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Eye localization is a fundamental process in many facial analyses. In practical use, it is often challenged by illumination, head pose,
facial expression, occlusion, and other factors. It remains great difficulty to achieve high accuracy with short prediction time and
low training cost at the same time. This paper presents a novel eye localization approach which explores only one-layer convolution
map by eye template using a BP network. Results showed that the proposed method is robust to handle many difficult situations. In
experiments, accuracy of 98% and 96%, respectively, on the BioID and LFPW test sets could be achieved in 10 fps prediction rate
with only 15-minute training cost. In comparison with other robust models, the proposed method could obtain similar best results

with greatly reduced training time and high prediction speed.

1. Introduction

Eye localization is essential to many face analyses. In analysis
of the human sentiment, eye focus, and head pose, the loca-
tion of the eye is indispensable to extract the corresponding
information there [1]. In face tracing, eye localization is often
required in real time. In face recognition, many algorithms
ask for the alignment of the face images based on eye location
[2]. Inaccurate location may result in the failure of the
recognition [3, 4].

However, real-world eye localization is filled with chal-
lenges. Face pictures are commonly taken by a projection
from the 3D space to the 2D plane. Appearance of the face
image could be influenced by the head pose, facial expression,
and illumination. Texture around eyes is therefore full of
change. Moreover, eyes may be occluded by stufts like glasses
and hair, as shown in Figure 1. To work in any unexpected
cases, the algorithm should be robust to those impacts.

In the design of the eye localization algorithm in practical
use, prediction accuracy, rate, and the training cost are the
most concerned factors. A robust algorithm should keep high
prediction accuracy for varying cases with diverse face poses,

facial expressions in complex environment with occlusion,
and illumination changes. For real time applications, high
prediction rate is required. For some online learning systems
like the one used for public security, short training time is
also in demand to quickly adapt the algorithm to different
working places. Low training cost is also of benefit for the
tuning of the algorithm. To improve the accuracy in the diffi-
cult environment, complex model is often applied. However,
the over complicated model will increase the training cost
and the prediction time. How to select an approach with
enough complexity to achieve high prediction accuracy, high
prediction rate, and low training cost at the same time is still
a challenge.

Eye localization approaches could be mainly divided into
the texture based and the structure based. Texture based
methods [5-8] learn the features from the image textures. For
the methods exploring local textures [5, 6], high prediction
rate could be achieved with simple training. However, they
are usually not robust to the situation with occlusion and
distortion due to the limited information from the local area.
On the other hand, methods like [7, 8] study the global texture
feature from entire face image by convolution networks. High



FIGURE 1: Eye localization result using our method.

prediction accuracy could be obtained by these approaches
with high prediction rate. However, the training cost becomes
considerable. A long training time is required due to a large
number of the model parameters. Proper selection of the
model parameters often needs repeated test as well. The
structure based approaches [9-12] explore the predefined
critical facial points. Eye locations could be detected mainly
by the structure information. Although high accuracy could
be achieved by a simple training, the prediction often
involves an iterative optimization. And the iteration times
and predication accuracy highly depend on the initialization.
Therefore, the prediction accuracy and rate are usually not
stable.

In this study, it was found that there is regular response
distribution on the convolution map generated by eye
template. This distribution reflects the spatial relationship
among the major facial objects. By a nonlinear learning
model, such distribution could be explored to predict the
location of the eyes. Instead of using local response like
conventional template methods, global information could
be explored according to such distribution. In this way, eye
locations could be accurately predicted and even occlusion
or distortion occurs. Besides, high prediction rate could
be expected with a noniterative prediction model. To this
end, the convolutional networks [7, 8] could be explored.
However, conventional convolutional networks learn from
the raw image, which may need more layers to map the
complex nonlinear relation between the face image and eye
locations. On the other hand, convolution map produced
by eye template contains concise distribution information,
where different facial objects have stable response patterns.
Since many unnecessary textures are ignored, distribution
could be learned using relatively shallow networks and the
training time can be much reduced.

Based on this principle, an efficient and robust eye
location algorithm is proposed in this paper. The algorithm
explores the face convolution map by the eye template using a
BP network. To enhance the performance of the eye template,
a novel template training method was proposed by noise
suppression control. Besides, a FFT- (fast Fourier transform-)
based convolution approach was designed to further improve
the training and prediction speed. Eventually, the proposed
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algorithm could achieve accuracy of 98% and 96%, respec-
tively, on the BioID [13] and LFPW [14] test sets with a
prediction rate of 10 fps. However, the training time was only
15 minutes for 13,466 samples.

The rest of the paper is organized as follows. Section 2
reviews the related work on eye detection. Section 3 describes
the finding of the convolution distribution. Section 4 gives
a detailed description of the proposed approach. Section 5
discusses the experiments and results. Conclusion is given in
Section 6.

2. Related Work

Eye localization techniques have been greatly developed in
recent years. According to the properties of the explored
features, methods could be mainly divided into two classes:
the structure based and the texture based approaches.

The structure based approaches explore some critical
points on a specific face structure model for the prediction.
Typical structure based approaches include ASM [9] and
AAM [11]. In these methods, eye locations are estimated by
the structure information and the local texture around the
points through an iterative process. The iteration time and
the prediction accuracy are affected by the initial structure.
Moreover, the optimization employs a least square method
whose robustness is poor to the case with occlusion.

The texture based approaches extract the face texture
to predict the locations of the eyes. Typical structure based
approaches include [5, 7, 8, 15]. Instead of using limited
critical points by the structure based approach, all the textures
from the entire face image could be explored. Previous
studies [7] have showed the robustness of the face textures
to occlusion and distortion. The texture based approaches are
usually noniterative. For the extraction of the texture features,
approaches like convolution [5, 7], LBP [16], HOG [17],
HAAR [18], and so forth are commonly used. Within them,
best prediction accuracy has been reported by the the con-
volution based approach [7, 8]. Like other texture extraction,
convolution operation is also computation intensive since the
whole image needs to be scanned over by a texture window.
However, it was also found that the convolution feature
extraction can be well accelerated in frequency domain by
FFT.

Currently, there are mainly two kinds of eye localization
using convolution feature extraction. Methods like [5, 19, 20]
tried to explore the peak response by a predefined template
(as the convolution kernel) with an ideal eye pattern. Since the
convolution response of the eye template on the other facial
objects like cheek or lip was hard to explain, the remaining
part of the response map was ignored, and eyes were only
located by the peak response. These approaches have low
training cost and high prediction rate. But they are not robust
to the occlusion and changing face pose, since the response
on the eye by such fixed eye template will greatly decrease
in these situations. Prediction by the peak response may
eventually fail in these cases. In contrast to exploring the peak
response by the complex eye template, other methods try to
code the face by the templates of basic image elements, most
of which are line segments. Relation between the eye locations
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and the code distribution of the face could be learned by
nonlinear models. Due to the use of global information, the
prediction accuracy could be improved and the effects of
occlusion and distortion by pose changes could be relieved.
However, such nonlinear relationship is usually complex.
Models used in those approaches such as Deep CNN (7, 8] are
commonly with a large number of parameters, which leads to
a costly training phase and a low prediction rate. Moreover,
search of the optimal setting of these complex models is also
difficult.

In this paper, it was found that there is relative stable
global distribution pattern in the convolution response gen-
erated by the eye template and the face image. Based on this
phenomenon, a novel eye location approach is proposed. This
approach explored the global face information produced by
the eye template for location prediction to avoid arbitrary
decision by only the peak response. Meanwhile, using specific
eye template rather than the randomly learned kernels, the
convolutional network could be greatly simplified with only
one layer. Properties of the response distribution as the new
finding will be described in Section 4. Section 5 gives the
proposed algorithm based on these findings.

3. Regulation on the Convolution
Response Map by Eye Template

The global information of the convolution response map
by eye template has long been ignored, since the response
distribution of the face is not explicit. Therefore, only the
peak response was evaluated to indicate the location of
the eyes, as the eye templates normally have the largest
convolution response value at the place of the eyes. However,
these approaches are usually with low prediction accuracy in
practical use. The facial expression, occlusion, and changing
pose will all affect the appearance of the eyes, which will
lead to lower response there. Moreover, it is also difficult to
distinguish the left eyes from the right.

However, it was found in the experiments that the
convolution response map of the face image by eye template
has regular global distribution, where the facial objects like
nose and mouth have relatively stable patterns.

To demonstrate this phenomenon, an experiment which
tests the similarity of the response samples from the same
facial object has been conducted. KL distance [21] was used
to quantitatively measure the similarities of those response
patterns as follows:

p)
KL = v)In ——,

(plla)= 2 pO)In ) M
where p and q are the two test distributions. KL tends to be
small when p and g are similar.

In the experiments, 100 front face images were randomly
selected from the BioID test set. They were scaled to 128 x 128
and preprocessed to remove the shadow effects by Tan-Triggs
[22]. 100 convolution response maps were further generated
by a pretrained eye template as shown in Figure 2(a). Five
comparison groups (rows (b), (), (d), (e), and (f) in Figure 2)
were defined by the cropped texture samples at five locations

(with the color squares and center points) of the left eye (red),
right eye (orange), nose (green), left mouth corner (blue),
and right mouth corner (black). A texture sample was picked
up from each group as the reference to compare with the
other samples in the same group with KL distance. In KL
measurement, p (in the first column of Figure 2) was used
for the reference texture and g for the texture samples in the
same group. p and g were all normalized to [0, 1]. Zero value
is replaced by 10~ to avoid the zero division. To demonstrate
the similarity of the samples in each facial object group, a
group (row (g) in Figure 2) with randomly cropped textures
over the face images was also prepared for comparison.
Additional group (row (h) in Figure 2) formed by the samples
from the right eye with occlusions was prepared for study
as well. Colors were used to enhance the visibility of the
response maps with the increasing value from blue to red.

From Figure 2, stable responses of the eyes, noses, and
mouths ((b)-(g)) can be observed. The average KL distances
of these groups were about 2.23, 2.85, 4.35, 5.34, and 5.38,
which were significantly smaller than those of the random
group T' = 12.78. This indicates the similarity of the response
patterns of the samples from the same facial object.

From Figures 2(b) and 2(c), it can be observed that the
distributions of the textures of the left and right eyes are
stable unimodal. However similarity between the two eyes is
also evident, which implies the difficulty to tell the difference
from the left to the right using only the peak response. The
distribution of nose responses in Figure 2(d) is multimodal
with the peak values in the half part of the stable M pattern.
The average KL distance in nose group is relatively bigger than
that of eyes, which indicates more diversity in this area. The
distributions of the left (Figure 2(e)) and right (Figure 2(f))
mouth corners also showed regular unimodal patterns with
more variation than that of the mouth. As illustrated in
Figure 2(h), the distribution of the samples from occluded
eye has irregular pattern and is more similar to the randomly
selected patches in group (g) with the average KL distance
8.39.

From the above experiments, it could be noted that a
relative stable global distribution pattern could be achieved
using convolution by the eye template. The convolution
responses of the facial objects have distinctive and stable
patterns. These properties could be explored to form a
stable spatial relationship between the eye locations and the
positions of other facial objects. Even when the information
of part of the face is destroyed by the occlusion or distortion,
the location of the eyes could also be predicted from the rest
of the stable patterns.

4. Architecture

The architecture of the proposed eye location model mainly
consists of 3 stages, that is, convolutional feature extraction,
downsampling, and a BP neuronetwork as illustrated in
Figure 3. In contrast to many other convolutional networks,
only one convolution layer was employed in our work.
Moreover, the pretrained eye templates were used as the con-
volution kernels. Reduced convolution layers could simplify
the model and significantly short the training time, while
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FIGURE 3: Architecture of the proposed eye localization model.

the feature extraction ability may be limited. However, it was
found that by proper preprocessing and selection of the con-
volution kernels, the relationship between the eye locations,
and the convolution response could be well learned by a BP
network. For image preprocessing, the Tan-Triggs method

was selected to reduce the illumination effects. The eye tem-
plates were trained by a proposed Bi-Pupil ASEF approach.
Convolution operations were implemented by a FFT-based
method to further reduce the computation. Details of these
approaches are given in the following subsections.
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4.1. Eye Template Training by Bi-Pupil ASEF. The eye tem-
plates are trained by a proposed Bi-Pupil ASEF which is based
on ASEF [5]. In ASEEF, an eye template sample could be given
by each eye image sample with a specific response function.
The eye template could be obtained by averaging the template
samples to stress the features in common. At the location of
the eyes, peak response could be normally observed by the
ASEF templates. To efficiently synthesize the characters of the
left and right eyes for feature extraction, a modified response
function was explored in the proposed Bi-Pupil ASEE And a
multieye template set was employed to cope with the change
of scale and rotation.

4.1.1. Bi-Pupil Response Function. It was found the response
maps generated by the left and right eyes have certain
relations. To efliciently generate response maps and reduce
the cost of the separate training of the two eyes, a Bi-Pupil
response function has been proposed instead of the one used
in ASEF. Consider

g(xy) = o () =)o | e—((x—xrg%(yfyref)/az’ )
where (Xie, Yie)> (X1e> Vye)> Tespectively, give the positions of
the left and right eyes. By this function, similar high responses
could be achieved on both eyes. The convolution response
map could be taken as the average of the ones by left and
right eyes templates. However, the training task is reduced
to only one template for two eyes. Moreover, by average of
the two eyes, the coupling of the template to certain samples
could be further decreased. As the conventional ASEF, the
Bi-Pupil ASEF eye template training is noniterative. With
the increased number of the training samples, the template
eventually converges. Therefore, the well trained eye template
could also be used to other data sets.

4.1.2. Change Invariant Multieye Template Set. To make the
template invariant to the changes like eye closing, scaling,

and rotation in the real-world use a multieye template set was
generated with 3 rotation types in 3 scale levels as illustrated
in Figure 4. Accordingly, nine convolution response maps
were produced to code the face with the concerns of these
situations.

4.2. FFT-Based Convolution Method. In the ASEF based
feature extraction, the convolution of the face image and
the eye template is implemented by dot product in the
frequency domain through FFT. Although FFT could reduce
the computation for convolution, it will also bring the
frequency effects on the image edge, where the response may
be wrongly computed with the periodic edge information
from the other side. To mitigate such effects, a cosine window
approach [5] has been proposed. However, it was found such
approach may fail due to the greatly reduced eye texture
when the eyes are not in the central zone of the image. To
reduce the computation for convolution operation without
introducing additional errors in practical use, a modified
FFT-based approach was proposed as illustrated in Figure 5.

We use a zero filled window function to reduce the
frequency effects. Comparing to the cosine window method,
the zero filled window function is applied on the eyes
templates other than the face images. This method can avoid
the reduction of the eye texture which happens in the cosine
window method. To keep the feature extraction ability and
to reduce the frequency effects, the size of zero filled area on
the eye templates should be chosen carefully. Based on our
experience, this method, that is, only keeping the eyes texture
and filling the other area with zeros on the templates, is a good
choice. In our experiment, the size of the face images is 128 x
128, and the size of the eye region is approximately 33 x 33.
According to the size of the eye region, only the 33 x 33 center
area of eye templates is retained.

After the fringe of the eye template is zeroed out, the
zero filled eye template and the preprocessed eye image are
transformed by FFT. With an IFFT on the dot product of
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FIGURE 6: The structure of the two-level cascade enhancement.

the two frequency maps, an initial convolution map could be
achieved. By cutting out the inaccurate edges with a width of
16 pixels, the final convolution result of 96 x 96 is obtained.
Such result is the same to that by normal convolution.

To demonstrate the effect of the FFT-based approach
for reducing the convolution computation, a computation
complexity analysis is given as follows. The analysis is only
based on the multiplication, since it is the most time-
consuming operation. Given N the face image width and M
the eye templates, the total number of multiplications in a
normal convolution in the spatial domain is

Cspatial =0 (M2 (N -M+ 1)2) . (3)

With 3 FFT (two FFT and one IFFT) and the product of
the complex matrices in frequency domain, the multiplica-
tion number of the FFT-based convolution could be

Cireq = O (3N?log N +4N?). 4)

As in this experiment, N = 128 and M = 33, for
one convolution map, about 10,000,000 multiplications are
required for the normal convolution and 40,0000 for the
FFT-based approach. Considering 9 maps by the multieye
templates, the reduction of the computation is significant.
Decreasing of the training and prediction time could benefit
from such reduction of convolution computation.

4.3. The BP Network and the Cascade Enhancement. Before
the further processing, the convolution response maps were
firstly normalized with the mean 0 and the standard deviation
1.0. It was found such normalization is significant to improve
the prediction accuracy, since the unbalance between the
distributions of the response maps could be well reduced. To
improve the invariance of the extracted features, max pooling
was employed to downsample the normalized response maps
to 16 x 16. The nine downsampled matrices were further
vectorized and catenated as a vector with the length of 2304
to input to the BP network. The fully connected BP network
employed the sigmoid activation function as illustrated in
Figure 3. As the output, the location coordinates were also
normalized into [0, 1]. The BP network is trained by conjugate
gradient descent with the least square error between the label
and prediction as the error function. By comparison, a 4-
layer network with the hidden neurons of [30-20-20-10] was
selected considering the prediction accuracy and training
time.

To further improve the prediction accuracy, a two-
level cascade enhancement scheme has been proposed as
illustrated in Figure 6, just as [7] does. The first level gives
the initial positions of the eyes from the entire face image.
Then, the location of each eye was revised in the second level
within a square centered by the initial position. The width of
the square is one-fourth of the face region.

The second level only learns the deviation Ax between
the prediction by the first level and the labeled location. Since
each model in the second level only learns one eye, the single
eye response function in original ASEF was used to generate
the eye template in the second level. The final prediction x is
the sum of the output of the first level x, and the second level
Ax.

5. Experiment

The data used for this experiment is the same as [7]. The
data set consists of 13,466 training and 2,551 test images. The
training samples were selected from the LFW [23] data set
and internet. The test set was formed by the complete BioID
and LFPW data sets. The BioID data was mainly composed of
the regular front images, while the other data such as LFPW
were collected from many complex environments including
wide changes in head pose, illumination, scale, clarity, and
occlusion. Therefore, a robust algorithm should have high
accuracy on the LFPW data set. All the images were marked
with face region, the locations of the eyes, and nose and two
mouth corners.

For evaluation, a relative prediction error is defined as
follows:

Ve-x)"+(y-»)

err = >

l

(5)

where (x,y) and (x,,y,) are, respectively, the predicted
position and the ground truth and / is the biocular distance.
Based on this error, the accuracy of the algorithm could be
defined as the ratio of the samples, which have the prediction
error less than 0.1, to the whole test samples. The mean error
is also used as another indicator to evaluate the prediction
results in the following experiments.

The proposed algorithm was implemented in Matlab
2014a, and the experiments were conducted on a desktop
computer with a 3.3 GHz CPU.
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TABLE 1: Accuracies of the involved schemes.

BioID LFPW

Method

Right eye Left eye Right eye Left eye
M1 95.7% 96.6% 95.5% 95.4%
M2 96.8% 96.1% 94.7% 94.8%
M3 96.7% 96.8% 96.1% 95.8%
M4 94.2% 94.8% 93.2% 92.7%
Standard 98.1% 98.2% 96.8% 96.9%

5.1 Effects of the Improvement Schemes. In this section, the
effects of the above-mentioned improvement schemes will be
discussed.

5.1.1. Effects on Prediction Accuracy. In the following experi-
ments, the schemes of the Tan-Triggs preprocessing, Bi-Pupil
ASEF eye template training, normalization of the convolution
response map, and the cascade enhancement schemes on the
prediction accuracy were tested. The proposed model with all
the schemes was noted as the standard configuration. As show
in Table 1, four compared configurations were prepared: Tan-
Triggs is replaced by log(x + 1) function (M1), where x is the
pixel values. Bi-Pupil ASEF is replaced with the original ASEF
(M2) which train templates using only right eye location,
response map normalization is replaced by no action (M3),
and the cascade enhancement is replaced by the only first-
level raw model (M4).

As demonstrated in Table 1, all the schemes could
effectively improve the prediction accuracy. Using Tan-Triggs
rather than the Log function to reduce the illumination effects
could increase the accuracy by about 1.5%-2%. The Bi-Pupil
ASEF templates can raise the accuracy by about 2%-3% than
the original ASEF templates. Response normalization was
also of benefit to the accuracy increment about 0.5%-1.5%.
In comparison with the raw model, the cascade enhancement
could bring 3%-4% accuracy improvement.

5.1.2. Acceleration by FFT-Based Convolution. To demon-
strate the performance of the FFT-based approach, a convo-
lution of a face sample and an eye template has been repeated
100 times. As illustrated in Figure 7, there is slight differ-
ence between the results by the FFT-based convolution and

the direct convolution. However, such difference hardly has
any effect on the further analysis with the extracted feature.
For the computation efficiency, with the reduced operations,
the FFT-based approach could generate almost 80 speed-up
ratio in this experiment. For the models with a large numbers
of convolution, this approach could significantly decrease the
training and prediction time.

5.2. Comparison with Other Approaches. To demonstrate the
efficiency of the proposed method, comparisons with many
state-of-the-art eye location approaches including the texture
based and the structure based were conducted considering
the prediction accuracy, prediction rate, and training time.

For the texture based approaches, ASEF, Template-SVR,
and Deep CNN [7] have been compared. Deep CNN is
currently one of the best approaches with highest accuracy in
eye location. ASEF use the maximum pixel position of convo-
lution result directly to predict eye’s location. The Template-
SVR approach is formed by replacing the BP network in the
proposed model with the nu-SVR implemented by libSVM
[24] to draw a fair comparison on the efficiencies of the 2
nonlinear mapping models. ASEF and Template-SVR were
implemented in Matlab, while the results of Deep CNN were
obtained from [7] with the same training and test data in this
paper.

Besides, some leading structure based approaches like
CBDS [10], BORMAN [12], and one included in a commercial
software LUXAND [25] localizing were also compared. How-
ever, their prediction results were obtained from [7]. The test
data sets of them were the same to that used in this paper, but
the training data are unknown.

5.2.1. Prediction Accuracy. The prediction accuracies of the
compared approaches were listed in Table 2. The top 2 results
were marked in bold. It should be noted that the robust
algorithm usually has high accuracy on LFPW, since samples
in this test set were collected in varying situations.

As shown in Table 2, the best results were produced
by Deep CNN. However, the proposed method could also
achieve similar high accurate results close to Deep CNN.
Opverall, the proposed method could be the second best one.
Averagely, the accuracy of the proposed method was about
only 2% lower than that by Deep CNN, while the mean
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TaBLE 2: Comparison of accuracies among the state-of-the-art eye localization approaches. Note the robust algorithms with high accuracies

on LFPW.
Accuracy Mean error

Method BioID

Right eye Left eye Right eye Left eye Right eye Left eye Right eye Left eye
Our method 98.1% 98.2% 96.8% 96.9% 2.7% 2.4% 3.4% 3.1%
Deep CNN 99.9% 100% 99.1% 99.4% 1.7% 1.5% 2.1% 2.0%
ASEF 1.2% 0.2% 2.4% 0.6% 121.4% 88% 81.2% 99.2%
nu-SVR 96.1% 95.9% 92.8% 92.8% 4.2% 4.1% 4.9% 4.9%
BORMAN 79.1% 75.8% 78.2% 92.8% 71% 7.8% 7.8% 8.8%
CBDS 97.7% 98.9% 87.9% 91.9% 4.1% 3.9% 72% 7%
LUXAND 98.9% 98.66% 95.6% 96.8% 4.1% 3.7% 5.6% 4.5%

error was 1.1% higher. However, it should be noted that,
to achieve such results, the Deep CNN approach should
explore the information from 5 feature points with a more
complex structure which had 3 cascade levels and several
deep models with 3 convolution layers in each level. In
comparison, the proposed method only used 2 feature points
by a 2-level cascade structure with single convolution layer
model in each level. By introducing more feature points for
reference with corresponding model structure, there is still
large improvement space.

For other texture based approaches, it could be found,
without exploration of the global information, the ASEF can
hardly work in the complex environment. Considering the
supervised learning model, SVR could also well map the
relationship between the response map and the eye locations.
Nevertheless, the prediction accuracy by nu-SVR is about
4-6% lower than the proposed method by the 4-layer BP
network.

In comparison with the structure based approaches, the
accuracy of the proposed method is slightly lower than that
of CBDS and LUXAND on the BioID by about 0.7%. That
might be because of the fact that the samples in BioID are
all the regular front face image, which is suited for such
structure based approaches. While on the LFPW where pose
changes and occlusion commonly exist, the proposed method
was better than these methods. Moreover, the mean error of
the proposed method was obviously lower than the structure
based approach, which also demonstrates the robustness of
the proposed method.

5.2.2. Prediction Rate. As mentioned before, the structure
based approach employs an iterative prediction approach.
The iterative time is not stable and highly related to the study
case and initialization. For the situation with side face or
occlusion, it may cost seconds to process one image.

Therefore, the experiment on prediction rate was focused
on the texture based approach. To simplify the analysis,
the face detection time, which is highly related to different
situations, was not considered in this experiment. The rate
is only calculated for the prediction from the detected face
image with the same size. The prediction rate of the Matlab
implemented ASEF, nu-SVR, and the proposed method were
recorded. Result of the C++ coded Deep CNN was the
referenced data.

TABLE 3: Prediction rates of the texture based approaches.

Method  ASEF nu-SVR Deep CNN Our method

fps 66.7 0.82 8.3 10.5

As shown in Table 3, without nonlinear BP network, ASEF
could achieve the highest prediction rate by about 66 fps.
The prediction rate by nu-SVR is the lowest with 0.82 fps.
In comparison, by the BP network, the proposed approach
could achieve 10.5 fps. The well optimized C++ Deep CNN
had reported a prediction rate of 8.3 fps which is close to our
method.

5.2.3. Training Time. For the structure based approach,
usually a well structure model can be obtained by limited
samples without too much training time. However, most
of the structure based approaches are not as robust as
the high accuracy texture based approach. Texture based
approach with simple model could be trained rapidly. In
the experiment, training of the ASEF with more than 13,000
samples only costs about 200 seconds. However, it is hard to
obtain notable improvement through extensive training for
those simple models. Therefore, the comparison was focused
on the high accuracy texture based approach.

To obtain the above-mentioned accuracy, the proposed
method with 13,466 training samples was only trained in 15
minutes including the training of 3 eye templates and 3 BP
network in the 2-level cascade model. The low training cost
makes our model easy to be tuned and suitable for online
learning task.

In comparison, training of other high accuracy mod-
els was very slow. The training cost of CNN with back-
propagation will be dramatically increased with additional
layer. With 3 cascade levels and several deep models with 3
convolution layers in each level, there are totally more than
160,000 parameters to be trained for eye localization. Training
of the Deep CNN could cost hours and even days. Due to
the long training time, selection of an optimal configuration
(like the number of layers and kernels, kernel size, etc.) for
the deep model will become difficult. Searching of an optimal
configuration will also increase the cost of the training. The
nu-SVR model is also time-consuming. For the training
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of the Template-SVR approach, this costs several hours.
Optimization of those models is therefore difficult.

6. Conclusion

The stable response distribution by convolution of the face
image and eye templates has been discovered. This distribu-
tion pattern is beneficial to the eye location. A novel eye loca-
tion approach has been proposed by learning the distribution
of the convolution response maps. The proposed approach
only used one convolution layer with a specific eye template
and a BP network. In comparison with many state-of-the-
art approaches, comparable best prediction accuracy could be
achieved by the proposed method with high prediction rate
and less training time. The proposed method, which is robust
to the pose changes, distortion, and occlusion, can be well
used in the complex environment. It has been demonstrated
that with proper selection of the template as the convolution
kernel, a shallow convolution model could produce similar
accurate results to that by deep convolution models with high
prediction rate and greatly reduced training time.

In the future work, localization of other critical facial
points with the proposed approach will be studied. Efficiency
of the kernel selection in the convolution networks will be
further analyzed.
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