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Aiming at improving noise reduction effect for mechanical vibration signal, a Gaussian mixture model (SGMM) and a quantum-
inspired standard deviation (QSD) are proposed and applied to the denoising method using the thresholding function in wavelet
domain. Firstly, the SGMM is presented and utilized as a local distribution to approximate the wavelet coefficients distribution in
each subband.Then, within Bayesian framework, the maximum a posteriori (MAP) estimator is employed to derive a thresholding
function with conventional standard deviation (CSD) which is calculated by the expectation-maximization (EM) algorithm.
However, the CSD has a disadvantage of ignoring the interscale dependency between wavelet coefficients. Considering this limit
for the CSD, the quantum theory is adopted to analyze the interscale dependency between coefficients in adjacent subbands, and
the QSD for noise-free wavelet coefficients is presented based on quantum mechanics. Next, the QSD is constituted for the CSD
in the thresholding function to shrink noisy coefficients. Finally, an application in the mechanical vibration signal processing
is used to illustrate the denoising technique. The experimental study shows the SGMM can model the distribution of wavelet
coefficients accurately and QSD can depict interscale dependency of wavelet coefficients of true signal quite successfully.Therefore,
the denoising method utilizing the SGMM and QSD performs better than others.

1. Introduction

With the science and technology developing, the mechanical
equipment is becoming more and more complicated, which
indicates that intelligent controlling andmonitoringmethods
are necessary for machineries. The signal is widely used in
mechanical system for controlling and monitoring [1–5] and
helps to optimize the mechanical equipment management.
The vibration signal among the most popular signals is
applied to the mechanical information extraction. However,
noise inevitably exists in mechanical vibration signal. Thus
the study of noise reduction has attracted sustained atten-
tion in the past few decades, and estimating the noise-
free signal coefficients in the wavelet domain is a practical
way while it is difficult to recover noise-free signal in the
time domain. Improved from VisuShrink, SureShrink, and
BayesShrink, a fair amount of wavelets based on denoising
techniques using thresholding functions has been developed

for one-dimensional [6–8], two-dimensional [9–12], and
three-dimensional [13, 14] signal. It has been demonstrated
that the thresholding function based denoising algorithms
utilizing local probability density function (PDF) [15] or
utilizing interscale dependency of wavelet coefficients [16, 17]
are among the best.

The noise reduction algorithm using the thresholding
function can be considered as estimating the noise-free
wavelet coefficients as accurately as possible in a Bayesian
framework [15]. The maximum a posteriori (MAP) Bayesian
estimator is often employed to derive the thresholding
function based on an appropriate prior knowledge of noise-
free wavelet coefficients. So, the adopted distribution for the
wavelet coefficients plays a key role in the performance of
mechanical vibration signal denoising. Due to the versatility
of the Gaussian mixture model (GMM) in characterizing
statistical behavior in the wavelet domain, the GMM has
been extensively applied in modeling the PDF of wavelet
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coefficients accurately [18], and the thresholding function
derived from GMM performances shows better shrinking
coefficients than those based on Gaussian model and Lapla-
cian model. However, the GMM is mostly used for two-
dimensional image rather than one-dimensional mechanical
signal processing; it is necessary to do some research on one-
dimensional signal processing for wider application ofGMM.
After wavelet decomposition, different subbands will present
different wavelet coefficients. It is logical to take the level of
subband into account while the GMM is employed to model
the coefficient distribution in each level. In order to enhance
the denoising effect, a subband based on Gaussian mixture
model (SGMM) is proposed as a local PDF for each wavelet
coefficient in its neighborhood.

The standard deviation of the clean wavelet coefficients
is an important parameter in SGMM.The conventional stan-
dard deviation (CSD) is mostly used to estimate the standard
deviation of noise-free coefficients and it will finally appear
in the thresholding function after MAP estimation based on
SGMM, which will strongly influence the noise reduction
effect. The CSD of clean wavelet coefficients is computed via
an statistical way in its neighborhood [17], which ignores
the interscale dependency between adjacent subbands. It
has been revealed that denoising algorithms [16, 17, 19]
which consider the influence of interscale dependency of
wavelet coefficients performs better in denoising, whereas the
studies shown in [16, 17, 19] consider interscale dependency
in statistic distribution model and use the CSD of clean
wavelet coefficients to handle wavelet. Sincemanyworks have
shown strong evidences that wavelet coefficients produced by
true signal exhibit significant dependencies on subsequent
locations, in this paper the interscale dependency is taken
into account from another perspective, which indicates that
we will integrate the interscale dependency into the standard
deviation. In order to evaluate the interscale dependency
quantitatively, the quantum theory is employed due to its
special nature.

Quantum theory is an ongoing research in the fields of
quick search [20], optimization [21, 22], clustering [23], and
key distribution [24]. The work of incorporating quantum
mechanics into other theories has stimulated the researches
of quantum-inspired algorithms and their applications. Rely-
ing on the basic principles of quantum mechanics, a qubit
described as a superposition can represent all states simul-
taneously that a datum may generate [21, 22]. A wavelet
coefficient consists of the noise-free coefficient and the noise
coefficient; in other words, it is the superposition of signal
and noise. Therefore, quantum theory is potential to depict
the interscale dependency between subbands in the same
location. We will try to derive a quantum-inspired standard
deviation (QSD) for noise-free wavelet coefficients in order
to improve noise reduction effect of denoising method with
CSD.

From the above, in this paper the clean coefficients are
estimated from the noisy data observations considering both
local PDF using SGMM and interscale dependency using
QSD while processing the wavelet coefficients with Bayesian
estimation techniques. Using the SGMM with QSD has
two advantages: (1) One better prior distribution of wavelet

coefficients will result in one better thresholding function.
The SGMM can model the distribution of wavelet coeffi-
cients more accurately in each subband; (2) the interscale
dependency is a basic property of wavelet coefficients and
the QSD considers the interscale dependency quantitatively.
Combining the SGMM with QSD thus will elicit an exact
thresholding function which will reduce noise professionally.

The remainder of the paper is organized as follows. In
Section 2 the SGMM is presented and the thresholding func-
tion based on local SGMMwith CSD usingMAP estimator is
derived. In Section 3, the quantum theory is employed to eval-
uate the interscale dependency between adjacent subbands
quantitatively. The QSD integrating quantum mechanics is
presented and substituted for CSD in the thresholding func-
tion. Then the procedures of the denoising algorithm using
QSD are presented. In Section 4, the proposed denoising
algorithm is applied and experimental results are discussed.
Finally, Section 5 offers some conclusions.

2. Bayesian Denoising Based on
SGMM with CSD

2.1. BayesianDenoising Based onGaussianPDF. In this paper,
a mechanical vibration signal corrupted by additive white
Gaussian noise (AWGN) with zero mean will be considered.
For ease of clear expression for deriving thresholding func-
tion using GMM as a local distribution, the thresholding
function based on Gaussian PDF with local parameters is
given first in this section. After wavelet transforming, the
wavelet coefficients satisfy 𝑦 = 𝑤 + 𝑛, where 𝑦 is the noisy
wavelet coefficient of sampled mechanical signal, 𝑤 is the
noise-free wavelet coefficient to be computed, and 𝑛 is noise
coefficient, which is independent white zero-mean Gaussian
one.

Dual-tree complex wavelet transform (DTCWT) can
reduce spectral aliasing for vibration signals and enjoys
nearly shift invariance compared to other wavelets, which are
attractive properties favorable to signal processing [7, 25, 26].
Owing to these advantages, DTCWT is utilized to conduct
study in the next couple of sections.Note thatDTCWTcoeffi-
cients are complex, sowe assume real part and imaginary part
of coefficients are independent, for the real part and imagi-
nary part are produced by two different trees. In the following
sections, in order to facilitate the formulations, the DTCWT
coefficients referred to are the real part. But the obtained
equations and contents are also suitable for imaginary part.

Given random variable 𝑌 for 𝑌 = 𝑦 and letting 𝑝𝑤|𝑦(𝑤 |𝑦) denote the conditional PDF of random variable 𝑊 for𝑊 = 𝑤, the standardMAPestimation for𝑤(𝑦) from the noisy
observation 𝑦 is given below:

𝑤 (𝑦) = arg max
𝑤

𝑝𝑤|𝑦 (𝑤 | 𝑦) . (1)

The thresholding based denoising method employing
local PDF can threshold each sampling point of each subband
separately; thus its denoising ability is more powerful [15].
With that in the mind, the supposed local PDF for each
wavelet coefficient is different; the equation 𝑦(𝑘) = 𝑤(𝑘) +𝑛(𝑘) is needed, where 𝑘 = 1, . . . , 𝑁𝑠 and 𝑁𝑠 is the quantity
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of DTCWT coefficients in the 𝑠th subband. Thus the MAP
estimation of 𝑤(𝑘) is expressed as

𝑤 (𝑘) = arg max
𝑤(𝑘)

𝑝𝑤(𝑘)|𝑦(𝑘) (𝑤 (𝑘) | 𝑦 (𝑘)) . (2)

Suppose the PDF of the noise-free DTCWT coefficient𝑤(𝑘) 𝑝𝑤(𝑘)(𝑤(𝑘)) is Gaussian with the standard deviation𝜎(𝑘).
𝑝𝑤(𝑘) (𝑤 (𝑘)) = Gaussian (𝑤 (𝑘) , 𝜎 (𝑘))

= 1
𝜎√2𝜋 exp(− 𝑤2 (𝑘)

2𝜎2 (𝑘)) .
(3)

Suppose the PDF of noise coefficient 𝑛(𝑘) 𝑝𝑛(𝑘)(𝑛(𝑘))
is Gaussian with the standard deviation 𝜎𝑛. The following
formula can be adopted:

𝑝𝑛(𝑘) (𝑛 (𝑘)) = Gaussian (𝑛 (𝑘) , 𝜎𝑛)
= 1
𝜎√2𝜋 exp(−𝑛2 (𝑘)2𝜎2𝑛 ) .

(4)

Using Bayes rule, the following thresholding function is
derived:

𝑤 (𝑘) = 𝜎2 (𝑘)
𝜎2 (𝑘) + 𝜎2𝑛 𝑦 (𝑘) . (5)

2.2. Thresholding Function Based on SGMM. Based on the
previous part of thresholding function using Gaussian PDF,
this part focuses on deriving thresholding function based on
SGMM as local PDF for each noise-free coefficient. A GMM
which is the sum of two Gaussian PDFs [27] is formulated as

𝑝𝑤 (𝑤) = 𝑎Gaussian (𝑤, 𝜎1)
+ (1 − 𝑎)Gaussian (𝑤, 𝜎2)

= 𝑎 1
𝜎1√2𝜋 exp(− 𝑤2

2𝜎21 )

+ (1 − 𝑎) 1
𝜎2√2𝜋 exp(− 𝑤2

2𝜎22 ) .

(6)

As the GMM has more parameters than Gaussian PDF
Gaussian(𝑤, 𝜎1) or Gaussian(𝑤, 𝜎2), it is more flexible for
matching the histogram of a given dataset. Inspired by (6),
assuming the noise-free wavelet coefficients distribution as a
mixture PDF using local parameters under the subbands𝐻0
and 𝐻1, the SGMM is presented. The SGMM for noise-free
DTCWT coefficients is as follows:

𝑝𝑤(𝑘) (𝑤 (𝑘)) = 𝑎 (𝑘) 𝑝1 (𝑤 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑝2 (𝑤 (𝑘))
= 𝑎 (𝑘)Gaussian (𝑤 (𝑘) , 𝜎1 (𝑘))
+ (1 − 𝑎 (𝑘))Gaussian (𝑤 (𝑘) , 𝜎2 (𝑘))

= 𝑎 (𝑘) 1
𝜎1 (𝑘)√2𝜋 exp(− 𝑤2 (𝑘)

2𝜎21 (𝑘))

+ (1 − 𝑎 (𝑘)) 1
𝜎2 (𝑘)√2𝜋 exp(− 𝑤2 (𝑘)

2𝜎22 (𝑘)) ,
(7)

where𝑤1 is the coefficient under the subband𝐻0 and𝑤2 is the
coefficient under the subband 𝐻1. Suppose 𝑤1(𝑘) is estima-
tion of𝑤(𝑘) under the subband𝐻0 using the MAP estimator,
while𝑤2(𝑘) is estimation of𝑤(𝑘) under the subband𝐻1 using
MAP estimator. Equation (7) is used as follows: firstly, 𝑎(𝑘)
and (1/𝜎1(𝑘)√2𝜋) exp(−𝑤2(𝑘)/2𝜎21(𝑘)) are calculated based
on 𝐻0; the (1/𝜎2(𝑘)√2𝜋) exp(−𝑤2(𝑘)/2𝜎22(𝑘)) is calculated
based on𝐻1.Then (7) is applied to coefficients in both𝐻0 and𝐻1. Therefore, in (7) 𝑤(𝑘) denotes all noise-free coefficients
from𝐻0 and𝐻1.

It is natural to think𝑤(𝑘) is the combination of𝑤1(𝑘) and𝑤2(𝑘). In fact, the following equation is satisfied:
𝑤 (𝑘) = 𝑝𝑎 (𝑦 (𝑘)) 𝑤1 (𝑘) + 𝑝1−𝑎 (𝑦 (𝑘)) 𝑤2 (𝑘) , (8)

where 𝑝(𝐻0 | 𝑦(𝑘)) fl 𝑝𝑎(𝑦(𝑘)) and 𝑝(𝐻1 | 𝑦(𝑘)) fl𝑝1−𝑎(𝑦(𝑘)). Here, 𝑦(𝑘) denotes all noisy coefficients from𝐻0 and 𝐻1. Since the subband is limited in 𝐻0 and 𝐻1,
coefficients are Gaussian with standard deviations 𝜎1(𝑘)
and 𝜎2(𝑘), respectively; thresholding function (5) can be
employed to compute 𝑤1(𝑘) and 𝑤2(𝑘). In this case, (8) can
be further written as

𝑤 (𝑘) = 𝑝𝑎 (𝑦 (𝑘)) 𝜎21 (𝑘)𝜎21 (𝑘) + 𝜎2𝑛 𝑦 (𝑘)

+ 𝑝1−𝑎 (𝑦 (𝑘)) 𝜎22 (𝑘)𝜎22 (𝑘) + 𝜎2𝑛 𝑦 (𝑘) .
(9)

In order to calculate 𝑝𝑎(𝑦(𝑘)) and 𝑝1−𝑎(𝑦(𝑘)), the follow-
ing rule is used:

𝑝𝑎 (𝑦 (𝑘)) = 𝑎 (𝑘) 𝑔1 (𝑦 (𝑘))𝑎 (𝑘) 𝑔1 (𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑔2 (𝑦 (𝑘))
𝑝1−𝑎 (𝑦 (𝑘))

= (1 − 𝑎 (𝑘)) 𝑔2 (𝑦 (𝑘))𝑎 (𝑘) 𝑔1 (𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑔2 (𝑦 (𝑘)) ,
(10)

where 𝑝(𝑦(𝑘) | 𝐻0) fl 𝑔1(𝑦(𝑘)) denotes the PDF of 𝑦(𝑘)
according to 𝐻0 and 𝑝(𝑦(𝑘) | 𝐻1) fl 𝑔2(𝑦(𝑘)) denotes the
PDF of 𝑦(𝑘) according to𝐻1. So (9) can be formulated as

𝑤 (𝑘) = 𝑎 (𝑘) 𝑔1 (𝑦 (𝑘))𝑎 (𝑘) 𝑔1 (𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑔2 (𝑦 (𝑘))
× 𝜎21 (𝑘)𝜎21 (𝑘) + 𝜎2𝑛 𝑦 (𝑘)

+ (1 − 𝑎 (𝑘)) 𝑔2 (𝑦 (𝑘))𝑎 (𝑘) 𝑔1 (𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑔2 (𝑦 (𝑘))
× 𝜎22 (𝑘)𝜎22 (𝑘) + 𝜎2𝑛 𝑦 (𝑘) .

(11)
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Noisy coefficients are the sum of noise-free coefficients
and Gaussian noise and they satisfy the convolution

𝑝𝑦(𝑘) (𝑦 (𝑘))
= (𝑎 (𝑘) 𝑝1 (𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑝2 (𝑦 (𝑘)))
∗ 𝑝𝑛 (𝑦 (𝑘))

= 𝑎 (𝑘) 𝑝1 (𝑦 (𝑘)) ∗ 𝑝𝑛 (𝑦 (𝑘))
+ (1 − 𝑎 (𝑘)) 𝑝2 (𝑦 (𝑘)) ∗ 𝑝𝑛 (𝑦 (𝑘))

= 𝑎 (𝑘) 𝑔1 (𝑦 (𝑘)) + (1 − 𝑎 (𝑘)) 𝑔2 (𝑦 (𝑘)) .

(12)

Because 𝑤(𝑘) follows the SGMM with local parameters
according to (7), Gaussian PDFs 𝑝1(𝑤(𝑘)) and 𝑝2(𝑤(𝑘))

include parameters 𝜎1 and 𝜎2. On this basis, 𝑔1(𝑦(𝑘)) and𝑔2(𝑦(𝑘)) in (12) can be expressed as

𝑔1 (𝑦 (𝑘)) = Gaussian (𝑦 (𝑘) , 𝜎1 (𝑘))
∗ Gaussian (𝑦 (𝑘) , 𝜎𝑛 (𝑘))

= Gaussian (𝑦 (𝑘) , √𝜎21 (𝑘) + 𝜎2𝑛 (𝑘))
𝑔2 (𝑦 (𝑘)) = Gaussian (𝑦 (𝑘) , 𝜎2 (𝑘))

∗ Gaussian (𝑦 (𝑘) , 𝜎𝑛 (𝑘))
= Gaussian (𝑦 (𝑘) , √𝜎22 (𝑘) + 𝜎2𝑛 (𝑘)) .

(13)

Therefore, 𝑝𝑎(𝑦(𝑘)) and 𝑝1−𝑎(𝑦(𝑘)) in (10) can be
expressed as

𝑝𝑎 (𝑦 (𝑘)) =
𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21 (𝑘) + 𝜎2𝑛 (𝑘))

𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21 (𝑘) + 𝜎2𝑛 (𝑘)) + (1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22 (𝑘) + 𝜎2𝑛 (𝑘))

𝑝1−𝑎 (𝑦 (𝑘)) =
(1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22 (𝑘) + 𝜎2𝑛 (𝑘))

𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21 (𝑘) + 𝜎2𝑛 (𝑘)) + (1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22 (𝑘) + 𝜎2𝑛 (𝑘))
.

(14)

Now, thresholding function (11) can be written as

𝑤 (𝑘) = 𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21 (𝑘) + 𝜎2𝑛 (𝑘)) (𝜎21 (𝑘) / (𝜎21 (𝑘) + 𝜎2𝑛)) 𝑦 (𝑘)
𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21 (𝑘) + 𝜎2𝑛 (𝑘)) + (1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22 (𝑘) + 𝜎2𝑛 (𝑘))

+ (1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22 (𝑘) + 𝜎2𝑛 (𝑘)) × (𝜎22 (𝑘) / (𝜎22 (𝑘) + 𝜎2𝑛)) 𝑦 (𝑘)
𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21 (𝑘) + 𝜎2𝑛 (𝑘)) + (1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22 (𝑘) + 𝜎2𝑛 (𝑘))

.
(15)

Equation (15) is a thresholding function which can be
used to shrink DTCWT coefficients. The EM algorithm is
utilized to compute 𝜎1(𝑘) and 𝜎2(𝑘) [28]. A robust median
estimator is an accepted way in the finest scale subband to
estimate the noise standard deviation 𝜎𝑛 [19, 29].

𝜎𝑛 = median (󵄨󵄨󵄨󵄨󵄨𝑦𝑓󵄨󵄨󵄨󵄨󵄨)0.6745 , (16)

where 𝑦𝑓 denotes the noisy wavelet coefficients from finest
subband in scale.

However, it is difficult to determine the three parameters,
since the equation var[𝑤(𝑘)] ̸= 𝑎2(𝑘)𝜎21(𝑘)+ (1−𝑎2(𝑘))𝜎22(𝑘)
exits. The EM algorithm is most frequently utilized to
compute the three parameters 𝜎1(k), 𝜎2(k), and a(k) from

data [28], but it ignores the interscale dependency of the
DTCWT coefficient. Considering the importance of the
three parameters and the interscale dependency between
subbands, it is necessary to develop an algorithm to compute
parameters in the following sections.

3. Quantum-Inspired Standard
Deviation (QSD)

Thresholding function (15) using 𝜎1(𝑘), 𝜎2(𝑘) can reduce
noise notably; however the progress of the EM algorithm
ignores the interscale dependency between DTCWT sub-
bands and𝜎1(𝑘), 𝜎2(𝑘) computed areCSDs in essence. Exper-
iments show that 𝜎1(𝑘), 𝜎2(𝑘) are not only quite different
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from scale to scale, but also different for each pixel in the
same subband.Theworks ofmany authors have shown strong
evidence that wavelet coefficients produced by true signal
exhibit significant dependencies on subsequent locations.
However, the coefficients caused by noise will decay rapidly
along scales [16]. The magnitudes of noise coefficients have
weaker correlation across the wavelet decomposition scales
than those of true signal coefficients. Estimating a true signal
by analyzing interscale coefficients has been widely used in
denoising algorithms.Therefore, in this section, the interscale
dependency of wavelet coefficient across scales is combined
to further process 𝜎1(𝑘), 𝜎2(𝑘) after EM algorithm to improve
the denoising effects.

3.1. The Concept of Quantum Bit. The quantum bit (qubit)
is the smallest unit of information in principle of quantum
theory. It is a probabilistic representationwhich can represent
a linear superposition of two ground states. The qubit is
defined by a superposition of ground states |0⟩ and |1⟩with a
pair of numbers (𝛼, 𝛽) as follows [30]:

󵄨󵄨󵄨󵄨𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , (17)

where |𝜙⟩, |0⟩, |1⟩ are the quantum states; 𝛼 and 𝛽 denote
the probability amplitudes of the corresponding states. In the
representation, |𝛼|2 and |𝛽|2 give the probability that the qubit
will be in the “0” state and “1” state, respectively. So, the state
of the qubit |𝜙⟩ varies as 𝛼 and 𝛽 change. Therefore, a qubit
can represent all states that a datum may have. A qubit may
be in the “1” state, or in the “0” state, or in superposition of
the two corresponding states with weighting factors 𝛼 and𝛽. Since DTCWT coefficients of a sampling signal are the
superposition of noise-free coefficients and noise coefficients,
it is potential to handle the information inwavelet coefficients
by qubit.𝛼 and 𝛽 are complex numbers, and the following normal-
ization condition is always satisfied:

|𝛼|2 + 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨2 = 1. (18)

In physics the spin-up and spin-down orientations can be
the interpretations of ground states 0 and 1, and the ground
state and the excited state of an atom can also represent|0⟩ and |1⟩, respectively [31]. As similarly known, a noise
DTCWT coefficient can represent |0⟩ and a true signal
DTCWT coefficient can represent |1⟩ when the quantum
mechanics is employed to analyze the wavelet coefficients of
a sampled mechanical vibration signal.

3.2. Quantum-Inspired Standard Deviation (QSD). The
parameters 𝜎1(𝑘), 𝜎2(𝑘) are variates in thresholding function
equation (15).They not only control the shape of the function,
but also influence the denoising performance. Following
Section 3.1, we focus on incorporating quantum theory into
the standard deviations 𝜎1(𝑘), 𝜎2(𝑘), which are calculated by
EM algorithm, to improve the thresholding effects. Then the
CSDs 𝜎1(𝑘), 𝜎2(𝑘) are converted to QSDs which are tuned
by the quantum-inspired appearing probability of true signal
coefficients. One QSD characterizes interscale dependency

between a coefficient and its parent and achieves a degree
of noise reduction for the sampled mechanical signal via
thresholding function.

Noise and true signal have quite different singularity in
wavelet domain. After transformation, wavelet coefficients
of a true signal have strong scale dependency between
each subband, especially at the point of signal saltation.
However wavelet coefficients of noise decrease remarkably as
decomposition level increases. These result in the fact that
the product of a child coefficient and its parent coefficient
for true signal is larger than the product for noise. Therefore,
the product of coefficients between adjacent subbands can be
used for denoising.

Considering the amount of parent coefficients is twice
the amount of child coefficients, the parent-child wavelet
modulus is formulated as

𝐶𝑠 (𝑘) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑠+1 (round(

𝑘
2))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ×
󵄨󵄨󵄨󵄨𝑦𝑠 (𝑘)󵄨󵄨󵄨󵄨 , (19)

where 𝑠 denotes the parent level, 𝑠 + 1 denotes the child level,
and round denotes the rounding-off method. 𝐶𝑠(𝑘) denote
the product of a parent wavelet modulus |𝑦𝑠+1(round(𝑘/2))|
and a child wavelet modulus |𝑦𝑠(𝑘)|. 𝐶𝑠(𝑘) is at the 𝑘th
position in the 𝑠th decomposition level. Note that it is stated
in Section 2.1 that 𝑦 in (19) refers to real part of DTCWT
coefficients since we just discuss real parts. However, (19)
is also applicative to imaginary part when we handle the
coefficients under the imaginary domain while 𝑦 denotes the
imaginary part.

Coefficients of a sampled signal are the composition of
noise coefficients and true signal coefficients in nature, having
similarity with the superposition in quantum theory. Inspired
by basic quantummechanics, the parent-childwaveletmodu-
lus𝐶𝑠(𝑘) can be also expressed as the superposition of a noise
wavelet coefficient and a true signal wavelet coefficient:

󵄨󵄨󵄨󵄨𝐶𝑠 (𝑘)⟩ = 𝛼 (𝑘) |0⟩ + 𝛽 (𝑘) |1⟩ , (20)

where 𝛼(𝑘) and 𝛽(𝑘) denote the probability amplitudes of
noise wavelet coefficient |0⟩ and true signal wavelet coeffi-
cient, respectively. Normalize 𝐶𝑠(𝑘) as 𝑁𝐶𝑠(𝑘) ∈ [0, 1], and
let 𝛼(𝑘) = cos(𝑁𝐶𝑠(𝑘) × 𝜋/2), 𝛽(𝑘) = sin(𝑁𝐶𝑠(𝑘) × 𝜋/2).
The normalizing condition 𝛼2(𝑘)+𝛽2(𝑘) = 1 is then satisfied,
and we can write the parent-child real wavelet modulus in a
quantum-inspired form

󵄨󵄨󵄨󵄨𝐶𝑠 (𝑘)⟩ = cos(𝑁𝐶𝑠 (𝑘) × 𝜋
2 ) |0⟩

+ sin(𝑁𝐶𝑠 (𝑘) × 𝜋
2 ) |1⟩ .

(21)

In physical significance, 𝑁𝐶𝑠(𝑘) reflects the appearing
probability of true signal and noise. If the value of 𝑁𝐶𝑠(𝑘)
is less, the corresponding position between parent and child
has less dependency or less energy, whichmeans this position
has larger probability for noise to appear. Conversely, if the
value of𝑁𝐶𝑠(𝑘) is larger, the corresponding position between
parent and child has lager dependency and larger energy,
which means this position has larger probability for true
signal to appear.
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After transforming, cos2(𝑁𝐶𝑠(𝑘) × 𝜋/2) in (21) is used
to represent the appearing probability of noise at the 𝑘th
position in the 𝑠th decomposition level and sin2(𝑁𝐶𝑠(𝑘) ×𝜋/2) in (21) is used to represent the appearing probability
of true signal at 𝑘th position in the 𝑠th decomposition
level. If 𝑁𝐶𝑠(𝑘) = 0, it means that the corresponding
position is totally noise. If 𝑁𝐶𝑠(𝑘) = 1, it means that
the corresponding position is totally true signal. Combining
appearing probability of true signal and noise, the estimation
for 𝑘th position at the present 𝑠th subband is QSD

𝜎1,QSD (𝑘) = 𝜎1 sin(𝑁𝐶𝑠 (𝑘) × 𝜋
2 )

𝜎2,QSD (𝑘) = 𝜎2 sin(𝑁𝐶𝑠 (𝑘) × 𝜋
2 ) .

(22)

The proposed QSDs utilize interscale dependency
between wavelet coefficients. Substituting for CSDs in
the thresholding function based on SGMM, thresholding
function (15) can be written as

𝑤 (𝑘) = 𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21,QSD (𝑘) + 𝜎2𝑛 (𝑘)) (𝜎21,QSD (𝑘) / (𝜎21,QSD (𝑘) + 𝜎2𝑛)) 𝑦 (𝑘)
𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21,QSD (𝑘) + 𝜎2𝑛 (𝑘)) + (1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22,QSD (𝑘) + 𝜎2𝑛 (𝑘))

+ (1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22,QSD (𝑘) + 𝜎2𝑛 (𝑘)) × (𝜎22,QSD (𝑘) / (𝜎22,QSD (𝑘) + 𝜎2𝑛)) 𝑦 (𝑘)
𝑎 (𝑘)Gaussian (𝑦 (𝑘) , √𝜎21,QSD (𝑘) + 𝜎2𝑛 (𝑘)) + (1 − 𝑎 (𝑘))Gaussian (𝑦 (𝑘) , √𝜎22,QSD (𝑘) + 𝜎2𝑛 (𝑘))

.
(23)

If the QSD indicates that the appearing probability of
true signal is larger, the value of the thresholding function
is larger adaptively. On the contrary, if QSD indicates that
the appearing probability of noise is larger, the value of the
thresholding function is less adaptively. These characteristics
are in favor of noise reduction. Obviously themost important
point is that the quantum-inspired appearing probability
of noise-free signal which is denoted as sin(𝑁𝐶𝑠 × 𝜋/2)
adaptively adjusts CSDs 𝜎1(𝑘), 𝜎2(𝑘). The true signal of the
machinery is enhanced and the noise is weakened with the
thresholding function. In this thresholding function with
QSD, the unimportant coefficients are shrunk nonlinearly
instead of setting to zero, which can not only reduce noise but
also preserve more shape details, such as impulsive feature of
fault.

3.3. Procedure of Denoising Algorithm with QSD Based on
SGMM. The denoising of the mechanical vibration signals
employing QSD in thresholding function based on SGMM
can be done in the following way:

(1) Sample a mechanical vibration signal.
(2) Decompose the noisy mechanical vibration signal by

DTCWT.
(3) Threshold the real part of the DTCWT coefficients

using (23) in each subband.
(4) Threshold the imaginary part of the DTCWT coeffi-

cients using (23) in each subband.
(5) Apply the inverse DTCWT to the thresholded coeffi-

cients to obtain the denoised signal. The flow chart of
the algorithm is shown in Figure 1.

4. Application for Bearing Signal Denoising

4.1. Experimental System of Rolling Element Bearing. The
mechanical vibration signal used in this paper was acquired

fromamechanical power-shift steering transmission.The test
stand consists of a reliance electric motor, an accelerometer
located on tank cover over the fault bearing with a magnetic
base, and a data recorder with a sampling frequency of
10000Hz per channel. The single point fault was set for
the rolling element bearing at the inner raceway using
electrodischarge machining with fault diameter of 3mm and
fault depth of 2mm.The shaft rotational speed was 1830 rpm
(30.5Hz) while the equipment was at third gear. The time
of sampling was 0.15 seconds [32]. On the basis of the
theoretical calculation the characteristic frequency of inner
race fault is 158Hz. The waveform of the analyzed signal in
the time domain and the frequency spectrum are displayed
in Figure 2. The defect frequency 158Hz cannot be detected
in Figure 2(b). Both the waveform and the spectrum indicate
that the signal is corrupted by strong noise.

4.2. Applying for Denoising. Thepresented denoisingmethod
using QSD based on SGMM is employed to reduce noise and
the results are shown in Figure 3. Since the soft thresholding
technique and hard thresholding technique are among the
most widely used thresholding methods to depress noise,
they are employed for purposes of comparison with the
proposed algorithm.The results of soft and hard thresholding
technique are shown in Figures 4 and 5.

(1) In the Time Domain. The soft and hard thresholding
technique remove most of the noise, but they also remove
the useful signal, which leads to the fact that the shock
period is incorrect.The denoised signal by denoising method
using QSD based on SGMM has more impact information,
which is important for fault diagnosis. The proposed denois-
ing method can depress noise and maintain the impulsive
components.
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Mechanical vibration signal

DTCWT decomposition

Threshold coefficients

Quantum-inspired standard
deviation

Inverse DCTWT

SGMM model of each level

Thresholding function based
on SGMM

Thresholding function using
QSD

Denoised signal

Figure 1: Flow chart of the proposed denoising algorithm.
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Figure 2: Fault signal with strong noise: (a) waveform in the time
domain; (b) frequency spectrum.

(2) In the Frequency Domain. The characteristic frequency
158Hz can be seen in Figures 3(b), 4(b), and 5(b), which
reveals that the three thresholding methods are useful. There

are two obvious features of rolling element bearing with inner
race fault: (1) The characteristic frequency and its harmonic
frequencies have sideband and the difference between the
sideband and its center frequency is equal to the rotating
frequency. (2) The rotating frequency and its harmonic
frequencies are significant. However the characteristic fre-
quency has no correct sideband and the spectra have no
harmonic frequencies after soft and hard thresholding. The
characteristic frequency 158Hz and its harmonic frequency
at 316Hz can be identified clearly in Figure 3(b) and side
frequencies (158 ± 30.5Hz, 316 ± 30.5Hz) are prominent.
Furthermore, the difference between the side frequencies
and the center frequency is 30.5Hz which is equal to the
rotating frequency. In addition, in Figure 3(b) themodulation
frequencies 30.5Hz (equal to the frequency of rotor rotating)
and 61Hz (equal to the second harmonic frequency of rotor
rotating) are very clear too. For all of these characteristics
accord well with the characteristics of a standard bearing
spectrum with inner race fault, we can confirm that there is
an inner race fault in the rolling element bearing.

5. Conclusions

There are two highlights of the proposed denoising technique
in this paper: (1) The SGMM is proposed and utilized to
approximate the local PDF of each wavelet coefficient. The
thresholding function is derived after the MAP estimation
using the SGMM as the prior knowledge, which extends
the application of the GMM to one-dimensional mechanical
signal. (2) The quantum theory is employed to describe the
interscale dependency of wavelet coefficients and the QSD
is presented. Experimental results show that the denoising
technique using the SGMM and QSD can achieve better
denoising performance in both the time and frequency
domains. The success of the denoising algorithm depends
upon the ability of the SGMM modeling the statistical
distribution accurately and the QSD exploring the interscale
dependency of adjacent subbands correctly and efficiently.
The algorithm is tested and verified through a mechanical
vibration signal with bearing fault discussed as a denoising
case in Section 4. The advantages of the proposed denoising
algorithm becomes more noticeable when the mechanical
vibration signal is corrupted by more noise.

Furthermore, instead of this thresholding function
derived from the SGMM by the MAP estimator, the QSD
can be applied into other nonlinear thresholding functions,
for example, generalized Gaussian distribution based thresh-
olding function or the MMSE estimation based thresholding
function. However, these methods take longer time which
may be more applicable for some signal processing.
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Figure 3: Denoising by thresholding function using QSD based on SGMM: (a) waveform in the time domain; (b) frequency spectrum.
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Figure 4: Denoising by soft thresholding technique: (a) waveform in the time domain; (b) frequency spectrum.
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Figure 5: Denoising by hard thresholding technique: (a) waveform in the time domain; (b) frequency spectrum.
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