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The problem of optimal power constrained distributed detection over a noisy multiaccess channel (MAC) is addressed. Under
local power constraints, we define the transformation function for sensor to realize the mapping from local decision to transmitted
waveform.Thedeflection coefficientmaximization (DCM) is used to optimize the performance of power constrained fusion system.
Using optimality conditions, we derive the closed-form solution to the considered problem. Monte Carlo simulations are carried
out to evaluate the performance of the proposed newmethod. Simulation results show that the proposedmethod could significantly
improve the detection performance of the fusion system with low signal-to-noise ratio (SNR). We also show that the proposed new
method has a robust detection performance for broad SNR region.

1. Introduction

Distributed detection of phenomenon of interest constitutes
an important application ofwireless sensor networks.Usually,
a distributed detection system consists of multiple sensors
and a fusion center (FC) [1].

As we know, distributed detection using multiple sensors
has become a fast-growing research area [2]. Current and
future applications of distributed detection range from data
acquisition, health care, and environment monitoring to
battlefield surveillance and disaster warning [3, 4]. Compared
to a centralized scheme where all raw observation data
are communicated to the fusion center, distributed detec-
tion scheme could dramatically reduce the communication
bandwidth and thus are very competitive candidates to
be implemented in wireless sensor networks. However, to
implement distributed detection in networking, we meet
some new challenges. One challenge is the stringent power
constraint. Normally, local sensors are powered by small
batteries and it is difficult or not economic to replace those
batteries when they run out. Therefore, power manage-
ment is considered to be an important issue in detection
fusion.

Traditionally, numerous researches focus on the usual
parallel topology which assumes that each sensor transmits
through a parallel access channel (PAC). In that case, the
target detection system is made up of a large number of
sensors, which are deployed in the environment to collect
observations. Each sensor could give the local detection
decision independently, and then the sensor node has the
ability to communicate with the fusion center via wireless
channels. For this scheme, a dedicated channel will be
established for each sensor that wishes to communicate with
the fusion center [1, 2]. In practical applications, since the
wireless medium is naturally a broadcast medium, the PAC
has to be realized through time division multiple access
(TDMA), frequency division multiple access (FDMA), or
code division multiple access (CDMA) [5].

Recently, distributed detection overmultiple access chan-
nels (MAC) has received much attention; it has been verified
that in some cases the MAC schemes could offer high
efficiency in bandwidth usage and achieve a significant
improvement in performance compared to the PAC scheme
when a large number of sensors are deployed [6–8]. The
problem of distributed detection under power constraints has
been studied by many researchers [9–16].
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Using the PAC, in [9], it was shown that the performance
is asymptotically optimal for binary decentralized detection
using identical sensor nodes under joint power constraint. In
[10], the optimal power scheduling for distributed detection
has been considered, where an optimal power allocation
scheme was developed with respect to the so-called J-
divergence performance index. In [11], when the whole
system is subjected to a total average power constraint in
noisy and band-limited channels, it showed that it is better
to combine as many local decisions as possible rather than
only relying on a few very good local decisions in the case
of deterministic signal detection. They have shown that the
optimal power allocation is determined by the qualities of
the local decisions of the sensors and the communication
channels. In [12], the problem of optimal power allocation
in the cases of both independent and correlated observations
has been addressed by using constrained particle swarm
optimization; however, the algorithm is not economic to
realize in engineering. Using the MAC, in [13], the optimal
quantization function has been studied under the total power
constraint which assumed that the sensors are homogeneous.
Under the local power constraints of sensors, in [14], it
was shown that the optimal fusion rule can be reduced
to a simple threshold test on the signal received by the
fusion center. In [15], a new method for detection fusion
over multiple-access channel based on deflection coefficient
maximization (DCM) and Neyman-Pearson (NP) rule has
been proposed. However, all the above authors assumed that
the local sensors are homogeneous. In [16], it was shown
that, in addition to vastly improved bandwidth efficiency,
MAC fusion with optimal local mapping rules yields better
detection performance as measured by error exponents com-
pared with PAC fusion under the same transmission power
constraint. In reality, the stringent power constraint of local
sensor is also an important issue; therefore we are motivated
to study the distributed detection fusion problem under
power constraints of local sensors over noisy multiaccess
channel.

2. System Model

The model of the distributed detection system considered
here is illustrated in Figure 1, where the system consists of
𝑁 sensors and a fusion center (FC). Here, 𝐻

0
denotes the

null hypothesis (e.g., the target is absent), and 𝐻
1
denotes

the alternative hypothesis (e.g., the target is present). The
prior probabilities for both hypotheses (denoted by 𝑃

0
and

𝑃
1
, resp.) are assumed known. V

𝑖
(𝑖 = 1, 2, . . . , 𝑁) denotes the

observation of the 𝑖th sensor, where 𝑛 is the Gaussian noise
with zero mean and variance 𝜎2.

We do not assume any determined distribution for
observations but do assume that the observations are all
conditionally independent of any hypothesis. Based on its
observation, the 𝑖th sensor makes a local decision 𝑢

𝑖
(𝑖 =

1, 2, . . . , 𝑁). We adopt the OOK mode in this paper, which
means that 𝑢

𝑖
= 1 is sent if 𝐻

1
is decided and 𝑢

𝑖
= 0 is sent

otherwise. The detection performance of the 𝑖th local sensor
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Figure 1: Model of underwater distributed detection fusion.

node can be characterized by its corresponding probability of
false alarm 𝑃

𝑓𝑖
and detection 𝑃

𝑑𝑖
, denoted by

𝑃
𝑓𝑖
= 𝑝 (𝑢

𝑖
= 1 | 𝐻

0
) ,

𝑃
𝑑𝑖
= 𝑝 (𝑢

𝑖
= 1 | 𝐻

1
) .

(1)

The 𝑖th sensor will inform the fusion center by trans-
mitting a waveform. We use a local transformation function
𝑇
𝑖
(𝑢
𝑖
) to realize such a mapping from the local decision

to a particular waveform. Under the power constraint of
local sensors, the same as [14], we define the transformation
function of the 𝑖th local sensor as follows:

𝑇
𝑖
(𝑢
𝑖
) = {

√𝜔
𝑖
(1 − 𝛽

𝑖
) , 𝑢

𝑖
= 1,

√𝜔
𝑖
(0 − 𝛽

𝑖
) , 𝑢

𝑖
= 0,

(2)

where 𝜔
𝑖
is a nonnegative multiplication weight coefficient

and 𝛽
𝑖
is an offset. We model the channel between local

sensor and fusion center as a noisy multiple access. Although
perfect synchronization on MAC is a strong assumption,
synchronization error often cannot be completely removed
in practical sensor networks; many authors have developed
effective synchronization schemes to solve this problem [8,
16]. In addition, we consider the case when the number
of the sensors is not large in this paper; thus, we make
the same assumption as in [6, 7, 14] that all the sensors
are fully synchronized and are allowed to communicate
with the fusion center simultaneously over a multiaccess
channel. Then, the data received from the fusion center can
be expressed as

𝑆 =

𝑁

∑

𝑖=1

𝑇
𝑖
(𝑢
𝑖
) + 𝑛. (3)

After receiving the information 𝑆, the global decision is made
based on the NP rule that involves the comparison of 𝑆 with
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a threshold. The fusion center will give a final decision about
the presence or absence of a target according to a certain
fusion rule.

3. Distributed Detection via Deflection
Coefficient Maximization

The deflection coefficient could reflect the output signal-to-
noise ratio and has been widely used in optimizing detectors
[17, 18]. The larger the deflection coefficient is, the better the
performance of the systemwill be.We therefore aremotivated
to optimize the fusion system via maximizing the deflection
coefficient. The deflection coefficient is defined as

𝐷 (𝑆) =
(𝐸 (𝑆 | 𝐻

1
) − 𝐸 (𝑆 | 𝐻

0
))
2

Var (𝑆 | 𝐻
0
)

, (4)

where𝐸(⋅ | 𝐻
𝑗
) andVar(⋅ | 𝐻

𝑗
) (𝑗 = 0, 1)denote the expected

value and variance, respectively. 𝐸(𝑆 | 𝐻
𝑗
) and Var(𝑆 | 𝐻

0
)

are given by

𝐸 (𝑆 | 𝐻
𝑗
) =

𝑁

∑

𝑖=1

√𝜔
𝑖
[𝐸 (𝑢
𝑖
| 𝐻
𝑗
) − 𝛽
𝑖
] , (5)

𝐸 (𝑢
𝑖
| 𝐻
𝑗
) = {

𝑃
𝑑𝑖
,

𝑗 = 1,

𝑃
𝑓𝑖
,

𝑗 = 0,

Var (𝑆 | 𝐻
0
) =

𝑁

∑

𝑖=1

𝜔
𝑖
[Var (𝑢

𝑖
| 𝐻
0
)] + 𝜎

2
,

Var (𝑢
𝑖
| 𝐻
0
) = 𝐸 (𝑢

2

𝑖
| 𝐻
0
) − 𝐸
2
(𝑢
𝑖
| 𝐻
0
) = 𝑃
𝑓𝑖
− 𝑃
2

𝑓𝑖
.

(6)

Based on (6), we have

𝐷 (𝑆) =

[∑
𝑁

𝑖=1√𝜔
𝑖
(𝑃
𝑑𝑖
− 𝛽
𝑖
) − ∑
𝑁

𝑖=1√𝜔
𝑖
(𝑃
𝑓𝑖
− 𝛽
𝑖
)]
2

∑
𝑁

𝑖=1
𝜔
𝑖
(𝑃
𝑓𝑖
− 𝑃
2

𝑓𝑖
) + 𝜎2

. (7)

Under the power constraints of local sensors, we can formu-
late the deflection coefficient maximization problem as

max 𝐷 (𝑆)

s.t. 𝐸 [𝑇
𝑖

2
(𝑢
𝑖
)] ≤ 𝑄

𝑖
,

(8)

where𝑄
𝑖
is the maximum transmission power of the 𝑖th local

sensor. Moreover, we can obtain the explicit expression of the
power constraint

𝐸 [𝑇
𝑖

2
(𝑢
𝑖
)] = 𝜔

𝑖
[𝐸 (𝑢
2

𝑖
) +𝛽
2

𝑖
− 2𝐸 (𝑢

𝑖
) 𝛽
𝑖
] ≤ 𝑄

𝑖
, (9)

with 𝐸(𝑢
2

𝑖
) = 𝐸(𝑢

𝑖
) = 𝑃
0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
. Then, the constraint (9)

is rewritten as

𝐸 [𝑇
𝑖

2
(𝑢
𝑖
)] = 𝜔

𝑖
[𝛽
2

𝑖
− 2𝛽
𝑖
(𝑃
0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
)

+𝑃
0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
] ≤ 𝑄

𝑖
.

(10)

Since theminimumof [𝛽2
𝑖
−2𝛽
𝑖
(𝑃
0
𝑃
𝑓𝑖
+𝑃
1
𝑃
𝑑𝑖
)+𝑃
0
𝑃
𝑓𝑖
+𝑃
1
𝑃
𝑑𝑖
]

is

𝐶
𝑖
= (𝑃
0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
) − (𝑃

0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
)
2

> 0, (11)

we have

0 ≤ 𝜔
𝑖
≤
𝑄
𝑖

𝐶
𝑖

. (12)

Denoting a vector

a = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑖
, . . . , 𝑎

𝑁
)
𝑇
, (13)

with 𝑎
𝑖
= 𝑃
𝑑𝑖
− 𝑃
𝑓𝑖
> 0, and a diagonal matrix

B = diag (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑖
, . . . , 𝑏

𝑁
) , (14)

with 𝑏
𝑖
= 𝑃
𝑓𝑖
− 𝑃
2

𝑓𝑖
> 0, and defining 𝑥

𝑖
= √𝜔

𝑖
and 𝑦

𝑖
=

𝑥
𝑖
/√𝑄
𝑖
/𝐶
𝑖
, then the constraint (12) is converted into

0 ≤ 𝑦
𝑖
=

𝑥
𝑖

√𝑄
𝑖
/𝐶
𝑖

≤ 1. (15)

Then (7) is equivalently rewritten as

𝐷 (𝑆) =

(∑
𝑁

𝑖=1
√𝑄
𝑖
/𝐶
𝑖
𝑦
𝑖
𝑎
𝑖
)
2

∑
𝑁

𝑖=1
(𝑄
𝑖
/𝐶
𝑖
) 𝑦
2

𝑖
𝑏
𝑖
+ 𝜎2

. (16)

Further, assuming that

ã = (𝑎
1
√
𝑄
1

𝐶
1

, 𝑎
2
√
𝑄
2

𝐶
2

, . . . , 𝑎
𝑖
√
𝑄
𝑖

𝐶
𝑖

, . . . , 𝑎
𝑁
√
𝑄
𝑁

𝐶
𝑁

)

𝑇

,

B̃ = diag(𝑄
1

𝑏
1

𝐶
1

, 𝑄
2

𝑏
2

𝐶
2

, . . . , 𝑄
𝑖

𝑏
𝑖

𝐶
𝑖

, . . . , 𝑄
𝑁

𝑏
𝑁

𝐶
𝑁

) ,

y = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑖
, . . . , 𝑦

𝑁
)
𝑇
,

(17)

then the optimization problem (8) is converted into

max 𝑓 (y) = y𝑇ãã𝑇y
y𝑇B̃y + 𝜎2

s.t. 0 ≤ 𝑦
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑁.

(18)

The gradient of 𝑓(y) is

𝑔 (y) = ∇𝑓 (y) =
2 (ã𝑇y)

2

[((y𝑇B̃y + 𝜎
2
) /𝑎
𝑇
𝑦) 𝑎 − B̃y]

(y𝑇B̃y + 𝜎2)
2

.

(19)

Assume that y∗ is the optimal solution of the problem (18),
𝑦
∗

𝑖
is the 𝑖th component of y∗, and 𝑔

𝑖
(y) is the 𝑖th component

of 𝑔(y). Obviously, we know that 𝑦∗
𝑖

̸= 0, as if 𝑦∗
𝑖

= 0,
then 𝑔

𝑖
(y∗) > 0; thus we can find another 𝑦∗

𝑖
> 0 which

will maximize the objective function. Then, the optimality
conditions are

𝑔
𝑖
(y∗) = 0, 𝑦

∗

𝑖
𝜖 (0, 1]

𝑔
𝑖
(y∗) > 0, 𝑦

∗

𝑖
= 0.

(20)
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We claim that there is no local maximizer for 𝑓(y), which
means that the maximizer is global.

The proof is as follows. Assuming that 𝑦∗ is the global
maximizer and l∗ is the localmaximizer, we define ỹ∗ = (

y∗
1
),

l̃∗ = ( l
∗

1
), â = ( ã

0
), and B̂ = (

B̃ 0
0 𝜎2 ). There ∃0 < 𝜆 < 1 that

satisfies 𝑦
𝜆
= 𝜆y∗ + (1 − 𝜆)l∗; then

√𝑓 (𝑦
𝜆
) = √𝑓 (𝜆y∗ + (1 − 𝜆) l∗)

=

â𝑇 [𝜆ỹ∗ + (1 − 𝜆) l̃∗]

(
√B̃ 0
0 𝜎 ) [𝜆ỹ

∗ + (1 − 𝜆) l̃∗]

≥

â𝑇 [𝜆ỹ∗ + (1 − 𝜆) l̃∗]

𝜆

(
√B̃ 0
0 𝜎 ) ỹ

∗

+ (1 − 𝜆)


(
√B̃ 0
0 𝜎 ) l̃

∗


>
𝑎
𝑇l̃∗


(
√B̃ 0
0 𝜎 ) l̃

∗


= √𝑓 (l∗).

(21)

This is a contradiction.
We also claim that if

𝑎
1

𝑏
1

≥
𝑎
2

𝑏
2

≥ ⋅ ⋅ ⋅
𝑎
𝑘

𝑏
𝑘

≥ ⋅ ⋅ ⋅
𝑎
𝑁

𝑏
𝑁

, (22)

then

𝑦
∗

1
≥ 𝑦
∗

2
≥ ⋅ ⋅ ⋅ 𝑦

∗

𝑖
≥ 𝑦
∗

𝑁
. (23)

The proof is as follows. Without loss of generality, we
assume that 𝑎

𝚤
/𝑏
𝚤

≥ 𝑎
𝚥
/𝑏
𝚥
; then there are four cases of

comparison for 𝑦
∗

𝑖
and 𝑦

∗

𝑗
which are (1) 𝑦

∗

𝑖
= 𝑦
∗

𝑗
= 1,

(2) 𝑦
∗

𝑖
= 1, 0 < 𝑦

∗

𝑗
< 1, (3) 0 < 𝑦

∗

𝑖
< 1, 0 < 𝑦

∗

𝑗
< 1, and

(4) 0 < 𝑦
∗

𝑖
< 1, 𝑦

∗

𝑗
= 1. Cases (1) and (2) are so obvious that

are needless to prove. For case (3), we have 𝑔
𝑖
(y∗) = 𝑔

𝑗
(y∗) =

0. Let

𝑘
1
=

2 (ã𝑇y∗)
2

(y∗𝑇B̃y∗ + 𝜎2)
2
> 0,

𝑘
2
=
y∗𝑇B̃y∗ + 𝜎

2

ã𝑇y∗
> 0,

(24)

and thus we have

𝑔
𝑖
(y∗) = 𝑘

1
(𝑘
2
𝑎
𝚤
− 𝑏
𝚤
𝑦
∗

𝑖
) = 0,

𝑔
𝑗
(y∗) = 𝑘

1
(𝑘
2
𝑎
𝚥
− 𝑏
𝚥
𝑦
∗

𝑗
) = 0.

(25)

Since 𝑎
𝚤
/𝑏
𝚤
≥ 𝑎
𝚥
/𝑏
𝚥
, then 𝑦

∗

𝑖
≥ 𝑦
∗

𝑗
. For case (4), we claim that

it is impossible to happen. Because there exist 𝑔
𝑖
(y∗) = 0 and

𝑔
𝑗
(y∗) ≥ 0 based on the optimality conditions, which induce

𝑦
∗

𝑖
= 𝑘
2
(𝑎
𝚤
/𝑏
𝚤
) ≤ 1 and 𝑦

∗

𝑗
= 1 ≤ 𝑘

2
(𝑎
𝚥
/𝑏
𝚥
), and 𝑎

𝚤
/𝑏
𝚤
≥ 𝑎
𝚥
/𝑏
𝚥
,

it is noted that 𝑦∗
𝑖

= 𝑘
2
(𝑎
𝚤
/𝑏
𝚤
) ≥ 𝑘

2
(𝑎
𝚥
/𝑏
𝚥
) ≥ 1 which is a

contradiction. So far, we have proved the second claim.

Based on the above claim, we rearrange the components
of y∗ in descending order. Without loss of generality, we
assume that

𝑦
∗

1
= 𝑦
∗

2
= ⋅ ⋅ ⋅ = 𝑦

∗

𝑘
= 1,

1 > 𝑦
∗

𝑘+1
≥ ⋅ ⋅ ⋅ ≥ 𝑦

∗

𝑁
> 0,

𝑧
∗
=
y∗𝑇B̃y∗ + 𝜎

2

ã𝑇y∗
.

(26)

From the optimality conditions, we have

𝑦
∗

𝑖
=
𝑎
𝚤

𝑏
𝚤

𝑧
∗
, 𝑘 + 1 ≤ 𝑖 ≤ 𝑁. (27)

Then, we have

y∗𝑇B̃y∗ =
𝑘

∑

𝑖=1

𝑏
𝚤
+

𝑁

∑

𝑖=𝑘+1

𝑏
𝚤
𝑦
∗

𝑖

2
=

𝑘

∑

𝑖=1

𝑏
𝚤
+

𝑁

∑

𝑖=𝑘+1

𝑎
𝚤

2

𝑏
𝚤

(𝑧
∗
)
2
,

ã𝑇y∗ =
𝑘

∑

𝑖=1

𝑎
𝚤
+

𝑁

∑

𝑖=𝑘+1

𝑎
𝚤
𝑦
∗

𝑖
=

𝑘

∑

𝑖=1

𝑎
𝚤
+

𝑁

∑

𝑖=𝑘+1

𝑎
𝚤

2

𝑏
𝚤

𝑧
∗
,

𝑘

∑

𝑖=1

𝑏
𝚤
+

𝑁

∑

𝑖=𝑘+1

𝑎
𝚤

2

𝑏
𝚤

(𝑧
∗
)
2
+ 𝜎
2
= 𝑧
∗
(

𝑘

∑

𝑖=1

𝑎
𝚤
+

𝑁

∑

𝑖=𝑘+1

𝑎
𝚤

2

𝑏
𝚤

𝑧
∗
) ,

𝑧
∗
=
∑
𝑘

𝑖=1
𝑏
𝚤
+ 𝜎
2

∑
𝑘

𝑖=1
𝑎
𝚤

,

𝑦
∗

𝑖
=
𝑎
𝚤

𝑏
𝚤

∑
𝑘

𝑖=1
𝑏
𝚤
+ 𝜎
2

∑
𝑘

𝑖=1
𝑎
𝚤

, 𝑘 + 1 ≤ 𝑖 ≤ 𝑁.

(28)

By using the above linear equations, we can derive all feasible
solutions y∗,s for all 𝑘 (1 ≤ 𝑘 ≤ 𝑁) and calculate 𝑓(y)
for every feasible solution. Then, the optimal solution to the
problem (18) is the y∗ corresponding to the largest value of
𝑓(y). This is a one-dimensional search process. Moreover, we
know that 𝑥

𝑖
= √𝜔

𝑖
and 𝑦

𝑖
= 𝑥
𝑖
/√𝑄
𝑖
/𝐶
𝑖
; then

𝑤
∗

𝑖
=
𝑄
𝑖
(𝑦
∗

𝑖
)
2

𝐶
𝑖

, (1 ≤ 𝑖 ≤ 𝑁) . (29)

By plugging (29) into constraint (10), we get the quadratic
inequality about 𝛽

𝑖
; that is,

𝛽
2

𝑖
− 2𝛽
𝑖
(𝑃
0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
) + 𝑃
0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
−
𝑄
𝑖

𝜔
𝑖

≤ 0. (30)

The discriminant is as follows:

Δ = 4 (𝑃
0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
)
2

− 4(𝑃
0
𝑃
𝑓𝑖
+ 𝑃
1
𝑃
𝑑𝑖
−
𝑄
𝑖

𝜔
𝑖

) . (31)

Since𝑄
𝑖
/𝜔
𝑖
= 𝐶
𝑖
/(𝑦
∗

𝑖
)
2
, 𝐶
𝑖
= (𝑃
0
𝑃
𝑓𝑖
+𝑃
1
𝑃
𝑑𝑖
)−(𝑃
0
𝑃
𝑓𝑖
+𝑃
1
𝑃
𝑑𝑖
)
2,

and (𝑦
∗

𝑖
)
2
≤ 1, then Δ ≥ 0.
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Figure 2: The relationship between SNR and PD (𝑃
0
= 0.3).

Assuming that 𝛽
𝑖
∈ 𝑅
𝛽
𝑖

, under the power constraints,
we could derive the optimal 𝛽

𝑖
by solving the following

optimization problem:

min 𝐸 [𝑇
𝑖

2
(𝑢
𝑖
)]

s.t. 𝛽
𝑖
∈ 𝑅
𝛽
𝑖

, 𝑖 = 1, 2, . . . , 𝑁.

(32)

We note that problem (32) is an easy quadratic extremum
problem of 𝛽

𝑖
.

4. Numerical Simulation and Analysis

To evaluate the performance of the proposed method for
power constrained distributed detection fusion using mul-
tiple sensors, we do the following numerical simulation.
Assume that the detection fusion system is composed of 𝑁
local sensors and one fusion center, while the parameters are
defined as 𝑁 = 8, {𝑃

𝑓𝑖
} = {0.05}, 𝑄

𝑖
= 100, and {𝑃

𝑑𝑖
} =

{0.5, 0.3, 0.4, 0.35, 0.5, 0.45, 0.6, 0.7}. The signal-to-noise ratio
is defined to be SNR = 10 log

10
(1/𝜎
2
) dB. Each curve is

obtained by 106 Monte Carlo runs.
Under given prior probability 𝑃

0
= 0.3 and 0.5, respec-

tively, Figures 2 and 3 illustrate the relationship between SNR
and detection probability (PD) corresponding to different
probabilities of false alarm (PF). In order to compare the per-
formance with other methods, Figure 4 gives the detection
performance of existing likelihood ratio test (LRT) approach
which is applied under noisy channel in this paper; as we
know, the LRT has the best performance among all the rules
under the parallel access channel [19]. When the prior prob-
ability 𝑃

0
= 0.3, Figures 5 and 6 show the receiving operation

characteristic (ROC) curves for the proposed method and
LRT method at different values of SNR, respectively. Figures
7 and 8 illustrate the relationship between SNR and error
detection probability (Pe) corresponding to different PF.
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Figure 3: The relationship between SNR and PD (𝑃
0
= 0.5).
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Figure 4: The relationship between SNR and PD (LRT-PAC).

From the simulation results, we can see that the pro-
posed method could significantly improve the detection
performance of the fusion system especially in low SNR.
From Figures 2–4, we note that the performance of the
proposedmethod is superior to LRT’s;moreover, there is a big
performance gap between the two kinds of methods. Figures
2 and 3 also indicate that the performance of the proposed
method is robust to SNR and prior probability.

From Figures 5 and 6, we can see that under given PF,
as the SNR increases, the ROC curves become more convex,
which conforms to the traditional detection theory. Figures
5 and 6 also verify that the performance of the proposed
method has big superiority to LRT. Figures 7 and 8 show
that as the SNR increases, the error detection probability
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Figure 6: ROC curves (LRT-PAC).

decreases; under given PF, the larger the SNR is, the smaller
the Pe will be.

5. Conclusions

Theproblem of optimal power constrained distributed detec-
tion over a noisy multiaccess channel has been studied in
this paper. Under the local power constraint, the criterion
of deflection coefficient maximization has been used to
optimize the performance of fusion system. The closed-
form solution to the considered optimization problem has
been obtained. Numerical simulation has been carried out to
verify the performance of the proposed new method, which
shows that, under the local power constraints, the detection
performance could be improved and the error probability
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Figure 7: Comparison of error detection probability (𝑃
0
= 0.3).
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Figure 8: Comparison of error detection probability (𝑃
0
= 0.5).

could be decreased effectively for a given low false alarm
probability. We also showed that the proposed new method
has a robust detection performance for broad SNR region
and outperforms LRT which is utilized for the parallel access
channel.
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