid algorithm can obtain the global minimum value
based on the fitness function, which is built for the numerical
solution for forward kinematics of a parallel manipulator.The
procedure of the DEMPSO algorithm is illustrated as follows.

(1) Population Initialization. The individual 𝑥, with the popu-
lation number NP, is randomly generated to form an initial
population in a 𝐷-dimensional space. All the individuals
should be generated within the bounds of the solution space.
The initial individuals are generated randomly in the range
of the search space. And the associated velocities of all
particles in the population are generated randomly in the𝐷-
dimension space. Therefore, the initial individuals and the
initial velocity can be expressed as follows:

𝑋𝑖 (0) = {𝑥𝑖,1 (0) , 𝑥𝑖,2 (0) , . . . , 𝑥𝑖,𝐷 (0)}
𝑥𝑖,𝑗 (0) = 𝑥min + rand𝑖,𝑗 (0, 1) × (𝑥max − 𝑥min)
𝑉𝑖 (0) = {V𝑖,1 (0) , V𝑖,2 (0) , . . . , V𝑖,Np (0)} ,

(3)

where 1 ≤ 𝑖 ≤ Np, 1 ≤ 𝑗 ≤ 𝐷, [𝑥min, 𝑥max] is the range of
the search space, and rand(0, 1) is a random number chosen
between 0 and 1.

(2) Iteration Loop of DE. Let individual 𝑋𝑖(𝑡) denote the
mutation operation at time 𝑡. By randomly choosing three

Mathematical Problems in Engineering 3

400
20

500

20

z
 (m

m
)

10

600

0 0

700

−10
−20 −20 (

∘)

(∘
)

(a)

z
 (m

m
)

516.9998
12.0001

516.9999

5.0001

517

5.00005

517.0001

12
5

517.0002

4.9999511.9999 4.9999 (
∘)

(∘
)

(b)

Figure 1: Position of the population of DE. (a) At the beginning of the simulation; (b) on convergence.

individuals from the previous population, the mutant indi-
vidual 𝑉𝑖(𝑡 + 1) can be generated as the following equation:

𝑉𝑖 (𝑡 + 1) = 𝑋𝑟1 (𝑡) + 𝐹 (𝑋𝑟2 (𝑡) − 𝑋𝑟3 (𝑡)) , (4)

where 𝐹 is a differential weight between 0 and 1. It is a zoom
factor to control the amplification of the mutation operation.𝑟1, 𝑟2, and 𝑟3 are random integers that have been selected from
1 to NP and 𝑟1, 𝑟2, 𝑟3, and 𝑖 are not the same as each other.

The crossover operation aims to construct a new popula-
tion 𝑢𝑖,𝑗(𝑡 + 1) which is chosen from the current individuals
and mutant individuals in order to increase the diversity of
the generated individuals:

𝑈𝑖 (𝑡 + 1) = {𝑢𝑖,1 (𝑡 + 1) , 𝑢𝑖,2 (𝑡 + 1) , . . . , 𝑢𝑖,𝐷 (𝑡 + 1)}
𝑢𝑖,𝑗 (𝑡 + 1)

= {{{
V𝑖,𝑗 (𝑡 + 1) , if rand (0, 1) ≤ Cr or 𝑗 = 𝑗rand
𝑥𝑖,𝑗 (𝑡) , otherwise,

(5)

where rand(0, 1) is a random number chosen from 0 to 1,𝑗rand is an integer chosen from 1 to 𝐷 randomly, and Cr is
a crossover parameter that is randomly chosen from 0 to 1.

In the selection operation, the crossover vector𝑈𝑖(𝑡+1) is
compared to the target vector 𝑋𝑖(𝑡) by evaluating the fitness
function value based on a greedy criterion, and the vector
with a smaller fitness value is selected as the next generation
vector:

𝑋𝑖 (𝑡 + 1)
= {{{

𝑈𝑖 (𝑡 + 1) , if 𝑓 (𝑋𝑖 (𝑡)) ≥ 𝑓 (𝑈𝑖 (𝑡 + 1))
𝑋𝑖 (𝑡) , otherwise.

(6)

Update the global best part with the minimum fitness
value (𝑔best) and the personal-best part (𝑝best). Let the𝑔best
value be 𝐹1 and perform a comparison with the stopping

tolerance value 𝐸1. If 𝐹1 is less than 𝐸1, the iteration of DE
has finished. All the population and positions will continue
to the next loop of MPSO.

(3) Iteration Loop of MPSO. Set the time-varying parameters𝑐1, 𝑐2, and 𝜔 as the MPSO defined. Renew the individual
velocity as follows:

V𝑖,𝑗 (𝑡 + 1) = 𝑤 ⋅ V𝑖,𝑗 (𝑡) + 𝑐1 ⋅ rand (0, 1)
⋅ (𝑝best𝑖,𝑗 (𝑡) − 𝑥𝑖,𝑗 (𝑡)) + 𝑐2 ⋅ rand (0, 1)
⋅ (𝑔best𝑖,𝑗 (𝑡) − 𝑥𝑖,𝑗 (𝑡)) ,

(7)

where the constant parameters 𝜔, 𝑐1, and 𝑐2 are defined and
rand(0, 1) is a number randomly chosen between 0 and 1.

The new individuals are generated as follows:

𝑥𝑖,𝑗 (𝑡 + 1) = 𝑥𝑖,𝑗 (𝑡) + V𝑖,𝑗 (𝑡 + 1) . (8)

Let the 𝑔best value of MPSO be 𝐹2 and perform a
comparison with fitness value 𝐸2. If 𝐹2 is less than 𝐸2, the
iteration of MPSO has finished.

The initial population is generated by the DE algorithm,
and the stopping criterion of DE is set as the fitness value𝐹1 less than a user-defined stopping tolerance value 𝐸1
which is dependent on the specific kinematics of a parallel
manipulator.When the fitness value 𝐹1 is less than 𝐸1, the DE
population will be taken over by the MPSO algorithm. The
new velocity and new location of the population are updated
in every generation until the fitness value 𝐹2 becomes less
than the bound condition 𝐸2 satisfied.

In order to depict clearly the population moving process,
the position and difference vector distribution of the popula-
tion for the DE-based algorithm andMPSO-based algorithm
are shown in Figures 1–4.

The initial and final distributions of the DE-based pop-
ulation are shown in Figures 1(a) and 1(b), respectively.
The position of individuals of the DE-based algorithm has

4 Mathematical Problems in Engineering

−30040

−200

−100

4020

0

20

100

0

200

0

300

−20 −20
−40−40

(a)

−4
2

−2

2

0

10

2

0

4

−1
−2 −2

×10−4

×10−4

×10−4

(b)

Figure 2: Difference vector distribution of DE. (a) At the beginning of the simulation; (b) on convergence.

40020

500

20
10

600

0
0

700

−10
−20 −20

z
 (m

m
)

 (
∘)

 (∘
)

(a)

516.998
12.01

517

5.002

517.002

512

517.004

4.998
11.99 4.996

z
 (m

m
)

 (
∘)

 (∘
)

(b)

Figure 3: Position of the population of MPSO. (a) At the beginning of the simulation; (b) on convergence.

−400
50

−200

40

0

20

200

0

400

0
−20

−50 −40
(a)

−0.04
0.05

−0.02

0.01

0

0.02

0 0

0.04

−0.01
−0.05 −0.02

(b)

Figure 4: Difference vector distribution of MPSO. (a) At the beginning of the simulation; (b) on convergence.

Mathematical Problems in Engineering 5

O

Z

XY

X1

Z1
Y1

O1

B1

B2

B3

e1

e2

e3

A1

A2

A3

Figure 5: A 3-RPS parallel manipulator.

converged to 10−4. The initial and final distributions of the
MPSO-based population are shown in Figures 3(a) and 3(b),
respectively. The position of individuals of the MPSO-based
algorithm has converged to 10−3.

The individuals of the MPSO-based algorithm are not
gathered in a small space like the individuals of the DE-
based algorithm. Based on the fitness value, the best indi-
vidual of the MPSO-based algorithm will be chosen at every
generation, and the algorithm will converge when the best
individual meets the fitness value set before.

The initial and final difference vector distributions of
the DE-based algorithm are shown in Figures 2(a) and 2(b),
respectively. The initial difference vector distribution of the
MPSO-based algorithm shown in Figure 4(a) is similar to
that of the DE-based algorithm. Comparison of the final
difference vector of the MPSO-based algorithm, shown in
Figure 4(b), with that of the DE-based algorithm, shown in
Figure 2(b), indicates that the population of theMPSO-based
algorithm stops the iteration without convergence of all the
individuals, while the individuals of the DE-based algorithm
converge to a small space as the global optimization.

3. Forward Kinematics of
a Parallel Manipulator

A parallel manipulator with 3 DOFs was proposed by Fang
and Huang [12], which has been widely used in airplane
simulators, walking machines, and others.The 3-RPS parallel
robot is composed of a base platform, three legs, and amoving
platform, as shown in Figure 5. Each leg is a serial chain
consisting of a revolute (𝑟) joint, a prismatic (𝑝) joint, and
a spherical (𝑠) joint. The manipulator has three degrees of
freedom: two rotations are about the 𝑥-axis and 𝑦-axis and
one translation is along the 𝑧-axis. The 𝑝 joints are driven by
linear actuators so that the moving platform can achieve the
required position and orientation.

The global coordinate 𝑂-𝑥𝑦𝑧 is built at the center of the
base platform. The orientation of the 𝑥-axis is from point 𝑂
to point𝐴1, and the orientation of the 𝑦-axis is parallel to the
line→𝐴2𝐴3.The 𝑟 joints are evenly distributed around the base
platform as an equilateral triangle. The moving coordinate𝑂1-𝑥1𝑦1𝑧1 is built at the center of the moving platform. The
orientation of the 𝑥1-axis is from point 𝑂1 to point 𝐵1, and
the orientation of the 𝑦1-axis is parallel to the line →𝐵2𝐵3. The𝑠 joints are distributed as 𝑟 joints. For simplicity and without
loss of generality, all coordination systems abide by the right-
hand rule. The geometric parameters of the manipulator are
the radius 𝑟𝑎 of the base platform and the radius 𝑟𝑏 of the
moving platform.

Let 𝑅 and 𝑃 denote the rotation matrix and position
vector which move from the global coordinate system to the
moving coordinates, respectively.Then, the typical kinematic
chain can be denoted as a mathematical formula:

→𝐴 𝑖𝐵𝑖 = 𝑅→𝑂1𝐵𝑖 + 𝑃 − →𝑂𝐴 𝑖 𝑖 = 1, 2, 3, (9)

where →𝐴 𝑖𝐵𝑖 is a vector from point 𝐴 𝑖 to point 𝐵𝑖. The vectors→𝑂1𝐵𝑖 and →𝑂𝐴 𝑖 belong to the moving coordinates and the
global coordinates, respectively. 𝑅 is 𝑍-𝑌-𝑋 Euler rotation
transformation matrix and 𝑃 is position transformation
vector.

𝑅 = [[
[

𝑐𝛾𝑐𝛽
𝑠𝛾𝑐𝛽
−𝑠𝛽

𝑐𝛾𝑠𝛽𝑠𝛼 − 𝑠𝛾𝑐𝛼
𝑠𝛾𝑠𝛽𝑠𝛼 + 𝑐𝛾𝑐𝛼

𝑐𝛽𝑠𝛼

𝑐𝛾𝑠𝛽𝑐𝛼 + 𝑠𝛾𝑠𝛼
𝑠𝛾𝑠𝛽𝑐𝛼 − 𝑐𝛾𝑠𝛼

𝑐𝛽𝑐𝛼
]]
]
,

𝑃 = [[
[

𝑥𝑒
𝑦𝑒
𝑧𝑒
]]
]
,

(10)

where 𝑠𝛼 = sin𝛼 and 𝑐𝛼 = cos𝛼.
The position vectors of points 𝐴 𝑖 and 𝐵𝑖 with respect to

the global coordinate system and themoving coordinates can
be expressed as follows:

→𝑂𝐴 𝑖 = 𝑟𝑎 (cos𝜙𝑖, sin𝜙𝑖, 0)𝑇
→𝑂1𝐵𝑖 = 𝑟𝑏 (cos𝜙𝑖, sin𝜙𝑖, 0)𝑇

𝜙𝑖 = 2𝜋
3 (𝑖 − 1) 𝑖 = 1, 2, 3.

(11)

A constraint equation, based on the assembly relationship
where the revolute joint axis is perpendicular to the prismatic
joint axis, can be written as follows:

(𝑅→𝑂1𝐵𝑖 + 𝑃)𝑇 ⋅ 𝑒𝑖 = 0
𝑒𝑖 = 𝑟𝑎 (cos𝜑𝑖, sin𝜑𝑖, 0)𝑇 𝜑𝑖 = 𝜙𝑖 + 𝜋

2 ,
(12)

where 𝑒𝑖 is the axis of the revolute joint and its coordinate
values are shown in Table 1.

6 Mathematical Problems in Engineering

Table 1: Coordinate values of each rotation axis.

𝑒1 𝑒2 𝑒3𝑥 0 −√3/2 √3/2
𝑦 1 −1/2 −1/2

The length of each link →𝐴 𝑖𝐵𝑖, that is, the inverse kinemat-
ics of the manipulator, can be calculated as a closed chain as
follows:

𝑑𝑖 = √(𝑅→𝑂1𝐵𝑖 + 𝑃 − →𝑂𝐴 𝑖)𝑇 (𝑅→𝑂1𝐵𝑖 + 𝑃 − →𝑂𝐴 𝑖)
𝑖 = 1, 2, 3.

(13)

Given a set of lengths of the prismatic joints, the forward
kinematics is to get the position and orientation of the
moving platform.Thenumerical forward kinematic solutions
of the 3-RPS parallel manipulator are a nonlinear algebraic
equation. There are three rotations and three translations in
the transformation matrix, but only two rotations and one
translation are left in the forward kinematics since there
are three extra constraints equations. Based on the specific
structure of the parallelmanipulator, the constraint equations
can be obtained as follows:

𝑥𝑒 = 𝑓 (𝛼, 𝛽, 𝛾)
= 𝑟𝑏2 (cos 𝛾 cos𝛽 − sin 𝛾 sin𝛽 sin𝛼 − cos 𝛾 cos𝛼)

𝑦𝑒 = 𝑓 (𝛽, 𝛾) = −𝑟𝑏 ⋅ sin 𝛾 cos𝛽
𝛾 = 𝑓 (𝛼, 𝛽) = arctan(sin𝛼 sin𝛽

cos𝛼 + cos𝛽) .

(14)

Substituting (14) into (13), the inverse kinematics of (13)
can be simplified as

𝑑𝑖 = 𝑓𝑖 (𝛼, 𝛽, 𝑧𝑒) 𝑖 = 1, 2, 3. (15)

For the parallel manipulator, the analytical inverse kine-
matic solution of the above equation is straightforward. The
nominal leg length 𝑙𝑖 can be obtained easily based on the
assumed real pose 𝛼𝑟, 𝛽𝑟, and 𝑧𝑒𝑟. However, given 𝑙𝑖, the
analytical solution for the simulated pose 𝛼𝑠, 𝛽𝑠, and 𝑧𝑒𝑠
becomes very complicated and itmay havemultiple solutions.
The given 𝑙𝑖 is obtained based on the real pose 𝛼𝑟, 𝛽𝑟, and𝑧𝑒𝑟. So, the forward kinematics based on the given 𝑙𝑖 is to
let the simulated pose 𝛼𝑠, 𝛽𝑠, and 𝑧𝑒𝑠 infinitely approach the
real pose 𝛼𝑟, 𝛽𝑟, and 𝑧𝑒𝑟. The simulated pose converges to the
real pose with the convergence of the algorithm to the global
minimum. The numerical solution of this problem can be
solved byminimizing the difference between the given length𝑙𝑖 and the predicted length 𝑑𝑖 calculated from (15) to find a set
of optimized 𝛼𝑠, 𝛽𝑠, and 𝑧𝑒𝑠.The fitness function based on the
least squares method can be written as

𝑓𝑠𝑠 = min
3∑
𝑖=1

(𝑙𝑖 − 𝑓𝑖 (𝛼𝑠, 𝛽𝑠, 𝑧𝑒𝑠))2 , (16)

Table 2: Workspace of the moving platform.

Direction of𝑥-axis Direction of𝑦-axis Direction of𝑧-axis
Range of translation
(mm) 0 0 [400, 700]
Range of rotation
(deg.) [−20, 20] [−20, 20] 0

where 𝑙𝑖 is a known leg length which can be acquired from
the linear actuator and 𝑓𝑖(𝛼𝑠, 𝛽𝑠, 𝑧𝑒𝑠) is used to calculate the
predicted leg length during the optimization process.

4. Case Simulation and Results

For the manipulator studied in this work, the task of the
simulation is to obtain the end-effector pose when the
length of the legs is already known. In the simulation, the
geometric parameters of the manipulator are 𝑟𝑎 = 274mm
and 𝑟𝑏 = 158mm. The workspace of the moving platform of
the manipulator is given in Table 2.

For a specific pose selected in the workspace, for instance,𝛼𝑟 = 5∘, 𝛽𝑟 = 12∘, and 𝑧𝑒𝑟 = 517mm, through an inverse
calculated as 𝑙1 = 499.0178mm, 𝑙2 = 557.7314mm, and 𝑙3 =
534.3032mm. On the contrary, if these three-leg lengths
have been obtained from linear actuators, then the numerical
optimization task is to search for an optimal combination of𝛼𝑠, 𝛽𝑠, and 𝑧𝑒𝑠 to minimize the fitness function. In our first
simulation, the DE-, PSO-, and MPSO-based optimization
algorithms will be employed to solve this numerical problem.
The aim is to investigate the performance of each algorithm
and find a possible solution with the characteristics of fast
convergence rate and global optimization. The simulations
were implemented using Matlab R2012b on a computer with
an Intel�Core� i7-4510UCPU@2.00GHz and 7.71 GBRAM.
During simulation, the classical DE algorithm DE/rand/bin
with the control parameters of 𝐹 = 0.85 and Cr = 1 is chosen;
the PSO control parameters are chosen as 𝑐1 = 2, 𝑐2 = 2, and𝜔 = 0.9. For the control parameters of MPSO, 𝑐1 was set to
gradually decrease from 2.5 to 0.5 and 𝑐2 was set to gradually
increase from 0.5 to 2.5. The inertia weight factor 𝜔 was set
in two ways: (1) the inverse way (here, we called it MPSO1,
where the control parameter 𝜔 was set to gradually decrease
from 0.9 to 0.6) and (2) the direct way (here, we called it
MPSO2, where the control parameter 𝜔 was set to gradually
increase from 0.6 to 0.9).

Using the above parameters and given the same popula-
tion number of 30 and the same stopping criterion of 1𝑒−08,
the simulation results of the DE-, PSO-, and MPSO-based
algorithms with different iterations and computation times
are listed in Table 3. From the simulation results, it can be
seen that the computation time of the DE-based algorithm
is less than of other algorithms, but it takes more iterations
to converge; on the other hand, the MPSO1 algorithm has
the fastest convergence rate with only 560 iterations, but the
computation time is a little greater than in the DE algorithm.

Figure 6 illustrates the logarithm-based fitness function
values ofDE, PSO, andMPSOwith respect to the generations.

Mathematical Problems in Engineering 7

Table 3: Simulation results of forward kinematics with DE, PSO,
and MPSO.

Pop. number Fitness value Iteration Time (sec)
DE 30 1𝑒 − 08 3120 0.859791
PSO 30 1𝑒 − 08 1137 1.608181
MPSO1 30 1𝑒 − 08 560 1.119108
MPSO2 30 1𝑒 − 08 2433 3.561454

0 500 1000 1500 2000 2500 3000 3500
Iteration

Fi
tn

es
s v

al
ue

 (l
og

)

DE
PSO

106

104

102

100

10−2

10−4

10−6

10−8

－０３／1

－０３／2

Figure 6: Logarithm of fitness function values with DE, PSO, and
MPSO.

It can be seen that the convergence rate of the DE-based
algorithm declines gradually. The fitness value of PSO and
MPSO1 drops very fast at the beginning, but the decline
becomes gentler after a number of iterations.The fitness value
of MPSO2 has not got any changes before 2000 generations
but it suddenly converged after that period; this is a very
interesting characteristic which would be utilized. In our
proposed hybridmethod, that is, DEMPSO, theDE algorithm
part is employed to bypass the steady-state part of MPSO2,
and the MPSO2 part is used to obtain a fast convergence rate.

For the proposed DEMPSO algorithm, besides the con-
trol parameter selection, one important issue is to decide the
break fitness value 𝐸1 for the DE algorithm since this value
will influence the total computation time after MPSO2 takes
over the optimization process. Table 4 presents the DEMPSO
simulation results of the forward kinematics with different
break fitness values of DE. For different break fitness values𝐸1 of DE and the same stopping fitness value 𝐸2 of MPSO2,
the function ran 30 times to get average results of the total
iterations of DE and MPSO2, the computation time of DE at
break point 𝐸1, and the total computation time of DEMPSO
at terminal point 𝐸2. From the table, it can be seen that the
optimization will spend the least amount of time when the
fitness value 𝐸1 is equal to 70.

By selecting the fitness value 𝐸1 as a break point of
DEMPSO and DEPSO, the comparison results of forward

0 500 1000 1500 2000 2500 3000 3500
Iteration

Fi
tn

es
s v

al
ue

 (l
og

)

DE
PSO DEPSO

DEMPSO

106

104

102

100

10−2

10−4

10−6

10−8

－０３／1

－０３／2

Figure 7: Logarithm-based fitness values with DE, PSO, MPSO,
DEPSO, and DEMPSO.

kinematics with DEMPSO, DEPSO, DE, PSO, andMPSO are
listed in Table 5. The logarithm-based fitness function values
with respect to iterations are plotted in Figure 7. It can be
clearly seen that DEMPSO has great advantage not only as
regards convergence speed but also as regards the number of
iterations for solving the forward kinematic problem of the
parallel manipulator. From Figure 7, it is also shown that the
proposedDEMPSOhas successfully bypassed the steady state
of MPSO2 and inherited its steepest descent properties.

To validate the effectiveness of the proposed DEMPSO
algorithm, in our second simulation, we randomly select
five poses in the workspace and calculate the relevant leg
lengths through inverse kinematics. DEMPSO was employed
to search for the optimumpose of the 3-RPSmoving platform
for the given leg lengths. Table 6 shows the final results
for the five different pose situations of the 3-RPS parallel
manipulator. From the table, it can be seen that the searched
pose value has approached the real pose value with a very
small error value (≈1𝑒−5) when the termination fitness value𝐸2 is set as 1𝑒 − 8. The computation time is almost the same
for different pose situations.

5. Conclusions

In this paper, a hybrid strategy combinedwithDE andMPSO,
termed DEMPSO, is developed to get the numerical solution
of parallel manipulator forward kinematics. The proposed
hybridmethod benefits from the efficient global optimization
of DE and the fast convergence rate of MPSO; meanwhile, it
avoids the possible local optimization of MPSO. Using this
method, the search bounds can be narrowed by the DE-based
algorithm subtly; afterwards, the MPSO, with its fast rate
of convergence, can obtain the global optimization in this
narrowed search space.

8 Mathematical Problems in Engineering

Table 4: Simulation results of forward kinematics with DEMPSO for different fitness values of DE.

𝐸1 𝐸2 Iteration of DE Iteration of MPSO2 Break time of DE (sec) Total time of DEMPSO (sec)
80 1𝑒 − 08 225 1030 0.017000 0.182367
75 1𝑒 − 08 224 77 0.032000 0.099333
70 1𝑒 − 08 235 81 0.031000 0.096767
60 1𝑒 − 08 246 84 0.047000 0.098933
50 1𝑒 − 08 281 62 0.050000 0.104567
10 1𝑒 − 08 400 68 0.060000 0.104100
1 1𝑒 − 08 688 42 0.060000 0.127433
0.5 1𝑒 − 08 796 42 0.080000 0.142100

Table 5: Comparison results of forward kinematics with DEMPSO, DEPSO, DE, and PSO.

Pop. number Fitness error Iteration Time (sec)
DEMPSO 30 1𝑒 − 08 267 0.076401
DEPSO 30 1𝑒 − 08 2628 2.244032
DE 30 1𝑒 − 08 3120 0.859791
PSO 30 1𝑒 − 08 1137 1.608181
MPSO1 30 1𝑒 − 08 560 1.119108
MPSO2 30 1𝑒 − 08 2433 3.561454

Table 6: Simulation results for different situations with DEMPSO.

Number Length of leg (mm) Real pose DEMPSO Error ∗ 10−4 Fitness error Time (sec)

1
𝐿1: 499.018 𝛼𝑟: 5∘ 𝛼𝑠: 4.9999∘ 0.4142 7.6010𝑒 − 08 0.081441𝐿2: 557.731 𝛽𝑟: 12∘ 𝛽𝑠: 12.0000∘ 0.8340
𝐿3: 534.303 𝑍𝑒𝑟: 517mm 𝑍𝑒𝑠: 517.0000 0.2991

2
𝐿1: 489.714 𝛼𝑟: −3∘ 𝛼𝑠: −3.0000∘ 0.0303

3.4300𝑒 − 08 0.135116𝐿2: 506.550 𝛽𝑟: 6∘ 𝛽𝑠: 6.0000∘ 0.1344
𝐿3: 520.611 𝑍𝑒𝑟: 492mm 𝑍𝑒𝑠: 491.9999 1.0628

3
𝐿1: 701.251 𝛼𝑟: 13∘ 𝛼𝑠: 13.0000∘ −0.1310

6.2684𝑒 − 08 0.087767𝐿2: 656.309 𝛽𝑟: −18∘ 𝛽𝑠: −18.0000∘ 0.09136
𝐿3: 600.050 𝑍𝑒𝑟: 641mm 𝑍𝑒𝑠: 640.9999 −1.4288

4
𝐿1: 613.344 𝛼𝑟: −12∘ 𝛼𝑠: −12.0000∘ −0.2467 5.7662𝑒 − 08 0.099704𝐿2: 558.392 𝛽𝑟: −7∘ 𝛽𝑠: −7.0000∘ 0.4117
𝐿3: 613.051 𝑍𝑒𝑟: 583mm 𝑍𝑒𝑠: 583.0001 1.0263

5
𝐿1: 655.862 𝛼𝑟: 16∘ 𝛼𝑠: 16.0000∘ 0.2104

8.8969𝑒 − 08 0.116486𝐿2: 767.441 𝛽𝑟: 19∘ 𝛽𝑠: 19.0001∘ 0.8855
𝐿3: 694.392 𝑍𝑒𝑟: 695mm 𝑍𝑒𝑠: 694.9999 −0.8913

To validate the proposed hybrid optimization method,
a 3-RPS parallel manipulator was used as an example to
numerically solve the nonlinear forward kinematics. In order
to get the position and orientation of the moving platform
of the manipulator, the algorithms are utilized to solve the
constructed fitness function. The comparison study of the
proposed DEMPSO algorithm and the DE, PSO, and MPSO
algorithms showed that DEMPSO can obtain the best per-
formance for the numerical solution of parallel manipulator
forward kinematics. Regarding the general case of nondif-
ferentiable, nonlinear, and multimodal objective functions,
further benchmark simulation should be carried out to verify
the universality of the proposed hybrid DEMPSO algorithm.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

References

[1] R. Storn and K. Price, “Differential Evolution - A Simple and
Efficient Heuristic for Global Optimization over Continuous
Spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[2] D. Karaboǧa and S. Ökdem, “A simple and global optimization
algorithm for engineering problems: Differential evolution

Mathematical Problems in Engineering 9

algorithm,” Turkish Journal of Electrical Engineering & Com-
puter Sciences, vol. 12, no. 1, pp. 53–60, 2004.

[3] J. Kennedy, “Particle swarm: social adaptation of knowledge,” in
Proceedings of the IEEE International Conference on Evolution-
ary Computation (ICEC ’97), 1997.

[4] J. Kennedy, “Particle swarm optimization,” in Encyclopedia of
Machine Learning, pp. 760–766, Springer US, Boston, MA,
USA, 2011.

[5] J. Kennedy and R. C. Eberhart, “A discrete binary version
of the particle swarm algorithm,” in Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, vol.
5, 1997.

[6] M. Clerc, “The swarm and the queen: Towards a deterministic
and adaptive particle swarm optimization,” in Proceedings of
the 1999 Congress on Evolutionary Computation, CEC 1999, pp.
1951–1957, Washington, DC, USA, July 1999.

[7] M. Clerc and J. Kennedy, “The particle swarm-explosion, sta-
bility, and convergence in a multidimensional complex space,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 1,
pp. 58–73, 2002.

[8] Y. Luo and Q. Liu, “Chaotic findingmethod of position forward
kinematics of 3-DOF parallel robot,” in Proceedings of the 3rd
International Symposium on Intelligent Information Technology
Application, IITA 2009, pp. 44–47, Shanghai, China, November
2009.

[9] A. Ramezan Shirazi, M. M. Seyyed Fakhrabadi, and A. Ghan-
bari, “Analysis and optimization of the 5-RPUR parallel manip-
ulator,” Advanced Robotics, vol. 28, no. 15, pp. 1021–1031, 2014.

[10] H. Zhang, T. Ren, and M. Pazilai, “Forward position solution
of 3-RPS in-parallel manipulator based on particle swarm
optimization,” in Proceedings of the 26th Chinese Control and
Decision Conference, CCDC 2014, pp. 4171–4177, Changsha,
China, June 2014.

[11] K.-M. Lee and D. K. Shah, “Kinematic Analysis of a Three-
Degrees-of-Freedom In-Parallel Actuated Manipulator,” IEEE
Journal on Robotics and Automation, vol. 4, no. 3, pp. 354–360,
1988.

[12] Y. Fang and Z. Huang, “Kinematics of a three-degree-of-
freedom in-parallel actuated manipulator mechanism,” Mech-
anism and Machine Theory, vol. 32, no. 7, pp. 789–796, 1997.

[13] G. Abbasnejad, S. Zarkandi, and M. Imani, “Forward kinemat-
ics analysis of a 3-PRS parallel manipulator,”World Academy of
Science, Engineering and Technology, vol. 37, pp. 329–335, 2010.

[14] J. Gallardo, H. Orozco, and J. M. Rico, “Kinematics of 3-
RPS parallel manipulators by means of screw theory,” The
International Journal of Advanced Manufacturing Technology,
vol. 36, no. 5-6, pp. 598–605, 2008.

[15] S. S. Shi, Y. T. Song, Y. Cheng et al., “Design and implementation
of storage cask system for EAST articulated inspection arm
(AIA) robot,” Journal of Fusion Energy, vol. 34, no. 4, article no.
A008, pp. 711–716, 2015.

[16] G. Cui, H. Zhang, D. Zhang, and F. Xu, “Analysis of the
kinematic accuracy reliability of a 3-DOF parallel robot manip-
ulator,” International Journal of Advanced Robotic Systems, vol.
12, 2015.

[17] S. Shi, Y. Song, Q. Yang et al., “Numerical analysis of MD events
and preliminary thermal calculation for KTX vacuum vessel,”
Fusion Engineering and Design, vol. 88, no. 12, pp. 3180–3184,
2013.

[18] R. Chandra and L. Rolland, “Global–local population memetic
algorithm for solving the forward kinematics of parallel manip-
ulators,” Connection Science, vol. 27, no. 1, pp. 22–39, 2015.

[19] W. Wang, Q. Li, F. He, and P. Allaire, “Numerical and experi-
mental stability investigation of a flexible rotor on two different
tilting pad bearing configurations,” International Journal of
Rotating Machinery, vol. 2014, Article ID 697925, 11 pages, 2014.

[20] X.-S. Wang, M.-L. Hao, and Y.-H. Cheng, “On the use of
differential evolution for forward kinematics of parallel manip-
ulators,” Applied Mathematics and Computation, vol. 205, no. 2,
pp. 760–769, 2008.

[21] N. N. Son and P. H. A. Ho, “Adaptive MIMO Neural Network
Model Optimized by Differential Evolution Algorithm for
Manipulator Kinematic System Identification,” 2014.

[22] Z.-F. Hao, G.-H. Guo, and H. Huang, “A particle swarm
optimization algorithm with differential evolution,” in Proceed-
ings of the International Conference on Machine Learning and
Cybernetics, pp. 1031–1035, IEEE, Hong Kong, China, August
2007.

[23] M. Pant, R.Thangaraj, C. Grosan, andA.Abraham, “Hybrid dif-
ferential evolution - particle swarm optimization algorithm for
solving global optimization problems,” in Proceedings of the 3rd
International Conference on Digital Information Management,
ICDIM 2008, pp. 18–24, London, UK, November 2008.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

