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Delay-dependent finite-time 𝐻
∞

controller design problems are investigated for a kind of nonlinear descriptor system via a T-S
fuzzy model in this paper.The solvable conditions of finite-time𝐻

∞
controller are given to guarantee that the loop-closed system is

impulse-free and finite-time bounded and holds the𝐻
∞
performance to a prescribed disturbance attenuation level 𝛾. The method

given is the ability to eliminate the impulsive behavior caused by descriptor systems in a finite-time interval, which confirms the
existence and uniqueness of solutions in the interval. By constructing a nonsingularmatrix, we overcome the difficulty that results in
an infeasible linear matrix inequality (LMI). Using the FEASP solver and GEVP solver of the LMI toolbox, we perform simulations
to validate the proposed methods for a nonlinear descriptor system via the T-S fuzzy model, which shows the application of the
T-S fuzzy method in studying the finite-time control problem of a nonlinear system.Meanwhile the method was also applied to the
biological economy system to eliminate impulsive behavior at the bifurcation value, stabilize the loop-closed system in a finite-time
interval, and achieve a𝐻

∞
performance level.

1. Introduction

The Lyapunov stability theory can be regarded as a relatively
mature field, which focuses on the asymptotic stability of a
system state on an infinite interval. However, it is noteworthy
that the behavior of the systemover a fixedfinite-time interval
needs to be considered in many practical problems, and this
just leads to the finite-time or short time stability issues. In
short, a system is said to be finite-time stable, if its state keeps
within the prescribed bounds on a fixed time interval for
given some initial conditions [1, 2]. It has been shown that the
finite-time stability issues play an important role in the theory
and practical application; for instance, the trajectory control
of space vehicles, the disease control, the population quantity
control, and so on will lead to a discussion on the finite-
time stability or boundedness. This fact also motivates many
scholars to study the finite-time stability or boundedness and
robust control problems [1–6].

As is known to all, time-delays exist inevitably in many
practical engineering systems, such as nuclear reactors,

electronics, chemical processes, and hydraulic and biological
systems. They can frequently lead to instability and poor
performance. So there has been an increasing interest in
the stability analysis and stabilization for time-delay systems
in the last decades [4, 5, 7–15]. The results and discussions
may be classified as delay-independent or -dependent. Delay-
dependent discussions which take into account the size of
delays are of less conservative, especially in the case of
small time-delays [7]. The main issue of delay-dependent
is that the presence of an integral term normally does not
found in LMIs. There may be several ways to deal with the
integral term, such as Jesson’s inequality [10, 11], Moon et al.’s
inequality [12], Park’s inequality [13], Wirtinger’s inequality
[14], and the free-weighting-matrix approach [15]. However,
each method has its own benefits and shortcomings in the
conservative viewpoint. According to the characteristics of
our research issue, we will investigate the delay-dependent
finite-time𝐻

∞
control problems of T-S descriptor system in

this paper by using Jesson’s inequality approach to overcom-
ing the conservativeness.
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The stability or robust stabilization of a nonlinear descrip-
tor system has been an acknowledged difficult problem [16],
especially with regard to the finite-time robust stabilization
issues. Fortunately, Taniguchi et al. established a T-S fuzzy
descriptor system model and proposed an innovative and
simple method to solve control problems of a kind of
nonlinear descriptor systems [17]. Many nonlinear dynamic
systems are represented as T-S fuzzy systems, which is a
universal fuzzy approximator [18–26].The descriptor systems
have been one of the major research fields of control theory,
which is due to the fact that a descriptor system may exhibit
impulsive or noncausal behavior along with the derivatives of
these impulses. It just results in the fact that the discussion of
descriptor systems ismuchmore complex andmore challeng-
ing than ordinary systems [7]. However, it is noteworthy that
singular systems not only describe actual physical systems
better but also are also more widely utilized than ordinary
ones. So in the past decades, descriptor systems have attracted
much attention [7, 17, 19, 25–30].

On the other hand, the problem of 𝐻
∞

control has been
a topic of growing interestover the past decades. A great
number of results on 𝐻

∞
control for the state-space and

descriptor systems have been reported in literatures [29, 31–
35]. However, the related research on finite-time𝐻

∞
control

of fuzzy descriptor systems is relatively less.
In view of the above-mentioned facts, this paper investi-

gates the delay-dependent finite-time 𝐻
∞

controller design
problems for a kind of nonlinear descriptor system via a T-
S fuzzy model. The solvable conditions of finite-time 𝐻

∞

controller are given to guarantee that the loop-closed system
is impulse-free and finite-time bounded and holds the 𝐻

∞

performance to a prescribed disturbance attenuation level 𝛾.
The method given is the ability to eliminate the impulsive
behavior caused by descriptor systems in a finite-time inter-
val, which confirms the existence and uniqueness of solutions
in the interval. By constructing a nonsingular matrix, we
overcome the difficulty that results in an infeasible linear
matrix inequality (LMI). By using the FEASP solver and
GEVP solver of the LMI toolbox together with SIMULINK
simulation technology, we perform simulations to validate
the proposed methods for a nonlinear descriptor system
via the T-S fuzzy model, which shows the application of
the T-S fuzzy method in studying the finite-time control
problem for a nonlinear system. Meanwhile the method was
also applied to the biological economy system to eliminate
impulsive behavior at the bifurcation value, stabilize the loop-
closed system in a finite-time interval, and achieve a 𝐻

∞

performance level.
This paper is organized as follows. Section 2 provides pre-

liminaries and the formulation. The finite-time 𝐻
∞

control
design scheme is proposed in Section 3. In Section 4, two
design examples are given to show the advantage of developed
results. Finally, concluding remark is made in Section 5.

2. System Formulation and Preliminaries

In the following, we consider the delay-depended finite-time
𝐻
∞

control problems for a kind of nonlinear descriptor
systems via T-S fuzzy models. The nonlinear dynamical
descriptor system can be described by the following fuzzy IF-
THEN rules:

Model rule i: IF 𝜉
1
(𝑡) is 𝑀

𝑖1
and 𝜉

2
(𝑡) is 𝑀

𝑖2
⋅ ⋅ ⋅ and 𝜉

𝑝
(𝑡) is 𝑀

𝑖𝑝
,

THEN 𝐸𝑥̇ (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑖𝑑
𝑥 (𝑡 − 𝑑) + 𝐵

𝑖
𝑢 (𝑡) + 𝐷

1𝑖
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
𝑖
𝑥 (𝑡) + 𝐷

2𝑖
𝑤 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,

(1)

where 𝑟 is the number of IF-THEN rules and 𝑀
𝑖𝑗
(𝑗 =

1, 2, . . . , 𝑝) are fuzzy sets; 𝑥(𝑡) ∈ 𝑅𝑛 is the state; 𝑢(𝑡) ∈
𝑅
𝑚 is control input; 𝑧(𝑡) ∈ 𝑅𝑞 is the controlled output;
𝑤(𝑡) ∈ 𝑅

𝑝 is the exogenous disturbance and satisfies
𝑤
𝑇

(𝑡)𝑤(𝑡) ≤ 𝑐
𝑤
, where 𝑐

𝑤
is a positive number; the matrix

𝐸 ∈ 𝑅
𝑛×𝑛 may be singular; and we let rank𝐸 = 𝑟 ≤ 𝑛.

The matrices 𝐴
𝑖
, 𝐴

𝑖𝑑
, 𝐵

𝑖
, 𝐶

𝑖
, 𝐷

1𝑖
, and 𝐷

2𝑖
are known real

constant matrices with appropriate dimensions. The delay 𝑑
is a positive constant. 𝜑(𝑡) is a continuous initial function on
[−𝑑, 0]. 𝜉

1
(𝑡), 𝜉

2
(𝑡), . . . , 𝜉

𝑝
(𝑡) are premise variables and write

𝜉(𝑡) = [𝜉
1
(𝑡), 𝜉

2
(𝑡), . . . , 𝜉

𝑝
(𝑡)]

𝑇.
By using the fuzzy inferencemethod of singleton fuzzifier

and weighted average defuzzifier, the overall fuzzy model can
be inferred as follows:
𝐸𝑥̇ (𝑡) = 𝐴

ℎ
𝑥 (𝑡) + 𝐴

ℎ𝑑
𝑥 (𝑡 − 𝑑) + 𝐵

ℎ
𝑢 (𝑡) + 𝐷

1ℎ
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
ℎ
𝑥 (𝑡) + 𝐷

2ℎ
𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,

(2)

where

𝐴
ℎ
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜉 (𝑡)) 𝐴

𝑖
,

𝐴
ℎ𝑑
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜉 (𝑡)) 𝐴

𝑖𝑑
,

𝐵
ℎ
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜉 (𝑡)) 𝐵

𝑖
,

𝐷
1ℎ
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜉 (𝑡))𝐷

1𝑖
,

𝐶
ℎ
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜉 (𝑡)) 𝐶

𝑖
,

𝐷
2ℎ
=

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜉 (𝑡))𝐷

2𝑖
,

(3)
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as follows:𝑀
𝑖𝑗
(𝜉
𝑗
(𝑡)) is the grade of membership of 𝜉

𝑗
(𝑡) in

𝑀
𝑖𝑗
. It can be seen that 𝛽

𝑖
(𝜉(𝑡)) = ∏

𝑝

𝑗=1
𝑀
𝑖𝑗
(𝜉
𝑗
(𝑡)) ≥ 0,

𝑖 = 1, 2, . . . , 𝑟. Thus, ℎ
𝑖
(𝜉(𝑡)) = 𝛽

𝑖
(𝜉(𝑡))/∑

𝑟

𝑖=1
𝛽
𝑖
(𝜉(𝑡)) ≥ 0,

∑
𝑟

𝑖=1
ℎ
𝑖
(𝜉(𝑡)) = 1, 𝑡 ∈ [0, 𝑇]. In this paper, let∑𝑟

𝑖=1
𝛽
𝑖
(𝜉(𝑡)) > 0,

𝑡 ∈ [0, 𝑇].
Note that rank(𝐸) = 𝑟 < 𝑛. Without loss of generality,

decompose matrices in (2) as follows:

𝐸 = (

𝐼
𝑟
0

0 0

) ,

𝐴
ℎ
= (

𝐴
ℎ11
𝐴
ℎ12

𝐴
ℎ21
𝐴
ℎ22

) ,

𝐴
ℎ𝑑
= (

𝐴
ℎ𝑑11

𝐴
ℎ𝑑12

𝐴
ℎ𝑑21

𝐴
ℎ𝑑22

) ,

(4)

where 𝐴
ℎ11
, 𝐴

ℎ𝑑11
∈ 𝑅

𝑟×𝑟, 𝐴
ℎ22
∈ 𝑅

(𝑛−𝑟)×(𝑛−𝑟), and 𝐴
ℎ𝑑22
∈

𝑅
(𝑛−𝑟)×(𝑛−𝑟).
Now we consider the systems

𝐸𝑥̇ (𝑡) = 𝐴
ℎ
𝑥 (𝑡) , (5)

𝐸𝑥̇ (𝑡) = 𝐴
ℎ
𝑥 (𝑡) + 𝐴

ℎ𝑑
𝑥 (𝑡 − 𝑑) ,

𝑥 (𝑡) = 𝜑 (𝑡) ,

𝑡 ∈ [−𝑑, 0] .

(6)

Definition 1 (see [7]). System (5) is said to be regular if
det(𝑠𝐸 − 𝐴

ℎ
) is not identically 0 for 𝑡 ∈ [0, 𝑇]. The system

is said to be impulse-free if deg
𝑠
det(𝑠𝐸 − 𝐴

ℎ
) = rank𝐸, for

𝑡 ∈ [0, 𝑇].

Lemma 2 (see [7]). System (6) is regular and impulse-free, if
system (5) is regular and impulse-free.The descriptor system (5)
is impulse-free if and only if 𝐴

ℎ22
for 𝑡 ∈ [0, 𝑇] is nonsingular.

Lemma 3 (Jensen’s inequality [10]). For any positive symmet-
ric constant matrix 𝑍 ∈ 𝑅𝑛×𝑛, scalars 𝑎, 𝑏 satisfying 𝑎 < 𝑏,
a vector function 𝑥 in [𝑎, 𝑏] → 𝑅𝑛 such that the integrations
concerned, are well defined, and then

∫

𝑏

𝑎

𝑥
𝑇

(𝑡) 𝑍𝑥 (𝑡) d𝑡 ≥ 1

𝑏 − 𝑎

∫

𝑏

𝑎

𝑥
𝑇

(𝑡) d𝑡𝑍∫
𝑏

𝑎

𝑥 (𝑡) d𝑡. (7)

Lemma 4 (see [35]). Given any real matrices 𝑋, 𝑌, and 𝑊
with appropriate dimensions such that𝑌 > 0 and is symmetric,
then one has

𝑋
𝑇

𝑌𝑋 + 𝑋
𝑇

𝑊+𝑊
𝑇

𝑋 +𝑊
𝑇

𝑌
−1

𝑊 ≥ 0. (8)

Definition 5 (see [4, 5] (finite-time stability)). The fuzzy
descriptor time-delay system (6) without impulse is said to
be finite-time stable with respect to (𝑐

1
, 𝑐
2
, 𝑇), 0 < 𝑐

1
< 𝑐

2
,

if sup
𝑡∈[−𝑑,0]

𝜑
𝑇

(𝑡)𝜑(𝑡) ≤ 𝑐
1
implies 𝑥𝑇(𝑡)𝐸𝑇𝐸𝑥(𝑡) < 𝑐

2
, ∀𝑡 ∈

[0, 𝑇].

Remark 6. In Definition 5, the finite-time stability of
dynamic state is defined for the time-delay descriptor system.
In some actual systems, we should focus on the dynamic state
and the static state stability or focus only on the dynamic state
stability and so forth. For example, in power systems and
economic systems, there exists the question on the dynamic
state stability analysis to be considered. When we need to
consider the finite-time stability of dynamic and static state,
we should redefine it (see the following Definition 7). In
this paper, we discuss only the finite-time stability analysis
and 𝐻

∞
control problems for the dynamic state of a fuzzy

descriptor system with time-delay.

Definition 7 (finite-time stability). The fuzzy descriptor sys-
tem (6) without impulse is said to be finite-time bounded
with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅), 0 < 𝑐

1
< 𝑐

2
, 𝑅 > 0, if

sup
𝑡∈[−𝑑,0]

𝜑
𝑇

(𝑡)𝑅𝜑(𝑡) ≤ 𝑐
1
implies 𝑥𝑇(𝑡)𝑅𝑥(𝑡) < 𝑐

2
, ∀𝑡 ∈

[0, 𝑇].

Amato et al. pointed out in [1] that the Lyapunov asymp-
totic stability and the finite-time stability are independent
concepts: a system which is finite-time stable may be not
Lyapunov asymptotic stable, while a Lyapunov asymptotic
stable system may be not finite-time stable if its state exceeds
the prescribed bounds during the transients.

3. Finite-Time𝐻
∞

Control

For the fuzzy model (2), we consider the following fuzzy
controller via the PDC:

𝑢 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜉 (𝑡)) 𝐾

𝑖
𝑥 (𝑡) . (9)

We apply this controller 𝑢(𝑡) to system (2) which will result
in the following closed-loop systems:

𝐸𝑥̇ (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(𝜉 (𝑡)) ℎ

𝑗
(𝜉 (𝑡))

⋅ {(𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑗
) 𝑥 (𝑡) + 𝐴

𝑖𝑑
𝑥 (𝑡 − 𝑑) + 𝐷

1𝑖
𝑤 (𝑡)}

:= 𝐴
ℎ𝑘
𝑥 (𝑡) + 𝐴

ℎ𝑑
𝑥 (𝑡 − 𝑑) + 𝐷

1ℎ
𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(𝜉 (𝑡)) {𝐶

𝑖
𝑥 (𝑡) + 𝐷

2𝑖
𝑤 (𝑡)} := 𝐶

ℎ
𝑥 (𝑡)

+ 𝐷
2ℎ
𝑤 (𝑡) , 𝑡 ∈ [0, 𝑇] .

(10)

The so-called finite-time𝐻
∞

fuzzy control is to design a
state feedback controller (9) such that the closed-loop system
(10) is impulse-free and finite-time bounded and holds the
𝐻
∞

performance to the prescribed disturbance attenuation
level 𝛾. And the controller is called a finite-time 𝐻

∞
fuzzy

controller. We also say that a finite-time 𝐻
∞

fuzzy control
problem is solvable.
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Definition 8 (finite-time boundedness). The time-delay
descriptor system without impulse (10) is said to be finite-
time boundedness with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑐

𝑤
) where

0 ≤ 𝑐
1
< 𝑐

2
and 𝑐

𝑤
≥ 0, if sup

𝑡∈[−𝑑,0]
𝜑
𝑇

(𝑡)𝜑(𝑡) ≤ 𝑐
1
implies

𝑥
𝑇

(𝑡)𝐸
𝑇

𝐸𝑥(𝑡) < 𝑐
2
, ∀𝑡 ∈ [0, 𝑇], ∀𝑤(𝑡) : 𝑤𝑇(𝑡)𝑤(𝑡) ≤ 𝑐

𝑤
.

Theorem 9. Given positive numbers 𝑑
0
and 𝛾, then for any

delay 0 < 𝑑 ≤ 𝑑
0
, system (10) is impulse-free and finite-

time bounded with respect to (𝑐
1
, 𝑐
2
, 𝑇, 𝑐

𝑤
) and holds the

𝐻
∞

performance level to the prescribed disturbance atten-
uation level 𝛾, if there exist matrices 𝑃 = ( 𝑃1 0

𝑃
2
𝑃
3

) (𝑃
1
∈

𝑅
𝑟×𝑟

, 𝑃
3
∈ 𝑅

(𝑛−𝑟)×(𝑛−𝑟)

, 𝑃
1
> 0, |𝑃

3
| ̸= 0), 𝑃̂ = (

𝑃
1
0

0 𝑃̂
3

)

(𝑃̂
3
∈ 𝑅

(𝑛−𝑟)×(𝑛−𝑟)

, |𝑃̂
3
| ̸= 0),𝐾

𝑖
, positivematrices𝑄 = ( 𝑄1 𝑄2

𝑄
𝑇

2
𝑄
3

),

𝑍 = (

𝑍
1
𝑍
2

𝑍
𝑇

2
𝑍
3

), and a positive scalar 𝜌 such that the following set
of matrix inequalities hold:

Ψ
𝑖𝑖
< 0, 𝑖 = 1, 2, . . . , 𝑟, (11)

Ψ
𝑖𝑗
+ Ψ

𝑗𝑖
< 0, 𝑗 < 𝑖 = 1, 2, . . . , 𝑟, (12)

𝜆max (𝑃1) 𝑐1 + 𝑑𝜆max (𝑄) 𝑐1 + 𝑑
2

𝜆max (𝑍) 𝑐0

+ 𝛾
2

𝑒
−𝜌𝑇

𝑐
𝑤
𝑇 < 𝑐

2
𝑒
−𝜌𝑇

𝜆min (𝑃̂) ,
(13)

where

Ψ
𝑖𝑗
=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑗
)

𝑇

𝑃

+𝑃
𝑇

(𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑗
) + 𝑄

−

1

𝑑

𝐸
𝑇

𝑍𝐸 − 𝜌𝐸
𝑇

𝑃

) 𝑃
𝑇

𝐴
𝑖𝑑
+

1

𝑑

𝐸
𝑇

𝑍𝐸 𝑃
𝑇

𝐷
1𝑖
(𝐴

𝑖
+ 𝐵

𝑖
𝐾
𝑗
)

𝑇

𝐶
𝑇

𝑖

𝐴
𝑇

𝑖𝑑
𝑃 +

1

𝑑

𝐸
𝑇

𝑍𝐸 −𝑄 −

1

𝑑

𝐸
𝑇

𝑍𝐸 0 𝐴
𝑇

𝑖𝑑
0

𝐷
𝑇

1𝑖
𝑃 0 −𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

1𝑖
𝐷
𝑇

2𝑖

𝐴
𝑖
+ 𝐵

𝑖
𝐾
𝑗

𝐴
𝑖𝑑

𝐷
1𝑖

−

1

𝑑

𝑍
−1

0

𝐶
𝑖

0 𝐷
2𝑖

0 −𝐼

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0, ∀𝑡 ∈ [0, 𝑇] ,

𝑐
0
= sup
−𝑑≤𝑡≤0

𝑥̇
𝑇

(𝑡) 𝐸
𝑇

𝐸𝑥̇ (𝑡) .

(14)

Proof. We prove first that the system 𝐸𝑥̇(𝑡) = 𝐴
ℎ𝑘
𝑥(𝑡) is

impulse-free.Thus the system 𝐸𝑥̇(𝑡) = 𝐴
ℎ𝑘
𝑥(𝑡) +𝐴

ℎ𝑑
𝑥(𝑡 − 𝑑)

is impulse-free by Lemma 2. This also implies
that it is regular [7]. To achieve this goal, we set

Ψ
ℎ𝑙

= ∑
𝑟

𝑖=1
∑
𝑟

𝑗=1
ℎ
𝑖
(𝜉(𝑡))ℎ

𝑗
(𝜉(𝑡))Ψ

𝑖𝑗
. Then it can be

derived by inequalities (11) and (12) along with Ψ
ℎ𝑙
=

∑
𝑟

𝑖=1
ℎ
𝑖
(𝜉(𝑡))ℎ

𝑖
(𝜉(𝑡))Ψ

𝑖𝑖
+ ∑

𝑗<𝑖
∑ℎ

𝑖
(𝜉(𝑡))ℎ

𝑗
(𝜉(𝑡))(Ψ

𝑖𝑗
+ Ψ

𝑗𝑖
)

that

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝐴
𝑇

ℎ𝑘
𝑃 + 𝑃

𝑇

𝐴
ℎ𝑘
+ 𝑄

−

1

𝑑

𝐸
𝑇

𝑍𝐸 − 𝜌𝐸
𝑇

𝑃

) 𝑃
𝑇

𝐴
ℎ𝑑
+

1

𝑑

𝐸
𝑇

𝑍𝐸 𝑃
𝑇

𝐷
1ℎ

𝐴
𝑇

ℎ𝑘
𝐶
𝑇

ℎ

𝐴
𝑇

ℎ𝑑
𝑃 +

1

𝑑

𝐸
𝑇

𝑍𝐸 −𝑄 −

1

𝑑

𝐸
𝑇

𝑍𝐸 0 𝐴
𝑇

ℎ𝑑
0

𝐷
𝑇

1ℎ
𝑃 0 −𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

1ℎ
𝐷
𝑇

2ℎ

𝐴
ℎ𝑘

𝐴
ℎ𝑑

𝐷
1ℎ

−

1

𝑑

𝑍
−1

0

𝐶
ℎ

0 𝐷
2ℎ

0 −𝐼

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0, ∀𝑡 ∈ [0, 𝑇] . (15)
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By applying the properties of Schur complement and noting
inequality (15), then it is easy to see that

(

(

(

(

(

𝐴
𝑇

ℎ𝑘
𝑃 + 𝑃

𝑇

𝐴
ℎ𝑘
+ 𝑄

−

1

𝑑

𝐸
𝑇

𝑍𝐸 − 𝜌𝐸
𝑇

𝑃

) 𝑃
𝑇

𝐴
ℎ𝑑
+

1

𝑑

𝐸
𝑇

𝑍𝐸 𝑃
𝑇

𝐷
1ℎ

𝐴
𝑇

ℎ𝑑
𝑃 +

1

𝑑

𝐸
𝑇

𝑍𝐸 −𝑄 −

1

𝑑

𝐸
𝑇

𝑍𝐸 0

𝐷
𝑇

1ℎ
𝑃 0 −𝛾

2

𝑒
−𝜌𝑇

𝐼

)

)

)

)

+𝑑(

𝐴
𝑇

ℎ𝑘

𝐴
𝑇

ℎ𝑑

𝐷
𝑇

1ℎ

)𝑍(𝐴
ℎ𝑘
𝐴
ℎ𝑑
𝐷
1ℎ
) < 0, ∀𝑡 ∈ [0, 𝑇] .

(16)

This implies𝐴𝑇
ℎ𝑘
𝑃+𝑃

𝑇

𝐴
ℎ𝑘
+𝑄−(1/𝑑)𝐸

𝑇

𝑍𝐸−𝜌𝐸
𝑇

𝑃 < 0, ∀𝑡 ∈
[0, 𝑇].We decompose thematrix𝐴

ℎ𝑘
into ( ̃𝐴ℎ𝑘11 ̃𝐴ℎ𝑘12

̃
𝐴
ℎ𝑘21

̃
𝐴
ℎ𝑘22

)which
is compatible with that of 𝐴

ℎ
in (4). Then it turns out with

some classical manipulations that ( ⊗ ⊗

⊗
̃
𝐴
𝑇

ℎ𝑘22
𝑃
3
+𝑃
𝑇

3
̃
𝐴
ℎ𝑘22

+𝑄
3

) < 0,
∀𝑡 ∈ [0, 𝑇], in which ⊗ stands for the matrix that is not
relevant in the discussion. It follows that𝐴𝑇

ℎ𝑘22
𝑃
3
+𝑃

𝑇

3
𝐴
ℎ𝑘22
<

0, ∀𝑡 ∈ [0, 𝑇], which implies that 𝐴
ℎ𝑘22

is nonsingular for
∀𝑡 ∈ [0, 𝑇]. So the system 𝐸𝑥̇(𝑡) = 𝐴

ℎ𝑘
𝑥(𝑡) is impulse-free

from Lemma 2.
Then we proof that system (10) is finite-time bounded.

To this end, we consider the following Lyapunov-Krasovskii
functional candidate:

𝑉 (𝑥 (𝑡)) = 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠

+ ∫

0

−𝑑

∫

𝑡

𝑡+𝜃

𝑥̇
𝑇

(𝑠) 𝐸
𝑇

𝑍𝐸𝑥̇ (𝑠) d𝑠 d𝜃.
(17)

It can be obtained that 𝐸𝑇𝑃 = 𝑃𝑇𝐸 ≥ 0 from the
structures of the matrices 𝐸 and 𝑃. Then it is shown by
classical computations that the derivative of the functional
(17) along the trajectories of system (10) satisfies

𝑉̇ (𝑥 (𝑡)) = 𝑥̇
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡) + 𝑥
𝑇

(𝑡) 𝑃
𝑇

𝐸𝑥̇ (𝑡) + 𝑥
𝑇

(𝑡)

⋅ 𝑄𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝑑)𝑄𝑥 (𝑡 − 𝑑) + 𝑑𝑥̇
𝑇

(𝑡)

⋅ 𝐸
𝑇

𝑍𝐸𝑥̇ (𝑡) − ∫

0

−𝑑

𝑥̇
𝑇

(𝑡 + 𝜃) 𝐸
𝑇

𝑍𝐸𝑥̇ (𝑡 + 𝜃) d𝜃

= (𝐴
ℎ𝑘
𝑥 (𝑡) + 𝐴

ℎ𝑑
𝑥 (𝑡 − 𝑑) + 𝐷

1ℎ
𝑤 (𝑡))

𝑇

𝑃𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝑇

(𝐴
ℎ𝑘
𝑥 (𝑡) + 𝐴

ℎ𝑑
𝑥 (𝑡 − 𝑑) + 𝐷

1ℎ
𝑤 (𝑡))

+ 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝑑)𝑄𝑥 (𝑡 − 𝑑)

+ 𝑑 (𝐴
ℎ𝑘
𝑥 (𝑡) + 𝐴

ℎ𝑑
𝑥 (𝑡 − 𝑑) + 𝐷

1ℎ
𝑤 (𝑡))

𝑇

⋅ 𝑍 (𝐴
ℎ𝑘
𝑥 (𝑡) + 𝐴

ℎ𝑑
𝑥 (𝑡 − 𝑑) + 𝐷

1ℎ
𝑤 (𝑡))

− ∫

0

−𝑑

𝑥̇
𝑇

(𝑡 + 𝜃) 𝐸
𝑇

𝑍𝐸𝑥̇ (𝑡 + 𝜃) d𝜃.

(18)

By Jensen’s inequality in Lemma 3 and considering (18)
together with inequality (16), then it can be reduced that

𝑉̇ (𝑥 (𝑡)) ≤ (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝑑) , 𝑤
𝑇

(𝑡))

(

(

(

(

(

(

𝐴
𝑇

ℎ𝑘
𝑃 + 𝑃

𝑇

𝐴
ℎ𝑘
+ 𝑄

−

1

𝑑

𝐸
𝑇

𝑍𝐸 − 𝜌𝐸
𝑇

𝑃

) 𝑃
𝑇

𝐴
ℎ𝑑
+

1

𝑑

𝐸
𝑇

𝑍𝐸 𝑃
𝑇

𝐷
1ℎ

𝐴
𝑇

ℎ𝑑
𝑃 +

1

𝑑

𝐸
𝑇

𝑍𝐸 −𝑄 −

1

𝑑

𝐸
𝑇

𝑍𝐸 0

𝐷
𝑇

1ℎ
𝑃 0 −𝛾

2

𝑒
−𝜌𝑇

𝐼

)

)

)

)

)

(

𝑥(𝑡)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

)

+ 𝑑 (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝑑) , 𝑤
𝑇

(𝑡))(

𝐴
𝑇

ℎ𝑘

𝐴
𝑇

ℎ𝑑

𝐷
𝑇

1ℎ

)Z (𝐴
ℎ𝑘
𝐴
ℎ𝑑
𝐷
1ℎ
)(

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

)

+ (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝑑) , 𝑤
𝑇

(𝑡))(

𝜌𝐸
𝑇

𝑃 0 0

0 0 0

0 0 𝛾
2

𝑒
−𝜌𝑇

𝐼

)(

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

)

< (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝑑) , 𝑤
𝑇

(𝑡))(

𝜌𝐸
𝑇

𝑃 0 0

0 0 0

0 0 𝛾
2

𝑒
−𝜌𝑇

𝐼

)(

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

) .

(19)
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Therefore, the following inequalities can be derived:

𝑉̇ (𝑥 (𝑡)) − 𝜌𝑉 (𝑥 (𝑡)) < 𝛾
2

𝑒
−𝜌𝑇

𝑤
𝑇

(𝑡) 𝑤 (𝑡) . (20)

Before and after multiplying (20) by 𝑒−𝜌𝑡, then integrating the
inequality form 0 to 𝑡 leads to

𝑉 (𝑥 (𝑡)) < 𝑒
𝜌𝑡

(𝑉 (𝑥 (0)) + 𝛾
2

𝑒
−𝜌𝑇

𝑐
𝑤
𝑇) ,

∀𝑡 ∈ [0, 𝑇] .

(21)

It is easy to see that𝐸𝑇𝑃 = 𝐸𝑇𝑃̂𝐸 = ( 𝑃1 0
0 0
) from the structures

of the matrices 𝐸, 𝑃, and 𝑃̂. Then we can derive that

𝑉 (𝑥 (0))

= 𝑥
𝑇

(0) 𝐸
𝑇

𝑃𝑥 (0) + ∫

0

−𝑑

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠

+ ∫

0

−𝑑

∫

0

𝜃

𝑥̇
𝑇

(𝑠) 𝐸
𝑇

𝑍𝐸𝑥̇ (𝑠) d𝑠 d𝜃

= 𝑥
𝑇

(0) 𝐸
𝑇

𝑃̂𝐸𝑥 (0) + ∫

0

−𝑑

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) d𝑠

+ ∫

0

−𝑑

∫

0

𝜃

𝑥̇
𝑇

(𝑠) 𝐸
𝑇

𝑍𝐸𝑥̇ (𝑠) d𝑠 d𝜃

≤ 𝜆max (𝑃1) 𝑐1 + 𝑑𝜆max (𝑄) 𝑐1 + 𝑑
2

𝜆max (𝑍) 𝑐0,

𝜆min (𝑃̂) 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐸𝑥 (𝑡) ≤ 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃̂𝐸𝑥 (𝑡)

= 𝑥
𝑇

(𝑡) 𝐸
𝑇

𝑃𝑥 (𝑡) < 𝑉 (𝑥 (𝑡)) .

(22)

Thus from inequalities (22) and (13), we can obtain that

𝑥
𝑇

(𝑡) 𝐸
𝑇

𝐸𝑥 (𝑡) < 𝑒
𝜌𝑇

1

𝜆min (𝑃̂)
(𝜆max (𝑃1) 𝑐1

+ 𝑑𝜆max (𝑄) 𝑐1 + 𝑑
2

𝜆max (𝑍) 𝑐0 + 𝛾
2

𝑒
−𝜌𝑇

𝑐
𝑤
𝑇) < 𝑐

2
,

∀𝑡 ∈ [0, 𝑇] .

(23)

By Definition 8, it is easy to see that system (10) is finite-time
bounded.

Finally we prove that system (10) also achieves 𝐻
∞

performance to the prescribed disturbance attenuation level
𝛾.

Noting inequality (19) and by some algebraic manipula-
tions, then it is derived that

𝑉̇ (𝑥 (𝑡)) − 𝜌𝑉 (𝑥 (𝑡)) + 𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2

𝑒
−𝜌𝑇

𝑤
𝑇

(𝑡) 𝑤 (𝑡)

≤ (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝑑) , 𝑤
𝑇

(𝑡))

(

(

(

(

(

𝐴
𝑇

ℎ𝑘
𝑃 + 𝑃

𝑇

𝐴
ℎ𝑘
+ 𝑄

−

1

𝑑

𝐸
𝑇

𝑍𝐸 − 𝜌𝐸
𝑇

𝑃

) 𝑃
𝑇

𝐴
ℎ𝑑
+

1

𝑑

𝐸
𝑇

𝑍𝐸 𝑃
𝑇

𝐷
1ℎ

𝐴
𝑇

ℎ𝑑
𝑃 +

1

𝑑

𝐸
𝑇

𝑍𝐸 −𝑄 −

1

𝑑

𝐸
𝑇

𝑍𝐸 0

𝐷
𝑇

1ℎ
𝑃 0 0

)

)

)

)

(

𝑥(𝑡)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

)

+ 𝑑 (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝑑) , 𝑤
𝑇

(𝑡))(

𝐴
𝑇

ℎ𝑘

𝐴
𝑇

ℎ𝑑

𝐷
𝑇

1ℎ

)𝑍(𝐴
ℎ𝑘
𝐴
ℎ𝑑
𝐷
1ℎ
)(

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

)

+ (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝑑) , 𝑤
𝑇

(𝑡))(

𝐶
𝑇

ℎ

0

𝐷
𝑇

2ℎ

)(𝐶
ℎ
0 𝐷

2ℎ
)(

𝑥 (𝑡)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

) − 𝛾
2

𝑒
−𝜌𝑇

𝑤
𝑇

(𝑡) 𝑤 (𝑡) .

(24)

By inequalities (15) and (24), it is obtained that

𝑉̇ (𝑥 (𝑡)) − 𝜌𝑉 (𝑥 (𝑡)) < −𝑧
𝑇

(𝑡) 𝑧 (𝑡)

+ 𝛾
2

𝑒
−𝜌𝑇

𝑤
𝑇

(𝑡) 𝑤 (𝑡) .

(25)

Before and after multiplying (25) by 𝑒−𝜌𝑡, then integrating the
inequality from 0 to 𝑇 leads to

0 ≤ 𝑒
−𝜌𝑇

𝑉 (𝑥 (𝑇)) = 𝑒
−𝜌𝑇

𝑉 (𝑥 (𝑇)) − 𝑉 (𝑥 (0))

< ∫

𝑇

0

(−𝑒
−𝜌𝑡

𝑧
𝑇

(𝑡) 𝑧 (𝑡) + 𝛾
2

𝑒
−𝜌𝑇

𝑒
−𝜌𝑡

𝑤
𝑇

(𝑡) 𝑤 (𝑡)) d𝑡.
(26)
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Thus, we can obtain that

𝑒
−𝜌𝑇

∫

𝑇

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) d𝑡 ≤ ∫
𝑇

0

𝑒
−𝜌𝑡

𝑧
𝑇

(𝑡) 𝑧 (𝑡) d𝑡

≤ 𝑒
−𝜌𝑇

∫

𝑇

0

𝑒
−𝜌𝑡

𝛾
2

𝑤
𝑇

(𝑡) 𝑤 (𝑡) d𝑡

≤ 𝑒
−𝜌𝑇

𝛾
2

∫

𝑇

0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) d𝑡.

(27)

That is, ∫𝑇
0

𝑧
𝑇

(𝑡)𝑧(𝑡)d𝑡 ≤ 𝛾2 ∫𝑇
0

𝑤
𝑇

(𝑡)𝑤(𝑡)d𝑡. Thus system (10)
holds the 𝐻

∞
performance for the prescribed disturbance

attenuation level 𝛾. This completes the proof.

Remark 10. In the proceeding of the finite-time 𝐻
∞

con-
troller design, one of the difficulties is a nonpositive matrix
produced from a descriptor system, which will result in
an infeasible linear matrix inequality. For overcoming the
difficulty, we construct a nonsingular matrix 𝑃̂ = ( 𝑃1 0

0 𝑃̂
3

)

satisfying 𝐸𝑇𝑃 = 𝐸𝑇𝑃̂𝐸, which can provide the feasibility
conditions to solve the finite-time boundedness problem of
a descriptor system via LMIs. And the proof is simpler and
easier to understand than one of the existing literatures on
the descriptor systems.

Remark 11. In the following, we give the designmethod of the
finite-time𝐻

∞
fuzzy controller design via LMIs. In order to

simplify the process of controller design,we select the positive
matrix 𝑍 of Theorem 9 as ( 𝑍1 0

0 𝑍
3

). The main issue of the
delay-dependent robust control is that the presence of inverse
matrices of𝑄,𝑍normally does not found LMIs.This problem
was successfully solved By Lemma 4 and its deformation.

Theorem 12. Given positive numbers 𝑑
0
, 𝜌, and 𝛾, then for

any delay 0 < 𝑑 ≤ 𝑑
0
, system (10) is impulse-free and

finite-time bounded with respect to (𝑐
1
, 𝑐
2
, 𝑇, 𝑐

𝑤
) and holds𝐻

∞

performance for the prescribed disturbance attenuation level 𝛾,
if there exist a common matrix 𝑋 = 𝑃−𝑇 = ( 𝑃

−1

1
−𝑃
−1

1
𝑃
𝑇

2
𝑃
−𝑇

3

0 𝑃
−𝑇

3

) :=

(
𝑋
1
𝑋
2

0 𝑋
3

), matrices𝑁
𝑖
= 𝐾

𝑖
𝑃
−1, nonsingular matrix𝑋 = 𝑃̂−1 =

(
𝑃
−1

1
0

0 𝑃̂
−1

3

) = (
𝑃
−1

1
0

0 𝑃̂
−1

3

) := (

𝑋
1
0

0 𝑋̂
3

), and positive matrices
𝑄 = (

𝑄
1
𝑄
2

𝑄
𝑇

2
𝑄
3

), 𝑍 = 𝑍−1 = ( 𝑍
−1

1
0

0 𝑍
−1

3

) := (
𝑍
1
0

0 𝑍
3

), such that
the following set of LMIs hold:

Ψ
𝑖𝑖
< 0,

𝑖 = 1, 2, . . . , 𝑟,

(28)

Ψ
𝑖𝑗
+ Ψ

𝑗𝑖
< 0,

𝑗 < 𝑖 = 1, 2, . . . , 𝑟,

(29)

(

𝑋
1
𝐼

𝐼 𝜆
1
𝐼

) > 0, (30)

𝑄 < 𝜆
2
𝐼
𝑛
, (31)

(

𝜆
3
𝐼 𝐼

𝐼 𝑍

) > 0 (32)

(

𝑋
1
0

0 𝑋
3

) < 𝐼, (33)

(𝜆
1
𝑐
1
+ 𝑑𝜆

2
𝑐
1
+ 𝑑

2

𝜆
3
𝑐
0
+ 𝛾

2

𝑒
−𝜌𝑇

𝑐
𝑤
𝑇) 𝑒

𝜌𝑇

< 𝑐
2
, (34)

where

Ψ
𝑖𝑗
=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑋𝐴
𝑇

𝑖
+ 𝑁

𝑇

𝑗
𝐵
𝑇

𝑖

+𝐴
𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑗

1

𝑑

𝐸
𝑇

𝑍𝐸 +

1

𝑑

𝐸
𝑇

𝐸𝑋
𝑇

+

1

𝑑

𝑋𝐸
𝑇

𝐸 − 𝜌𝑋𝐸
𝑇

)

)

)

)

)

𝐴
𝑖𝑑

𝐷
1𝑖

(

𝑋𝐴
𝑇

𝑖

+𝑁
𝑇

𝑗
𝐵
𝑇

𝑖

) 𝑋𝐶
𝑇

𝑖
𝑋 𝑋𝐸

𝑇

𝐴
𝑇

𝑖𝑑
−𝑄 0 𝐴

𝑇

𝑖𝑑
0 0 0

𝐷
𝑇

1𝑖
0 −𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

1𝑖
𝐷
𝑇

2𝑖
0 0

𝐴
𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑗

𝐴
𝑖𝑑

𝐷
1𝑖

−

1

𝑑

𝑍 0 0 0

𝐶
𝑖
𝑋
𝑇

0 𝐷
2𝑖

0 −𝐼 0 0

𝑋
𝑇

0 0 0 0 𝑄 − 2𝐼 0

𝐸𝑋
𝑇

0 0 0 0 0 −𝑑𝑍

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0. (35)
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Proof. Before and after multiplying inequality (11) by
diag{𝑃−𝑇, 𝐼, 𝐼, 𝐼, 𝐼} and its transpose respectively, then it is
obtained that

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑃
−𝑇

𝐴
𝑇

𝑖
+ 𝑃

−𝑇

𝐾
𝑇

𝑖
𝐵
𝑇

𝑖

+𝐴
𝑖
𝑃
−1

+ 𝐵
𝑖
𝐾
𝑖
𝑃
−1

+𝑃
−𝑇

𝑄𝑃
−1

− 𝜌𝑃
−𝑇

𝐸
𝑇

−

1

𝑑

𝑃
−𝑇

𝐸
𝑇

𝑍𝐸𝑃
−1

)

)

)

𝐴
𝑖𝑑
+

1

𝑑

𝑃
−𝑇

𝐸
𝑇

𝑍𝐸 𝐷
1𝑖

(

𝑃
−𝑇

𝐴
𝑇

𝑖

+𝑃
−𝑇

𝐾
𝑇

𝑖
𝐵
𝑇

𝑖

) 𝑃
−𝑇

𝐶
𝑇

𝑖

𝐴
𝑇

𝑖𝑑
+

1

𝑑

𝐸
𝑇

𝑍𝐸𝑃
−1

−𝑄 −

1

𝑑

𝐸
𝑇

𝑍𝐸 0 𝐴
𝑇

𝑖𝑑
0

𝐷
𝑇

1𝑖
0 −𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

1𝑖
𝐷
𝑇

2𝑖

𝐴
𝑖
𝑃
−1

+ 𝐵
𝑖
𝐾
𝑖
𝑃
−1

𝐴
𝑖𝑑

𝐷
1𝑖

−

1

𝑑

𝑍
−1

0

𝐶
𝑖
𝑃
−1

0 𝐷
2𝑖

0 −𝐼

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0. (36)

By Lemma 4, it can be seen that −(1/𝑑)𝑃−𝑇𝐸𝑇𝑍𝐸𝑃−1 ≤
(1/𝑑)𝐸

𝑇

𝑍
−1

𝐸 + (1/𝑑)𝐸
𝑇

𝐸𝑃
−1

+ (1/𝑑)𝑃
−𝑇

𝐸
𝑇

𝐸. Therefore,
inequality (36) gives

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑃
−𝑇

𝐴
𝑇

𝑖
+ 𝑃

−𝑇

𝐾
𝑇

𝑖
𝐵
𝑇

𝑖

+𝐴
𝑖
𝑃
−1

+ 𝐵
𝑖
𝐾
𝑖
𝑃
−1

+𝑃
−𝑇

𝑄𝑃
−1

− 𝜌𝑃
−𝑇

𝐸
𝑇

+

1

𝑑

𝐸
𝑇

𝑍
−1

𝐸

+

1

𝑑

𝐸
𝑇

𝐸𝑃
−1

+

1

𝑑

𝑃
−𝑇

𝐸
𝑇

𝐸

)

)

)

)

)

)

𝐴
𝑖𝑑
+

1

𝑑

𝑃
−𝑇

𝐸
𝑇

𝑍𝐸 𝐷
1𝑖

(

𝑃
−𝑇

𝐴
𝑇

𝑖

+𝑃
−𝑇

𝐾
𝑇

𝑖
𝐵
𝑇

𝑖

) 𝑃
−𝑇

𝐶
𝑇

𝑖

𝐴
𝑇

𝑖𝑑
+

1

𝑑

𝐸
𝑇

𝑍𝐸𝑃
−1

−𝑄 −

1

𝑑

𝐸
𝑇

𝑍𝐸 0 𝐴
𝑇

𝑖𝑑
0

𝐷
𝑇

1𝑖
0 −𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

1𝑖
𝐷
𝑇

2𝑖

𝐴
𝑖
𝑃
−1

+ 𝐵
𝑖
𝐾
𝑖
𝑃
−1

𝐴
𝑖𝑑

𝐷
1𝑖

−

1

𝑑

𝑍
−1

0

𝐶
𝑖
𝑃
−1

0 𝐷
2𝑖

0 −𝐼

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0. (37)

Now, set 𝑋 = 𝑃−𝑇, 𝑁
𝑖
= 𝐾

𝑖
𝑃
−1. Then, by inequality (37), it

can be obtained that

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑋𝐴
𝑇

𝑖
+ 𝑁

𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑖

+𝑋𝑄𝑋
𝑇

− 𝜌𝑋𝐸
𝑇

+

1

𝑑

𝐸
𝑇

𝑍
−1

𝐸

+

1

𝑑

𝐸
𝑇

𝐸𝑋
𝑇

+

1

𝑑

𝑋𝐸
𝑇

𝐸

) 𝐴
𝑖𝑑
+

1

𝑑

𝑋𝐸
𝑇

𝑍𝐸 𝐷
1𝑖

(

𝑋𝐴
𝑇

𝑖

+𝑁
𝑇

𝑖
𝐵
𝑇

𝑖

) 𝑋𝐶
𝑇

𝑖

𝐴
𝑇

𝑖𝑑
+

1

𝑑

𝐸
𝑇

𝑍𝐸𝑋
𝑇

−𝑄 −

1

𝑑

𝐸
𝑇

𝑍𝐸 0 𝐴
𝑇

𝑖𝑑
0

𝐷
𝑇

1𝑖
0 −𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

1𝑖
𝐷
𝑇

2𝑖

𝐴
𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑖

𝐴
𝑖𝑑

𝐷
1𝑖

−

1

𝑑

𝑍
−1

0

𝐶
𝑖
𝑋
𝑇

0 𝐷
2𝑖

0 −𝐼

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0. (38)
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From Lemma 4, it can be seen that

1

𝑑

(

𝑋𝐸
𝑇

0

0

0

0

)𝑍(0 𝐸 0 0 0)

+

1

𝑑

(

0

𝐸
𝑇

0

0

0

)𝑍(𝐸𝑋
𝑇

0 0 0 0)

≤

1

𝑑

(

𝑋𝐸
𝑇

0

0

0

0

)𝑍 ⋅ 𝑍
−1

𝑍(𝐸𝑋
𝑇

0 0 0 0)

+

1

𝑑

(

0

𝐸
𝑇

0

0

0

)𝑍(0 𝐸 0 0 0) .

(39)

Thus, inequalities (38) and (39) give that

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑋𝐴
𝑇

𝑖
+ 𝑁

𝑇

𝑖
𝐵
𝑇

𝑖

+𝐴
𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑖

+𝑋𝑄𝑋
𝑇

− 𝜌𝑋𝐸
𝑇

+

1

𝑑

𝐸
𝑇

𝑍
−1

𝐸

+

1

𝑑

𝐸
𝑇

𝐸𝑋
𝑇

+

1

𝑑

𝑋𝐸
𝑇

𝐸

+

1

𝑑

𝑋𝐸
𝑇

𝑍𝐸𝑋
𝑇

)

)

)

)

)

)

)

)

)

)

𝐴
𝑖𝑑

𝐷
1𝑖

(𝑋𝐴
𝑇

𝑖
+ 𝑁

𝑇

𝑖
𝐵
𝑇

𝑖
) 𝑋𝐶

𝑇

𝑖

𝐴
𝑇

𝑖𝑑
−𝑄 0 𝐴

𝑇

𝑖𝑑
0

𝐷
𝑇

1𝑖
0 −𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

1𝑖
𝐷
𝑇

2𝑖

𝐴
𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑖

𝐴
𝑖𝑑

𝐷
1𝑖

−

1

𝑑

𝑍
−1

0

𝐶
𝑖
𝑋
𝑇

0 𝐷
2𝑖

0 −𝐼

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0. (40)

Then, by Schur complement, inequality (40) is equivalent to

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝑋𝐴
𝑇

𝑖
+ 𝑁

𝑇

𝑖
𝐵
𝑇

𝑖

+𝐴
𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑖

1

𝑑

𝐸
𝑇

𝑍
−1

𝐸

+

1

𝑑

𝐸
𝑇

𝐸𝑋
𝑇

+

1

𝑑

𝑋𝐸
𝑇

𝐸

−𝜌𝑋𝐸
𝑇

)

)

)

)

)

)

)

)

)

)

𝐴
𝑖𝑑

𝐷
1𝑖

(

𝑋𝐴
𝑇

𝑖

+𝑁
𝑇

𝑖
𝐵
𝑇

𝑖

) 𝑋𝐶
𝑇

𝑖
𝑋 𝑋𝐸

𝑇

𝐴
𝑇

𝑖𝑑
−𝑄 0 𝐴

𝑇

𝑖𝑑
0 0 0

𝐷
𝑇

1𝑖
0 −𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

1𝑖
𝐷
𝑇

2𝑖
0 0

𝐴
𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑖

𝐴
𝑖𝑑

𝐷
1𝑖

−

1

𝑑

𝑍
−1

0 0 0

𝐶
𝑖
𝑋
𝑇

0 𝐷
2𝑖

0 −𝐼 0 0

𝑋
𝑇

0 0 0 0 −𝑄
−1

0

𝐸𝑋
𝑇

0 0 0 0 0 −𝑑𝑍
−1

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

< 0. (41)
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By Lemma 4, we have −𝑄−1 ≤ 𝑄 − 2𝐼. Let 𝑍 = 𝑍−1. Then,
inequality (41) implies Ψ

𝑖𝑖
< 0, 𝑖 = 1, 2, . . . , 𝑟.

Similarly, we can prove thatΨ
𝑖𝑗
+Ψ

𝑗𝑖
< 0 only ifΨ

𝑖𝑗
+Ψ

𝑗𝑖
<

0. The proof is omitted to save space.
Inequality (30) is equivalent to 𝑋

1
> (1/𝜆

1
)𝐼, which

implies 𝜆max(𝑋
−1

1
) = 𝜆max(𝑃1) < 𝜆1. Inequality (31) gives

𝜆max(𝑄) < 𝜆2. Inequality (32) is equivalent to 0 < 𝜆3𝐼 − 𝑍
−1

,
which results in 𝜆max(𝑍) < 𝜆3. Inequality (33) is equivalent to
𝑃̂
−1

< 𝐼, which can derive 𝜆min(𝑃̂) > 1. Thus, from the above
inequalities and (34), it can be derived that

(𝜆max (𝑃1) 𝑐1 + 𝑑𝜆max (𝑄) 𝑐1 + 𝑑
2

𝜆max (𝑍) 𝑐0

+ 𝛾
2

𝑒
−𝜌𝑇

𝑐
𝑤
𝑇) 𝑒

𝜌𝑇

≤ (𝜆
1
𝑐
1
+ 𝑑𝜆

2
𝑐
1
+ 𝑑

2

𝜆
3
𝑐
0

+ 𝛾
2

𝑒
−𝜌𝑇

𝑐
𝑤
𝑇) 𝑒

𝜌𝑇

< 𝑐
2
< 𝑐

2
𝜆min (𝑃̂) .

(42)

That is, condition (13) of Theorem 9 holds only if all con-
ditions of inequalities (30), (31), (32), (33), and (34) in
Theorem 12 are met. This completes the proof.

By using Theorem 12, we can also obtain the following
finite-time 𝐻

∞
controller design method for system (10)

without time-delay.

Corollary 13. Given positive numbers 𝜌 and 𝛾, then system
(10) without time-delay is impulse-free and finite-time bounded
with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑐

𝑤
) and holds 𝐻

∞
performance for

the prescribed disturbance attenuation level 𝛾, if there exist a
common matrix 𝑋 = 𝑃−𝑇 = ( 𝑃

−1

1
−𝑃
−1

1
𝑃
𝑇

2
𝑃
−𝑇

3

0 𝑃
−𝑇

3

) := (
𝑋
1
𝑋
2

0 𝑋
3

),
matrices 𝑁

𝑖
= 𝐾

𝑖
𝑃
−1, and nonsingular matrices 𝑋 = 𝑃̂−1 =

(
𝑃
−1

1
0

0 𝑃̂
−1

3

) = (
𝑃
−1

1
0

0 𝑃̂
−1

3

) := (

𝑋
1
0

0 𝑋̂
3

), such that the following set
of LMIs hold:

Ψ̂
𝑖𝑖
< 0, 𝑖 = 1, 2, . . . , 𝑟,

Ψ̂
𝑖𝑗
+ Ψ̂

𝑗𝑖
< 0, 𝑗 < 𝑖 = 1, 2, . . . , 𝑟,

(

𝑋
1
𝐼

𝐼 𝜆
1
𝐼

) > 0,

(

𝑋
1
0

0 𝑋
3

) < 𝐼,

(𝜆
1
𝑐
1
+ 𝛾

2

𝑒
−𝜌𝑇

𝑐
𝑤
𝑇) 𝑒

𝜌𝑇

< 𝑐
2
,

(43)

where

Ψ̂
𝑖𝑗
= (

(𝑋𝐴
𝑇

𝑖
+ 𝑁

𝑇

𝑗
𝐵
𝑇

𝑖
+ 𝐴

𝑖
𝑋
𝑇

+ 𝐵
𝑖
𝑁
𝑗
− 𝜌𝑋𝐸

𝑇

) 𝐷
1𝑖

𝑋𝐶
𝑇

𝑖

𝐷
𝑇

1𝑖
−𝛾

2

𝑒
−𝜌𝑇

𝐼 𝐷
𝑇

2𝑖

𝐶
𝑖
𝑋
𝑇

𝐷
2𝑖

−𝐼

) . (44)

4. Design Examples

Example 1. We know that it is more convenient to express
practical models as the descriptor systems than ordinary
ones such as a biological economic model with differential
and algebraic equation established in [27]. The following
economic model is expressed by a descriptor system instead
of the ordinary one as a result of an algebraic equation:

̇𝜍
1
(𝑡) = (−

𝛼𝛽

𝑟
2

−

𝜂𝑐

𝑝

) 𝜍
1
(𝑡) + 𝛼𝜍

2
(𝑡) −

𝑐

𝑝

𝜍
3
(𝑡)

− 𝜂𝜍
2

1
(𝑡) − 𝜍

1
(𝑡) 𝜍

3
(𝑡) + 𝑏

11
𝑤 (𝑡) ,

̇𝜍
2
(𝑡) = 𝛽𝜍

1
(𝑡) − 𝑟

2
𝜍
2
(𝑡) ,

0 = 𝑝(

𝛼𝛽

𝑟
2

− 𝑟
1
− 𝛽 −

𝜂𝑐

𝑝

) 𝜍
1
(𝑡) + 𝑝𝜍

1
(𝑡) 𝜍

3
(𝑡)

− 𝑚,

(45)

where𝑚 = 0 is a bifurcation value. Equation (45) describes a
biological economic model obtained by the transformation.
It is a differential algebraic equation, where the meanings
of parameters can be found in [27]. When 𝑚 transitions 0
fromnegative to positive, an impulse phenomenon is formed.

Carry outing a control for system (45), then the following
system is given:

̇𝜍
1
(𝑡) = (−

𝛼𝛽

𝑟
2

−

𝜂𝑐

𝑝

) 𝜍
1
(𝑡) + 𝛼𝜍

2
(𝑡) −

𝑐

𝑝

𝜍
3
(𝑡)

− 𝜂𝜍
2

1
(𝑡) − 𝜍

1
(𝑡) 𝜍

3
(𝑡) + 𝑏

11
𝑤 (𝑡) ,

̇𝜍
2
(𝑡) = 𝛽𝜍

1
(𝑡) − 𝑟

2
𝜍
2
(𝑡) ,

0 = 𝑝(

𝛼𝛽

𝑟
2

− 𝑟
1
− 𝛽 −

𝜂𝑐

𝑝

) 𝜍
1
(𝑡) + 𝑝𝜍

1
(𝑡) 𝜍

3
(𝑡)

+ 𝑢 (𝑡) ,

𝑧 (𝑡) = 𝜍
1
(𝑡) .

(46)

Equation (46) can be represented by the following fuzzy
descriptor system:

𝐸𝑥̇ (𝑡) =

2

∑

𝑖=1

𝜆
𝑖
(𝜍
1
(𝑡)) (𝐴

𝑖
𝑥 (𝑡) + 𝐷

1𝑖
𝑤 (𝑡) + 𝐵

𝑖
𝑢 (𝑡)) ,

𝑧 (𝑡) =

2

∑

𝑖=1

𝜆
𝑖
(𝜍
1
(𝑡)) 𝐶

𝑖
𝑥 (𝑡) ,

(47)
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where

𝐸 = (

1 0 0

0 1 0

0 0 0

) ,

𝐴
1
=(

−

𝛼𝛽

𝑟
2

−

𝜂𝑐

𝑝

+ 𝜂𝑙 𝛼 −

𝑐

𝑝

+ 𝑙

𝛽 −𝑟
2

0

𝑝(

𝛼𝛽

𝑟
2

− 𝑟
1
− 𝛽 −

𝜂𝑐

𝑝

) 0 −𝑝𝑙

),

𝐴
2
=(

−

𝛼𝛽

𝑟
2

−

𝜂𝑐

𝑝

− 𝜂𝑙 𝛼 −

𝑐

𝑝

− 𝑙

𝛽 −𝑟
2

0

𝑝(

𝛼𝛽

𝑟
2

− 𝑟
1
− 𝛽 −

𝜂𝑐

𝑝

) 0 𝑝𝑙

),

𝐷
11
= 𝐷

12
= (

𝑏
11

0

0

) ,

𝐵
1
= 𝐵

2
= (

0

0

1

) ,

𝐷
21
= 𝐷

22
= 0,

𝐶
1
= 𝐶

2
= (1 0 0) ,

𝜆
1
(𝜍
1
(𝑡)) =

1

2

(1 −

𝜍
1
(𝑡)

𝑙

) ,

𝜆
2
(𝜍
1
(𝑡)) =

1

2

(1 +

𝜍
1
(𝑡)

𝑙

) ,

󵄨
󵄨
󵄨
󵄨
𝜍
1
(𝑡)
󵄨
󵄨
󵄨
󵄨
< 𝑙, 𝑙 > 0,

𝑥 (𝑡) = [𝜍
1
(𝑡) , 𝜍

2
(𝑡) , 𝜍

3
(𝑡)]

𝑇

.

(48)

Select the coefficients of the matrices 𝛼 = 0.15, 𝛽 = 0.5, 𝑟
1
=

0.2, 𝑟
2
= 0.1, 𝜂 = 0.001, 𝑝 = 1, 𝑐 = 40, 𝑏

11
= 0.1, and 𝑙 = 10

in [27]. Let 𝑇 = 2, 𝑐
1
= 0.2, 𝑐

𝑤
= 1, 𝜌 = 0.02, and 𝜆

1
= 0.01.

By using Corollary 13 and the FEASP solver and GEVP solver
of the LMI toolbox, we can obtain min 𝑐

2
= 0.2100. For 𝑐

2
=

22, we can obtain the feasible solutions of a finite-time fuzzy
controller with the norm𝐻

∞
bound 𝛾 = 0.01 as follows:

𝑋 = 10
3

⋅
[

[

[

0.0006 −0.0002 0.0143

−0.0002 0.0007 0.0000

0 0 −1.6642

]

]

]

,

𝑋
3
= −1.6617 ⋅ 10

3

,

×10
−39
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t (s)
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Figure 1: The trajectory of 𝑥𝑇(𝑡)𝐸𝑇𝐸𝑥(𝑡) for the nonlinear system
approximated by the fuzzy system.

𝑁
1
= 10

4

⋅ [−4.9784 0.0000 −1.7224] ,

𝑁
2
= 10

4

⋅ [−8.3353 −0.0000 1.6061] ,

𝑢 (𝑡) =

1

2

(1 −

𝜍
1
(𝑡)

10

) ⋅ 10
4

⋅ [−8.7569 −2.1106 0.0010] 𝑥 (𝑡)

+

1

2

(1 +

𝜍
1
(𝑡)

10

) ⋅ 10
4

⋅ [−1.4594 −0.3518 −0.0001] 𝑥 (𝑡) .

(49)

Let 𝑤(𝑡) = 𝑒−0.1𝑡 sin 𝑡. Then the trajectory of 𝑥𝑇(𝑡)𝐸𝑇𝐸𝑥(𝑡)
for the nonlinear system approximated by a fuzzy system is
shown in Figure 1.

Example 2. Consider the following nonlinear descriptor
system with time-delay:

̇𝜍
1
(𝑡) = (−

𝛼𝛽

𝑟
2

−

𝜂𝑐

𝑝

) 𝜍
1
(𝑡) + 𝛼𝜍

2
(𝑡) −

𝑐

𝑝

𝜍
3
(𝑡)

− 𝜂𝜍
2

1
(𝑡) − 𝜍

1
(𝑡) 𝜍

3
(𝑡) + 𝑑

11
𝑤 (𝑡)

+ 𝜏
11
𝜍
1
(𝑡 − 𝑑) ,

̇𝜍
2
(𝑡) = 𝛽𝜍

1
(𝑡) − 𝑟

2
𝜍
2
(𝑡) ,

0 = 𝑝(

𝛼𝛽

𝑟
2

− 𝑟
1
− 𝛽 −

𝜂𝑐

𝑝

) 𝜍
1
(𝑡) + 𝑝𝜍

1
(𝑡) 𝜍

3
(𝑡)

+ 𝑏
11
𝑢 (𝑡) ,

𝑧 (𝑡) = 𝑐
11
𝜍
1
(𝑡) .

(50)
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Defining 𝑥(𝑡) = [𝜍
1
(𝑡), 𝜍

2
(𝑡), 𝜍

3
(𝑡)]

𝑇, 𝜍
𝑖
(𝑡) ∈ 𝑅

1

(𝑖 = 1, 2, 3).
The above equation can be rewritten as

(

1 0 0

0 1 0

0 0 0

) 𝑥̇ (𝑡)

=
(

(

(

−

𝛼𝛽

𝑟
2

−

𝜂𝑐

𝑝

− 𝜂𝜍
1
(𝑡) 𝛼 −

𝑐

𝑝

− 𝜍
1
(𝑡)

𝛽 −𝑟
2

0

𝑝(

𝛼𝛽

𝑟
2

− 𝑟
1
− 𝛽 −

𝜂𝑐

𝑝

) 0 𝑝𝜍
1
(𝑡)

)

)

)

𝑥(𝑡)

+ (

𝜏
11
0 0

0 0 0

0 0 0

)𝑥 (𝑡 − 𝑑) + (

0

0

𝑏
11

)𝑢 (𝑡)

+ (

𝑑
11

0

0

)𝑤 (𝑡) ,

𝑧 (𝑡) = (𝑐
11
0 0) 𝑥 (𝑡) .

(51)

Choose, respectively, the membership functions of the fuzzy
sets 𝑀

1
, 𝑀

2
as 𝜆

1
(𝜍
1
(𝑡)) = (1/2)(1 − 𝜍

1
(𝑡)/𝑙), 𝜆

2
(𝜍
1
(𝑡)) =

(1/2)(1 + 𝜍
1
(𝑡)/𝑙), and |𝜍

1
(𝑡)| < 𝑙, 𝑙 > 0. The following T-

S fuzzy model exactly represents the dynamics of nonlinear
descriptor system (50) or (51):

Model Rule 1: If 𝜍
1
(𝑡) is 𝑀

1
,

Then 𝐸𝑥̇ (𝑡)

= 𝐴
1
𝑥 (𝑡) + 𝐴

1𝑑
𝑥 (𝑡 − 𝑑)

+ 𝐵
1
𝑢 (𝑡) + 𝐷

11
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
1
𝑥 (𝑡) + 𝐷

21
𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,

Model Rule 2: If 𝜍
1
(𝑡) is 𝑀

2
,

Then 𝐸𝑥̇ (𝑡)

= 𝐴
2
𝑥 (𝑡) + 𝐴

2𝑑
𝑥 (𝑡 − 𝑑)

+ 𝐵
2
𝑢 (𝑡) + 𝐷

12
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶
2
𝑥 (𝑡) + 𝐷

22
𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0] ,

(52)

where

𝐸 = (

1 0 0

0 1 0

0 0 0

) ,

𝐴
1
=
(

(

(

−

𝛼𝛽

𝑟
2

−

𝜂𝑐

𝑝

+ 𝜂𝑙 𝛼 −

𝑐

𝑝

+ 𝑙

𝛽 −𝑟
2

0

𝑝(

𝛼𝛽

𝑟
2

− 𝑟
1
− 𝛽 −

𝜂𝑐

𝑝

) 0 −𝑝𝑙

)

)

)

,

𝐴
2
=
(

(

(

−

𝛼𝛽

𝑟
2

−

𝜂𝑐

𝑝

− 𝜂𝑙 𝛼 −

𝑐

𝑝

− 𝑙

𝛽 −𝑟
2

0

𝑝(

𝛼𝛽

𝑟
2

− 𝑟
1
− 𝛽 −

𝜂𝑐

𝑝

) 0 𝑝𝑙

)

)

)

,

𝐴
1𝑑
= 𝐴

2𝑑
= (

𝜏
11
0 0

0 0 0

0 0 0

) ,

𝐷
11
= 𝐷

12
= (

𝑑
11

0

0

) ,

𝐵
1
= 𝐵

2
= (

0

0

𝑏
11

),

𝐷
21
= 𝐷

22
= 0,

𝐶
1
= 𝐶

2
= (𝑐

11
0 0) .

(53)

Equation (50) can be represented by the following fuzzy
descriptor system:

𝐸𝑥̇ (𝑡) =

2

∑

𝑖=1

𝜆
𝑖
(𝜍
1
(𝑡))

⋅ (𝐴
𝑖
𝑥 (𝑡) + 𝐴

𝑖𝑑
𝑥 (𝑡 − 𝑑) + 𝐵

𝑖
𝑢 (𝑡) + 𝐷

1𝑖
𝑤 (𝑡)) ,

𝑧 (𝑡) =

2

∑

𝑖=1

𝜆
𝑖
(𝜍
1
(𝑡)) (𝐶

𝑖
𝑥 (𝑡) + 𝐷

2𝑖
𝑢 (𝑡)) .

(54)

Select the coefficients of the matrices 𝛼 = 0.15, 𝛽 = 0.5, 𝑟
1
=

0.2, 𝑟
2
= 0.1, 𝜂 = 0.001, 𝑝 = 1, 𝑐 = 220, 𝜏

11
= 2.0034 ⋅ 10

−5,
𝑑
11
= −4.2344 ⋅ 10

−5, 𝑏
11
= −0.0725, 𝑐

11
= 0.0317, and 𝑙 =

220. Let 𝑑 = 0.0001, 𝑇 = 2, 𝑐
0
= 0 𝑐

1
= 0.02, 𝑐

𝑤
= 2, and

𝜌 = 0.00002. By usingTheorem 12 and the FEASP solver and
GEVP solver of the LMI toolbox, we can obtain min 𝑐

2
= 20.
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For 𝑐
2
= 32, we can obtain the feasible solutions of a finite-

time fuzzy controller with the 𝐻
∞

norm bound 𝛾 = 0.0001
as follows:

𝑋
1
= 10

−7

⋅ (

0.2887 −0.0000

−0.0000 0.2900

) ,

𝑋
3
= 𝑋

3
= −0.0122,

𝑁
1
= 10

3

⋅ [0.0000 0.0000 4.3297] ,

𝑁
2
= 10

3

⋅ [−8.3353 −0.0000 4.3320] ,

𝑄 = (

0.9973 −0.0000 0

−0.0000 0.9973 0

0 0 0.9973

) ,

𝑍 = 10
7

⋅ (

0.0000 −0.0000 0

−0.0000 0.0000 0

0 0 2.6151

) .

(55)

The finite-time𝐻
∞

fuzzy controller is as follows:

𝑢 (𝑡) =

1

2

(1 −

𝜍
1
(𝑡)

220

) 10
5

⋅ [0.0245 0.0000 −3.5489] 𝑥 (𝑡)

+

1

2

(1 +

𝜍
1
(𝑡)

220

) 10
5

⋅ [0.2828 0.0000 −3.5508] 𝑥 (𝑡) .

(56)

Let 𝑤(𝑡) = 𝑒−𝑡 sin 𝑡. Then the trajectories of 𝑥𝑇(𝑡)𝐸𝑇𝐸𝑥(𝑡) for
the approximated nonlinear system are shown in Figure 2.

5. Conclusions

This paper investigates the delay-dependent finite-time 𝐻
∞

controller design problems for a kind of nonlinear descriptor
system via a T-S fuzzy model. The solvable conditions of
finite-time 𝐻

∞
controller are given to guarantee that the

loop-closed system is impulse-free and finite-time bounded
and holds the 𝐻

∞
performance to a prescribed distur-

bance attenuation level 𝛾. The method given is the ability
to eliminate the impulsive behavior caused by descriptor
systems in a finite-time interval, which confirms the existence
and uniqueness of solutions in the interval. We perform
simulations to validate the proposed methods for a nonlinear
descriptor system via the T-S fuzzy model, which shows the
application of the T-S fuzzy method in studying the finite-
time control problem of a nonlinear system. Meanwhile the
method was also applied to the biological economy system
to eliminate impulsive behavior at the bifurcation value,
stabilize the loop-closed system in a finite-time interval, and
achieve a𝐻

∞
performance level.
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Figure 2: The trajectory of 𝑥𝑇(𝑡)𝐸𝑇𝐸𝑥(𝑡) for the nonlinear system
approximated by the fuzzy system.
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