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This study uses downscaled rainfall datasets from 16 coupled climate models at high resolution of 25 km from 1987 to 2001.
The multimodel superensemble scheme is widely tested for rainfall forecast over mid-latitude, subtropical, and, especially,
various regions of the monsoonal belt. A well-known statistical estimation theoretic approach, namely, Best Linear Unbiased
Estimator (BLUE), is examined on 16 member models. The results are compared with superensemble methodology based on
various skill scores. Results show that BLUE is providing promising forecasts. As far as comparative studies are concerned
BLUE and superensemble schemes compete and show their importance from normal years to extreme rainfall years. BLUE
methodology is capable of predicting draughts very well comparedwith othermultimodel schemes. One basic advantage of BLUE is
computationally less expensive than superensemble scheme.These statistical schemes like downscaling, BLUE, and superensemble
can improve rainfall forecasts further, if a dense rain gauge data is provided.

1. Introduction

Several multimodel schemes are being listed in the literature
of the climate and weather for rainfall prediction. These
commonly used multimodel rainfall forecast schemes are
ensemble scheme, biased removed ensemblemean, clustering
techniques, and superensemble method. The superensemble
scheme from Florida State University (FSU) is being tested
since 1999 by various researchers [1–4]. Nowadays a good
quality of rainfall dataset is available from satellites (e.g.,
Global Precipitation Measurement, GPM/Tropical Rainfall
Measuring Mission, TRMM), reanalysis (e.g., MERRA), and
rain gauge (e.g., APHRODITE) at high resolution. Somehow
climate global models still have a coarse resolution of 100 km.
Such gap of resolution calls for downscaling of the climate
global models. All the acronyms are mentioned in Acronyms
for Models, Institutes, or Other Names.

Statistical downscaling procedures have been used to
improve the horizontal resolution of the member models [4–
9]. By doing so, the regional details of the dry andwet patches
of rainfall bulge out. There are limitations of dynamical

models and postprocessing statistical techniques in pre-
dicting seasonal rainfall [1, 10]. The successes of statistical
methods depend on the long-time series of data for training
period to calculate better-quality coefficients. If the training
datasets consist in many new information pieces on flood
and drought events, then their obtained coefficients do better
in forecast period. On the other hand, dynamical models
have problems with their parametrization schemes and some
simplification of various schemes used in them. In these
models, systematic error grows with time. Worldwide more
than 20 climate prediction centers are engaged in themonthly
to seasonal predation with their home grown global models.
Multimodel schemes were suggested to bring consensus
forecast for a season [11–13].

India Meteorological Department has used statistical
models and modified them over a period to provide an
improved Indian summer monsoon rainfall prediction [14–
17]. Some of the limitations of statistical and dynamical
models used for Indian rainfall prediction are noted by Nan-
jundiah [18] and Gadgil et al. [10]. Various new multimodel
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schemes were tested on the Indian region for rainfall forecast
[19–21]. On examination of 5-multimodel schemes they
realized that the accuracy of the rainfall forecasts can be
increased over Indian region. Furthermore, they worked
upon probabilistic prediction of the Indian region and
found the probabilistic forecasts are superior to multimodel
ensemble mean.This group has numerous research works on
the prediction of rainfall using various techniques. In mid-
latitude, the sea level pressure, wind, and rainfall have a strong
tie and thus can be used in multiple regression method to
downscale the rainfall. In a recent study, canonical correlation
analysis is used to downscale rainfall over Indian region
and other [22, 23]. They found some improvements in the
forecasts skills over some parts of northeast and peninsular
India. There is no strong relationship between rainfall and
other variables like sea surface temperature, winds, and
outgoing long wave radiation over tropical region. In another
study using stepwise regression, Salvi et al. [24] showed that
their method could capture the rainfall over mountainous
regions of India. They evaluated the future projection of
rainfall over Indian region. The group is engaged in the
various kinds of downscalingmethods for rainfall over Indian
region.

In this study, we used liner regression method to down-
scale the rainfall over the Indian region. It is known that, even
in hindcastmode, none of themodels provide correct forecast
for a range of years. Perhaps, that was one of the necessities of
the multimodel based prediction techniques. In a better way
postprocessing datasets and statistical techniques can work
together to refine the forecast further. Answers on various
issues, for example, minimum number of member models
to construct superensemble, length of datasets, and other
sensitivity issues can be found in Kumar and Krishnamurti
[25]. The rainfall product is being improved first by down-
scaled methodology and then by superensemble method.
In some of the studies, the prediction of Indian summer
monsoon rainfall is being improved by superensemble and
downscale method [25–28]. In the present study, we worked
with rainfall anomalies and the skills were compared among
the best models (ECMWF model comes out best among 16
suites of models for Indian region, Kumar and Krishnamurti
[25]), ensemble mean (EM), and two multimodel schemes.
One of the important aspects here we tried to bring out is,
how, accurately, can we forecast the extreme events? A new
multimodel scheme, based on estimation theory, namely, Best
Linear Unbiased Estimator (BLUE), has been examined [29].
Furthermore, this study compares two operational schemes
which have been used in hurricane prediction in the Atlantic
basin.

The present study illustrates performance of the best
model, ensemble mean, synthetic superensemble (SSE) tech-
nique, and BLUE scheme on 16 state-of-the-art coupled
climate models for 15 summer seasons for the Indian region.
This paper deals with the application ofmultimodel statistical
methods. The skill scores used in this work are spatial
correlation coefficient, RMSE, chi-square values for measure
of association, ETS, BIAS, Heidke Skill Score [30], and ROC
(Relative Operating Characteristic [30, 31]). ROC is the plot
between true positive rates (here hits score ratio or probability

of detection) and false positive rate (here FAR ratio or False
Alarm Ratio) for the forecasts. A curve closer towards the𝑦-axis indicates more accurate test. Thus, the area under the
curve is the measure of the ROC score.

2. Dataset Used

Downscaled rainfall datasets (for 15 years, 1987–2001) from
sixteen coupled models [33] are included in this study. All
the models were integrated from May 1 to September 30 for
the summer season (JJAS). Here we analyzed only summer
season ofmonsoon (June to September) datasets in this study.
Table 1 contains some details for atmospheric and oceanic
components of each model, namely, model name, model
resolution, initial conditions for simulation, and numbers of
ensemble predictions. The ensemble mean forecasts from a
single model’s several runs are also included in this study.
These model forecasts are cast at a common horizontal
resolution of 2.5-degree latitude by 2.5-degree longitude for
the construction of multimodel ensembles. APHRODITE
Rainfall [34] dataset was used as observed rainfall. This data
is based on thousands of rain gauges over a large region of
monsoon Asia. The spatial resolution of the datasets is 0.25× 0.25 lat-lon grid while the time interval of data is daily to
monthly. To interpolate model’s data from coarse resolution
to fine resolution of observational dataset, we used 4-point
Bessel interpolation method.

3. Downscaling and Multimodel Schemes

Liner regression scheme is applied for downscaling and to
construct downscaled datasets from each member model
against APHRODITE Rainfall datasets.

Chakraborty and Krishnamurti [26] have shown the
improved rainfall forecasts with downscaling and without
downscaling from member models, ensemble mean, and
superensemble scheme. They illustrated that the downscaled
superensemble scheme shows higher correlation and reduced
RMSE over Indian summer monsoon rainfall. During mul-
timodel ensemble, we considered entire duration of datasets
of 15 years (15 years × 4 months = 60 values) of monthly
rainfall. Next, we constructed multimodel schemes based on
downscaled datasets. It is shown that the data of 15 years
were sufficient to carry out the downscaling as the coefficients
stabilize after 10 years of datasets [25].

We believe that a data processing method improves the
model datasets and adds some error as well. However, this
can be reduced in some situations.There is a major difference
between the mathematical strategy for downscaling and for
the construction of the multimodel superensemble scheme.
The former downscales eachmodel separately with respect to
the observed estimates, whereas themultimodel superensem-
ble calculates a single forecast considering forecasts from
the member models all together. It performs a multiple
liner regression to remove the collective bias of the suite
of models. The two methods are mutually independent.
Over all, first downscaling helps in sprouting the regional
features in the rainfall forecasts from each member model
and then superensemble scheme is improving the forecast
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based onmultimodel. Cross validationmethod is used during
superensemble and BLUE methodology. In this method, a
year, which was forecasted, was not taken, while calculating
the downscaling or superensemble weights.

3.1. Downscaled Methodology. APHRODITE Rainfall [34] is
used to downscale the rainfall forecast from member models
over the Indian region.

𝑅obs = 𝑎𝑅mdl + 𝑏 + 𝜀, (1)

where 𝑅obs and 𝑅mdl are the observed and interpolated model
forecasts of rainfall (at the same resolution), respectively;𝑎 and 𝑏 are regression coefficients known as the slope and
intercept of the least square fitting; and 𝜀 is the error term.

𝑅dscl = 𝑎𝑅mdl + 𝑏, (2)

where 𝑅dscl is the downscaled rainfall forecast of the model;
here 𝑎 and 𝑏 are calculated using (2) at each grid point and
separately for every month of the year. We left out the year
to be downscaled from the calculation to calculate 𝑎 and 𝑏
following the method of cross validation. There are many
more downscaling methods, for example, canonical analysis
and stepwise pattern projection. The linear downscaling
methods perform well as compared to other methods [35].
We choose a linear downscaling method here.

3.2. Synthetic Superensemble Technique. The superensemble
methodology [1, 36] produces a single forecast based on
multimodel forecasts. Multimodel superensemble forecasts
based on downscaled datasets from member models were
constructed as well [37]. We expressed that as follows:

𝑆 = 𝑂 + 𝑁mdl∑
𝑖=1

𝑤𝑖 (𝐹𝑖 − 𝐹𝑖) , (3)

where 𝑆 is the superensemble prediction, 𝑂 is the observed
timemean (climatology),𝑤𝑖 are theweights for the individual
models 𝑖, 𝐹𝑖 and 𝐹𝑖 are the forecast and forecast mean for
a model 𝑖 for training period, and 𝑁mdl is the number of
models. Here weights are obtained byminimizing error using
least squaremethod.The sum of the weights needs not be one
and they vary from negative values to positive values.

3.3. BLUE Technique. In this study, we introduce another
multimodel construction technique based on estimation
theory. Individualmodel is downscaled to sprout the regional
features of the rainfall. Next, superensemble scheme and
BLUE acted on multimodels to remove the model biases. In
case of BLUE the coefficients are inversely proportional to the
errors of the models and the sum of coefficients is one. The
methodology is described in the Appendix.

4. The Spatial Variability of Rainfall

Spatial patterns of rainfall anomalies for 1987, 1991, 1995,
and 2000 are being shown in Figure 1. Rainfall anomalies
from APHRODITE Rainfall datasets, coupled model from
ECMWF, ensemble mean, superensemble scheme, and BLUE

are shown in the first, second, third, fourth, and fifth rows,
respectively. The rainfall anomalies from APHRODITE,
ECMWFmodel, EM, superensemble scheme, and BLUE cap-
tured a range of variability from drought to flood year rainfall
over Indian region. Year 1987 was considered as one of the
worst droughts in the history of Indian summer monsoonal
rainfall variability, which, remotely, had an influence from
El-Niño event in Eastern Pacific Ocean. The central Indian
region was badly affected by very low rainfall while eastern
India received a good rainfall. Rainfall deficient over central
India was simulated by most of the models, while the patches
of extreme rainfall were not captured by any one. Year 1991
was affected by low rainfall over northern and northeastern
India. Interestingly ECMWF captured it fully, as well as
superensemble scheme, but EM and BLUE failed here. Year
1995 was witnessed with drought over southcentral India
while flood kinds of situations prevailed over northern India.
ECMWF model was best to simulate the rainfall variability
over the Indian region, but it failed to simulate the rainfall
over the eastern parts of India. SSE tried to simulate the
rainfall variability but missed deficient rainfall patches over
central India. Some of the patches of dry region over Odisha
(20.95N, 85.05E) were remarkably captured. It is to be noted
that BLUE did better than other models in case of year 2000,
which was almost a monsoon drought (rainfall was −9% of
the climatological normal) over Indian region. Tables 2 and 3
show the year by year spatial correlation and RMSE numbers
for all the member models, EM, superensemble scheme, and
BLUE. From Tables 2 and 3, we found that the correlation
varies from −0.31 to 0.59 for all the models. The ranges of
correlation coefficients are varying from negative to positive
values which is why we cannot talk about significance of
the correlations. For some of the years (e.g., 1991, 1995) the
correlation has significance of 0.02 (two-tailed probabilities).

It may be noted that the highest correlation for a year
varies frommodel to model, yet multimodel schemes (BLUE
and superensemble) perform better than any member model
and EM. We observe that for the year 1999 none of the
models and schemes has a positive correlation except CERF,
KORAM, MAXP, and NCEP. Table 2 has the RMSE range
from 1.34 to 3.82.Heremultimodel schemes tried tominimize
the RMSE but themargin between them andmembermodels
are not so much. It may be mentioned that rainfall variability
over Sri Lanka was very well captured by superensemble
(correlation coefficient (CC) = 0.44). The skills of rainfall
variability from year to year are explained in Figures 2(a)
and 2(b) in terms of spatial correlation coefficient and RMSE.
BLUE and EM keep their spatial correlation coefficient
positive for most of the time except for 1999. In Figure 2,
we considered the target region slightly smaller than the
bigger region displayed in Figure 1, because many of the
northern regions especially north of 30N are rain gauges
sparse. Chakraborty and Krishnamurti [38] found the neg-
ative anomaly correlation for year 1999 for a bigger monsoon
region. In case of ECMWFand superensemble scheme spatial
correlation is not higher for all years. It is varying from
positive to negative from 0.5 to −0.24. Figure 2(b) shows
RMSE, which is lowest in case of BLUE. Here superensemble
scheme comes out distinct in many years with lowest RMSE.
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Figure 1: June to September rainfall anomalies (mm/day) for 1987, 1991, 1995, and 2000 fromAPHRODITE, ECMWF (abbreviated in caption
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Figure 3: 𝜒2 values for measuring association between observed
rainfall and rainfall over Indian region (69–92E, 8–30N) from
ECMWF, EM, superensemble scheme, and BLUE for JJAS seasonal
rainfall anomaly predictions for threshold of −1mm/day.

It is interesting to note that BLUE is almost following the EM.
Furthermore, in case of year 1995 all the models have lowest
RMSE and highest correlation, while for the year 1999 RMSE
reached the highest value and correlation became lowest.

In this study, we also used measure of association of
attributes to judge the extent of closeness between a model
forecast and observed rainfall. Qualitative variables whose
outcomes are expressed as “yes” or “no” or by some cate-
gories, namely, “Good” or “Bad,” are referred to as attributes
in the statistics literature. whether two attributes are associ-
ated or not is tested using the chi-square test of independence.

Figure 3 displays the chi-square values for comparing
association between observed and different model forecasts
for domain under study. It is based on every grid point over
India. The target region is India (69–92E, 8–30N). BLUE
is showing highest categorical association for 1996, 1997,
2000, and 2001, while superensemble scheme shows highest
categorical association for 1987, 1990, 1998, and 1999. Next
ECMWF shows highest categorical association for 1988, 1989,
1992, and 1994, while EM comes out with highest association
for 1991, 1993, and 1995. Both BLUE and superensemble
scheme are doing well with respect to this measure. One
contingency table, Table 3, is provided for year 1987 for the
threshold of −0.1 rainfall anomalies for BLUE. This table has
a significance to calculate the skill scores for the categorical
rainfall. ETS and BIAS were calculated for rainfall anomalies
for the threshold of −3 to 3mm/day (Figures 4(a) and 4(b))
for the Indian region (lon = 69.0, lon = 92.0E; lat = 8.0, lat
= 30.0N). Interestingly, BLUE is commanding for negative
threshold while superensemble scheme is commanding for
all positive rainfall thresholds for 15 years of period. BLUE
had ETS range between 0 and 0.28, while superensemble
scheme had ETS range from 0.04 to 0.18. That indicates
BLUE has remarkable potential to predict droughts. An ETS
of 0.3 is considered a good one in case of rainfall [38]. For
the various categories of rainfall (light, moderate, and heavy
rains) Dash et al. [39] get ETS values of 0.24 to 0.03 over

Table 4: Contingency table for year 1987 corresponding to the
rainfall anomaly threshold of −0.1mm/day for BLUE.

Prediction
Yes No Total

Observation
Yes 2894a 1913b 4807
No 1690c 8543d 10233
Total 4584 10456 15040

aHits. bMisses. cFalse alarm. dCorrect negatives.

the Indian region. Next in case of BIAS (Figure 4(b)) BLUE
shows least BIAS for positive thresholds while superensemble
scheme shows least BIAS for negative thresholds. BLUE has
the range of BIAS from 0.1 to 1.67 while superensemble
scheme has 0.1 to 0.4. ECMWF and EM are not performing
well with BIAS as compared to multimodel schemes. Some of
the incompatibility has been discussed regarding ETS while
scoring about extreme events [40].

Heidke Skill Score (HSS) has been presented for various
years (Figure 5) including flood and drought years of Indian
summer monsoon. BLUE is doing better for 1995 and 1998,
while superensemble scheme does better for 1988 and 1989.
Still, their response becomes mixed if we pin down their
superiorities for all the thresholds. For example, in 1995,
BLUE does well with ETS for the threshold range of −3 to 1.5
but skill degraded for 1.5 to 3. In case of 1988 superensemble
scheme does good for −0.5 to 3 but stumbled for −3 to −1
thresholds. Overall, these two multimodel schemes come out
finer and doing better for all the threshold and years except
for few. Hogan et al. [40] recommended HSS over ETS to
express skill from multimodels. In Table 4, we explained the
numbers of hits, misses, false alarm, and correct negatives for
year 1987. It is same as Table 5, but for a year with values.

Rainfall over Indian region shows high rainfall variability,
due to large variations in orographic lands, vegetation cover,
and soil texture. Probabilistic forecasts are based on the
yes/no proposition. Over a grid, for a threshold, this yes/no
proposition decides the hits (both observation and model
show nonzero rainfall values), misses (where observation
shows nonzero while model shows zero rainfall values),
and false alarm (where observation shows zero while model
shows nonzero rainfall values) as basic variables for the
probabilistic forecasts. Figure 6 shows theROCplots between
hit ratio and false ratio for JJAS seasonal rainfall anomalies,
for four years. If the ROC curve for a model is far away
from the 45-degree line that model performs better than
others. The pink dotted line indicates exact matches of the
observed and forecast cases, that is, ideal forecast cases.
For 1998 BLUE comes out as the best one while for 2000
superensemble comes out as the best. For the two remaining
years 1987 and 1998 their responses are mixed. Acharya et
al. [41] showed results for three categories of rainfall from
multimodel schemes over Indian region. They found better
skills of ROC for thewet and dry years as compared to normal
monsoon years.
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Figure 4: (a) ETS and (b) BIAS for ECMWF, EM, superensemble scheme, and BLUE for JJAS seasonal rainfall anomaly predictions for Indian
region.
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Figure 5: Heidke Skill Score plots for ECMWF, EM, superensemble scheme, and BLUE for JJAS seasonal rainfall anomaly predictions for
many years over Indian region.

5. Conclusions and Discussion

All the results based on commonly used skill metrics are
performed on downscaled datasets for 15 years (1987–2001),
16 member models, and observed rainfall datasets from

APHRODTE. Year by year, the superiority of four models
has been cited based on chi-square which indicates the
dependency of model on skill matrix. The maximum values
of correlation coefficient obtained from the multimodel
schemes EM, SSE, and BLUE are −0.28 to 0.51, −0.16 to
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Table 5

Model
Yes No Total

Observed
Yes a (hits) b (misses) a + b (observed yes)
No c (false alarms) d (correct negatives) c + d (observed no)
Total a + c (forecast yes) b + d (forecast no) 𝑛 = a + b + c + d (total)
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Figure 6: ROC plots for ECMWF, EM, superensemble scheme, and BLUE for JJAS seasonal rainfall anomaly predictions over Indian region.

0.59, and −0.25 to 0.52. On the other hand, ECMWF has the
range from −0.35 to 0.49 only. Clearly the improvement is
not much, but for rainfall anomalies, surely it is appreciable.
While, in case of RMSE, EM has a range from 1.41 to 2.78, SSE
has the range from 1.48 to 2.79 and BLUE has the range from

1.36 to 2.75. Categorical association attained by ECMWF is
0.39, EM is 0.42, SSE is 0.48, and BLUE is 0.45. In case
of ETS, ECMWF attained 0.27. The ETS for EM is 0.28,
SSE is 0.18, and BLUE is 0.29. BIAS is reduced to 0.35 in
case of ECMWF, 0.15 for EM, and 0.05 for SSE and BLUE.
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Overall SSE and BLUE improved on best model (ECMWF)
and ensemble mean (EM) on the metrics skill used in this
study for the Indian region. Sometime BLUE does better than
superensemble scheme and sometime superensemble scheme
does better than BLUE method. It is worth mentioning that
the BLUE methodology has the simplicity in computing
model weights for constructing the multimodel forecast. So,
this method can be explored more for other events as well.
One of the challenges is the prediction of rainfall anomalies
(e.g., extreme events of floods).

Multiple regression schemes can be applied to improve
the rainfall forecasts, as the performance of the GCM are
very poor for rainfall forecasts. In the multiple regressions,
one can use winds, temperature, geopotential height, and
specific humidity to predict rainfall. Some of the studies have
shown the use of other variable, for example, SST and OLR
for downscaling the rainfall. Somehow, linear regression is a
crude method while canonical correlation analysis and step-
wise pattern projection methods are considered an advanced
one for downscaling. Furthermore, other sophisticatedmeth-
ods like statistical-dynamical Kalman Filter method [42],
hyperensemble method [43], and Artificial Neural Network
method can be used for multimodel ensemble prediction of
rainfall in our next study.

Appendix

The data are expressed in 2 × 2 contingency table as shown in
Table 5.

Thus the Chi-square statistics is given by

𝜒2 = 𝑛 (ad − bc)2(a + c) (b + d) (a + b) (c + d) . (A.1)

This follows chi-square distribution with 1 degree of freedom
[44].

Comparing the two contingency tables for two different
models the chi-square value gives the guidance about the
strength of the relationship between observed and model
forecast values. The larger chi-square value indicates a
stronger relationship. Here we are getting different categories
corresponding to different threshold values of rainfall anoma-
lies.

If 𝑇1, 𝑇2, . . . , 𝑇𝑘 are 𝑘 unbiased independent estimators of
the parameter 𝜇 and variances 𝜎2𝑖 then 𝑇 = ∑𝑘𝑖=1 𝛼𝑖 𝑇𝑖 will be
the Best Linear Unbiased Estimator of 𝜇, if

𝛼𝑖 = 1/𝜎2𝑖∑𝑘𝑖=1 (1/𝜎2𝑖 ) , 𝑖 = 1, 2, . . . , 𝑘 (A.2)

Proof. Since 𝑇𝑖’s are unbiased we have

𝐸 (𝑇𝑖) = 𝜇 ∀𝑖 = 1, 2, . . . , 𝑘,
var (𝑇𝑖) = 𝜎𝑖2 for 𝑖 = 1, 2, . . . , 𝑘 (A.3)

and due to independence

cov (𝑇𝑖, 𝑇𝑗) = 0 ∀𝑖 ̸= 𝑗. (A.4)

We consider

𝑇 = 𝑘∑
𝑖=1

𝛼𝑖𝑇𝑖 (A.5)

as the estimator of 𝜇 such that

𝐸 (𝑇) = 𝜇. (A.6)

Clearly, 𝑇 will be unbiased for 𝜇 if
𝑘∑
𝑖=1

𝛼𝑖 = 1. (A.7)

Now,

var (𝑇) = 𝑘∑
𝑖=1

𝛼2𝑖 𝜎2𝑖 . (A.8)

Since 𝑇𝑖’s are independent, we are in search of 𝛼𝑖’s such that
var(𝑇) is minimum.

Define

𝑤 = var (𝑇) − 2𝜑( 𝑘∑
𝑖=1

𝛼𝑖 − 1) , (A.9)

where 𝜑 is Lagrange’s multiplier.
Taking partial derivative of 𝑤 with respect to 𝛼𝑖 and

equating it to zero for minimizing 𝑤 subject to condition
(A.7) we have

𝜑 = 1
∑𝑘𝑖=1 1/𝜎2𝑖 . (A.10)

This leads to

𝛼𝑖 = 1/𝜎2𝑖∑𝑘𝑖=1 1/𝜎2𝑖 . (A.11)

We propose estimating 𝜎2𝑖 from the past performances of the
model 𝑖 and using 𝛼𝑖 to find out 𝑇, the multimodel output
comprising 𝑘 models. 𝑇 would be an optimum multimodel
output [29].

BIAS = [ 1𝑀
𝑀∑
𝑚=1

(𝑓𝑚 − 𝑂𝑚)]
ETS = 𝐻 − (𝐹𝑥 (𝑂/𝑀))𝐹 + 𝑂 − 𝐻 − (𝐹𝑥 (𝑂/𝑀))

which is generally (0 ≤ ETS ≤ 1)
(A.12)

Here,

𝑀 is number of grid points,
𝑓𝑚 is forecast value at grid point𝑚,
𝑂𝑚 is observed value at grid point𝑚,
𝐹 is area where event is forecasted,
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𝑂 is area where event is observed,
𝐻 is area where 𝐹 and 𝑂 overlap, the hit area.

Based on the contingency table, Table 5,HSS (Wilks 2012) can
be defined as

Heidke Skill Score (HSS)
= (hits + correct negatives) − (expected correct)random𝑁 − (expected correct)random , (A.13)

where

(expected correct)random
= 1𝑁 [(hits +misses) (hits + false alarms)
+ (correct negatives + false alarms)] .

(A.14)

Acronyms for Models, Institutes,
or Other Names

APHRODITE: Asian Precipitation-Highly Resolved
Observational Data Integration Towards
Evaluation of Water Resources

BLUE: Best Linear Unbiased Estimator
CERFACS: Centre Européen de Recherche et de

Formation Avancée en Calcul Scientifique,
France

FSU: Florida State University
ECMWF: European Center for Medium Range

Weather Forecasting, UK
EM: Ensemble mean
ETS: Equitable threat score
GPM: Global Precipitation Measurement
JJAS: June, July, August, and September
KOR: FSU coupled model where Kuo convection

and old radiation (emissivity-absorptivity
model) schemes are used

MAXP: MAX-Planck Institut für Meteorologie,
Germany

NCEP: National Center for Environmental
Prediction, USA

RMSE: Root Mean Square Error
ROC: Relative Operating Characteristic
SSE: Synthetic superensemble
TRMM: Tropical Rainfall Measuring Mission.
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