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In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because
of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-
time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization
of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness
function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle,
and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are
obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its

fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

1. Introduction

In recent years, with the increase in the number of cars,
traffic accidents happen more and more frequently, most of
which are caused by man-made mistakes and serious threat
to people’s live and social stability. Thus, “car-people-road”
mode is converted to “car-computer-road” mode, which can
be liberated from driving environment and is one of the effec-
tive ways to reduce traffic accident. The unmanned ground
vehicle has become a hot issue domestic and international
research [1-3]. The DARPA (Defense Advanced Research
Projects Agency) proposed a series of control technology
for the unmanned vehicle and digital road traffic control
scheme under the urban road environment, which is the most
important for the path planning and controlling [4-9].

This paper mainly focused on the intelligent vehicle
navigation problems, especially the path planning, and
guiding the vehicles to the target position. At present,
the traditional path planning methods, including potential
field and grid method, are prone to local minimum prob-
lems [10, 11]. The bionic path planning algorithms, includ-
ing genetic algorithm, ant colony algorithm, and particle

swarm algorithm, need to determine the coding scheme and
the optimization of objective function [12-17]. The intelligent
path planning algorithms, including BP neural network,
ANN, and fuzzy neural network learning methods, need
constant learning and training to obtain the optimal path; the
network settings of the intermediate nodes of these methods
are often dependent on experience and constant trial and
error [18-21]. These are only from the perspective of the
planning. However, the navigation path of the intelligent
vehicle should not only contain trace paths but also contain
the time information (namely, speed), for real-time tracking
control. The above methods including field method, bionic
method, and intelligent information do not include the time
in the path planning.

In 1995, behavioral dynamics method is first proposed
by Schoner et al. [22]; it has been applied to a mobile robot
system, complex structured environment navigation control,
machine control arms, and multirobot formations navigation
control [23-31]. Due to its outstanding performance, scholars
began to pay attention to relevant theorem studying and
application research [32-38]. Behavior dynamics method is
introduced into the intelligent vehicle navigation planning



and in-depth research and experiments verify the feasibility
of this method.

The aim of the paper is to discuss the intelligent vehicle
path planning problem in dynamic environment. In the
urban environment, the road environment information is
acquired through the vehicle sensor, which is indispensable
for path planning and obstacles avoiding. Behavior dynamics
method is used for the path planning to generate competition
behavior problem, while the particle swarm optimization
algorithm is adopted to improve the behavior coordination.

The rest of the paper is as follows: Section 2 intro-
duces behavior dynamics method. The behavior coordination
of the standard particle swarm optimization algorithm is
introduced in Section 3. Simulation results of illustration
examples and discussion are presented in Section 4. Finally,
in Section 5, the conclusion and further discussion are given.

2. Behavior Dynamics

The behavior dynamics were included towards the goal of
behavior and obstacle avoidance behavior. Using the behavior
character of behavior dynamics plan according to the local
target from a starting point of a path (namely, the intelligent
vehicle navigation path) and satisfying the vehicle in the
driveway can avoid the pavement and all sorts of obstacles
to the dynamic environment. The heading angle and the path
velocity in behavior dynamics model could be represented as
the following form [26]:

v =fi(y,P),

1./=f2(V>p)r

where P is position of the intelligent vehicle in the world
coordinator system and the parameters are the heading angle
y and the path velocity v of the intelligent vehicle, which
generally act as the behavioral variables. i and v define the
rate of the heading angle and velocity as a function of their
current values.

@

2.1. Behavior Dynamics Modeling. The dynamic approach to
path generation of the intelligent vehicles employs y and
v as the planning variable [22, 23]. The path planning is
continuous in a time course of ¥ and v; the target directions
Y, relative to the world coordinate system in which target
lie from the view of the intelligent vehicle and the obstacle
directions y,,; in which obstacles lie from the viewpoint of
the vehicle relative to the world coordinate system, v,,, and
Vobs,» are represented by attractive and repulsive force-lets
acting on heading direction (Figure 1). The velocity of target
Vior and the velocity of obstacle v, are constraints that are
represented by attractive and repulsive force-lets acting on
the path velocity. In the dynamics system, the variables are
the direction angle and the path velocity lying at obstacles
and target from the current position of the intelligent vehicle
shown in Figure 1.

According to the behavior variables and the behavior
pattern of the intelligent vehicle, the target and obstacle
avoidance of dynamics model is built.
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FIGURE 1: Variables represented in the dynamics.

2.1.1. The Target of Behavioral Models. Toward target behavior
is the behavior of the intelligent vehicle to reach its desti-
nation. The dynamic behavior of the attractor equation is
expected with negative slope and asymptotic speed converges
to a stable fixed point. The attractors of the equation defined
the behavioral variables so that the system is ensured to
be at all times in a stable state. The heading angle and the
path velocity of the behavior model are established as the
following.

(1) Heading Direction Behavior Dynamics Model. In the
behavior dynamics model, the heading angle is specified as
a time-variant term at any time t. ¥ is an angle and is cyclic
and defined as v € [-7/2,7/2] in the world coordinates, and
the x-axis is always consistent with the direction of the road.
In [24] the heading direction of behavior dynamics for target
acquisition can be defined by

11/ = ftar (V/) = _Atar tan (l// - l//tar) >
Ptary B Pvehy> (2)

tarX ~ LyehX®

Viar = arctan(

where A, > 0 sets the attraction strength of the vehicles
heading variable, y,,, is the angle between the target and the
intelligent vehicle in world coordinate system, and y,, is the
attractor in dynamics system. f,.(y) is an attractive force-
let and converges to the value so that v goes towards the
intended target-state. P, (P, X, P, ) is target position in the
world coordinator system and is the time-variant target, and
P, (Pyen X5 Poar y) 1s intelligent vehicle position in the world
coordinator system.

(2) The Path Velocity Behavior Dynamics Model. Besides
heading direction, in order to ensure the formation and
maintenance of the stabilization, path velocity must be
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adjusted real-time. In terms of path velocity, considering that
the security and stability of the vehicle system must meet
with safety distance from maximum contact time T, ,, =
(dir—Dy) /v, D, is a minimum safe following distance and d,,,
is the distance to the target. v,,, is an attractor of velocity, and
v goes towards the required velocity v,,,. Literature [26, 34, 35]
used linear velocity equation, with certain constraints. In this
study, [25] is used to define the velocity behavior dynamics
the equation towards the target:

2
20,

. (V - 1/tar)z
V= ftar,v (V) = _Atar,v (V - Vtar) Xp|——==—|> (3)

where A, is strength factor, v, is the desired vehicle
velocity, and o, is scope attractors calculated in [36].

2.1.2. Obstacle Avoidance Behavior Model. Obstacle avoid-
ance behavior can be divided into heading direction and
velocity behavior.

(1) Heading Direction Behavior Dynamics Model. When the
intelligent vehicle is driving in the way of the target road, it
is time to avoid the static or moving obstacles on the road
to reach the destination safely. v, is called the repeller,
which is unstable point v,,; to make the influence of an
obstacle go to zero in behavioral dynamics system; v,
defined the behavioral variables. Reference [24] sets the
heading direction in the obstacle avoiding behavior using the
following equation:

ll’obs,i = fobs,i (Wobs,i) = /\obs,i (1// - 1l/obs,i) €xXp (_Cdobs,i)
[ (1/’ - l//obs,i)z :| (4)
exp | —————— |,

207

where A ; is the repulsion strength, d; is the distance
between the obstacles and intelligent vehicle, which can
continuously be estimated using sensory inputs, C is the
repulsive force of attenuation coefficient with the increase
of distance, o; is the angular scope of the repeller, and o,
is velocity scope of the repeller [36]. This implies that the
strength and angular range of the repulsion become stronger
as the intelligent vehicle gets closer to obstacles.

Multiple obstacles heading direction of behavior dynam-
ics equation can be written as

1i’obs = Fyps = Z fobs,i (l/’obs,i) : (5)

(2) The Path Velocity Behavior Dynamics Model. The velocity
of the intelligent vehicle is related to the distance between
vehicles and obstacles d;,, and also to the safety distance D.
Similar to (3), the path velocity could be modeled as

V= Vi)
V= fobs,i (V) = _Aobs,v (V - Vobs,i) exp |:(2—0;S)1):| > (6)
UV
where A, is velocity to the repeller of velocity intensity
factor, the repeller can be changed by adjusting Ay ,» Vb
is the required obstacle velocity, and o, is scope the repeller
calculated in [36].

2.2. Behavior Dynamics Coordination. After the establish-
ment of the various dynamics model, navigation planning
demands the fusion of several behavior variants; in practical
applications, it is necessary to fuse the behavior various and
conduct planning for the vehicle. Consider a fusion of two
actions:

ll] = wobsFobs + wtarftar’ (7)

V= /\obsfobs,i (V) + Atarftar (V) > (8)

where @, Wigr> Aops Ao are the weight coeflicients and
behavior of fusion is not considered in literature [36],
where four weight coeflicients are equal to 1. Thereof, when
the target behavior and obstacle avoidance behavior occur
simultaneously, two types of behavior lead to a perturbation
of the intelligent vehicle. Under the absence of behavior of
fusion, the target behavior and obstacle avoidance behavior
occur simultaneously, which leads to the perturbation of the
vehicle. In order to solve this problem, behavior coordination
was studied in depth.

(1) Heading Direction Behavior Fusion. From (7), in the pro-
cess of driving, it can be seen that there only exists the target
behavior with no obstacles in the environment, so wg,, = 0,
wy, = 1. When obstacles exist in the process of intelligent
vehicle driving, obstacle avoidance behavior is stronger than
toward the target behavior, so parameters w,,, = 1, w,, = 0.
When the intelligent vehicle passes through obstacles, the
main obstacle avoidance behavior turned toward the target
behavior. Similarly, when the vehicle encounters obstacles,
the vehicle behavior turns from “toward target” to “obstacle
avoidance” along the direction of gradient between the two
states, associating with the increasing weight of the obstacle
avoidance behavior. Therefore, the vehicle direction pertur-
bations problem arises with the inharmoniousness behavior
switching because of the rough coordination.

(2) The Path Velocity Behavior Fusion. Similarly, from (8),
when there are no obstacles or the obstacles are static, there
is only velocity towards the target behavior: the parameters
Agps = 0, Ay, = 1. When obstacles are in motion in the pro-
cess of intelligent vehicle driving, obstacle avoidance behavior
is stronger than toward target behavior, the parameters A, =
1, A = 01in (8). When the vehicle is away from obstacles,
the velocity of behavior is directed towards the target. Due
to the change of behavior, speed behavior alternates from
moving towards the target to obstacle avoidance, so that the
two behaviors can smooth transition, which will depend on
two behaviors of coordination. Otherwise there will be fast or
slow phenomenon for the velocity of intelligent vehicle.

3. Particle Swarm Optimization Algorithm

According to many research literatures [32, 33, 35, 39],
behavior of competitive dynamics method is used for behav-
ior coordination. Besides the differential form of dynam-
ics equation, the competition dynamics model is still the
differential equation and relates to the stability of the
system making behavior coordination more complicated.



In the literature [38], heading direction angle coefficient of
the mobile robot is optimized by genetic algorithm, with the
velocity left constant. Reference [39] using particle swarm
optimization algorithm, mainly for the interaction between
multiple mobile robots for the angle of coordinate, did not
consider speed. In this paper, it introduced the behavior from
the direction angle and linear velocity at the same time by
the particle swarm optimization algorithm to strengthen the
problem of the intelligent vehicle navigation path.

3.1. Particle Swarm Optimization Algorithm. The particle
swarm optimization algorithm has many advantages such as
being easy to describe, adjusting less parameters, and having
fast converging speed, so that it has become a hotspot in
intelligent optimization and evolution computing once pro-
posed. It has been widely used in the function optimization,
dynamic environment optimization, neural network training,
and fuzzy system control applications [40].

In PSO, each potential solution to optimization problem
isabird in the search space, called a particle. All particles have
a function that is optimized by the decision on the fitness
value. Each particle has a speed that decided they fly out of
direction and distance, and the optimal particles are to follow
the current search in the solution space. Optimization starts
to initialize a set of random particles (random solutions) and
determines the merits of the solution by the fitness function.
Each particle iterative process contains two extremes: the
individual extreme and global extreme; individual extreme
cognitive level represents particles themselves, and the global
extremes represent the social cognitive level; the final optimal
solution is obtained after several iterations [40].

The goal of optimizing function search space for m-
dimensional (namely, the number of optimization variables)
is set, the number of particles is n, the i particle posi-
tion is X; = (X, Xip--s X,»m)T, and speed is V; =
Vi, Vigs oo s V,»m)T. The course of the flight in accordance with
(7) and (8) to update their own position and speed of the
particle. P, = (Pil,Piz,...,X,»m)T for the individual pbest;

Py = (Py, Py, ... Xgm)T for the global gbest:

Vi (E+ 1) = wVy () + ¢y (P () = X (1)
T Gan, (ng (t) - Xik (t)) > (9)
Xig(t+1) = X () + Vi (£+1),

where k = 1,2,...,m,i = 1,2,...,n, t is the number of
iterations, w is weight coeflicient for the particle velocity,
and the greater the value of w, the better global searching
ability for PSO. r,, r, are a random number in [0, 1], and ¢;,
¢, are limiting factors for acceleration. In iterative process,
the particle swarm optimization algorithm has no specific
mechanisms to control the velocity of the particles; the speed
of the particles to limit the particle speed of each dimension is
within [V, Viha s the position of each dimension is limited
within [ X0 Xaxl-

3.2. PSO Implementation of Behavior Coordination. Based
on the driving characteristics of the intelligent vehicle,
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at a certain velocity, when the behavior toward the target
and obstacle avoidance behavior occurs alternately to reach
the destination safely, it becomes a major obstacle avoidance
behavior, obstacle avoidance behavior becomes a major
behavior and towards the target of behavior will be weakened.
When passing through the obstacles, toward the target,
behavior becomes dominant. Behavior dynamics analysis
through the front, towards the target, and obstacle avoidance
behavior including heading direction and the path velocity
behavior, the weight coefficient of heading direction, and the
path velocity are optimized by particle swarm optimization
algorithm, thereby eliminating perturbations; the intelligent
vehicle can smoothly move through obstacles to reach the
target location.

In this paper, employing the method of PSO, optimization
variables are expressed by the particle; the particles set is
Xy = (Wope W) and X, = (Agpg; Ayy,). The fitness function
reflects the relationship between the intelligent vehicle and
the environment. When the obstacle is very close to the
intelligent vehicle, the avoidance obstacle behavior plays the
leading factor. When the intelligent vehicle is away from
object, the target of behavior plays a decisive role; the fitness
function is designed as follows:

_ dobs/ (1// - 1//tar)
dtar/ (1// - l//obs)

v
As proposed in [41], (7) and (8) could be solved by
the fourth-order Runge-Kutta method. Besides, Wy, w,, are
confirmed by the extreme value of fitness function using the
particle swarm optimization algorithm.
Similarly, the velocity of behavior of coordination fitness
function is

. (10)

F = dobs (V - Vtar) )
dtar (V - vobs)

v

(11)

Using the particle swarm optimization algorithm for its
function extreme value, A, A, can be obtained.

4. The Simulation Analysis

In order to verify the behavior dynamics method as well as
behavior coordination algorithm is feasible in the intelligent
vehicle path navigation, we carried out the experiment under
the condition of the different pavement environment and
avoiding obstacle, security requirements like lane keeping,
vehicle following, lane changing, and overtaking. Follow
these steps to carry out experiment:

(1) Establish the system model with unknown param-
eters of the intelligent vehicle, the sensors, and the
road environment. These parameters are all detected
by vehicular sensors and used to parameterize cor-
responding term such as road environment, starting
point and target point of the driving, initial velocity
and heading direction of the vehicle, position of the
obstacles, detecting range and distance of the sensor,
and so forth.
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(2) During the process of driving, obstacles beyond
detection scope are according to the behavior dynam-
ics model towards the target for navigation path.
When obstacles are detected, there is a use of behavior
dynamics of the obstacle avoidance behavior and
towards the target behavior of the coordination algo-
rithm for navigation path. The intelligent vehicle in
driving, when detecting obstacles outside the safe
distance, is according to the dynamics of behavior
towards the goal of behavior for navigation path,
when detecting obstacles within the safe distance,
according to the behavior of dynamic obstacle avoid-
ance behavior and towards the target behavior of the
coordination for navigation path.

(3) Nonstationary conditions of the vehicle continuously
determine the current vehicle position and the target
position; stop the iteration after reaching the target;
otherwise, repeat (2).

In this paper, MATLAB R2013a simulation experi-
ments, as shown in Figurel. the simulation parameters:
intelligent vehicle initialization parameters for VehiclePos
= [21,3,90,3.6,8,90, 1] (initial x, y coordinates, heading,
speed, distance perception, perception range, vehicle size),
reference vehicles initialization parameters for VehicleRun-
Posl = (20, 15,90, 4.3, 120, 1], the target position initialization
parameters for TargetPos = [ VehicleRunPosl (2), VehicleRun-
Posl (2)](target x and y coordinates), the obstacle position
initialization parameters for ObstaclePos = [12 590 2 2;
27 30-60 2 1.5] (x and y coordinates of the obstacle heading
direction, speed, size of obstacles), perceive the sector range
[-30°300°], scene size of [50 50]; Particle swarm optimization
parameters c1 =¢2 =2, w = 0.8, 1 =72 =rand(1), t = 20,
m=2,1n=20, [V Vimad) = [0, 1], [Xpnin> Ximax] = [0,1].

In figure, blue filled circles are an obstacle, red filled circle
is detected in the movement of obstacles, black thick line
and blue dotted line are for the lane, green rectangle is for
intelligent vehicle, blue sector is for intelligent vehicle sensing
area, black rectangles are for the target vehicle, and red signs
are for intelligent vehicle running track.

The simulation results are shown in Figure 2. In the
same scene, two kinds of behavior coordination algorithm
optimize the simulation results shown in Figure 2, so the
velocity of obstacles behavior weight coefficient is 0, only
weight coefficient of heading direction behavior coordina-
tion. Figure 2(a) shows running track for PSO behavior
coordination in the lane for safe obstacle avoidance and the
destination; Figure 2(b) shows running track to Competitive
behavior coordination for the lane safe obstacle avoidance
and the destination. Figures 2(c) and 2(d) show the intelligent
vehicle heading direction variation for PSO behavior coordi-
nation and competition behavior coordination. Figures 2(e)
and 2(f) show the weight coeflicient variation in heading
direction for PSO behavior coordination and competition
behavior coordination. From the simulation data and dia-
gram it can be seen as in PSO behavior to coordinate the
navigation path and heading direction change closer to the
actual vehicle characteristics of the vehicle, while the angle
change is too large for competitive behavior coordinated.

For Figures 2(e) and 2(f) the heading direction of obstacle
avoidance and towards the target weight coeflicient optimiza-
tion and the particle swarm optimization method of two
parameters optimization more conform to the behavior of
the competition law; the particle swarm optimization method
is easy to realize in the design, less parameter adjustment,
fast convergence, and so on. However, using the method of
the differential equation of competition, more parameters are
adjusted, making the coordination more complicated.

Figure 3 is the optimization effect of the PSO heading
direction and velocity behavior coordination in dynamic
obstacles. Figure 3(a) shows PSO behavior coordination to
the navigation path of intelligent vehicle, Figures 3(b) and
3(c) show PSO behavior coordination in the heading direc-
tion and velocity changes, and Figures 3(d) and 3(e) show
the heading direction and velocity of weight coefficient of
variation to PSO behavior coordination. Figures 3(a) and 3(b)
can be seen as the simulation trajectory and angle change is
consistent with the actual vehicle. Figures 3(d) and 3(e) can
be seen as heading direction and velocity weight coefficient
optimization point of view; PSO weight coefficient is more
consistent with the competition behavior change law and can
control the intelligent vehicle safe avoidance obstacle, towards
the target.

Figure 4 shows lane changing and overtaking using
behavior dynamics method and PSO behavior coordination,
from running track of the intelligent vehicle, heading direc-
tion change, and behavioral weight factors variation law can
be seen; behavior dynamics can be well for path planning of
the intelligent vehicle.

Simulation results show that behavior dynamics method
and PSO behavior coordination can effectively navigate path
of the intelligent vehicle for the vehicle follow, lane keeping,
lane changing, and overtaking behavior. PSO algorithm
solves the obstacle avoidance behavior toward the target
behavior coordination due to behavior competition arising
perturbations. In the process of driving, at the same time,
the change rule of heading direction and driving direction are
consistent, and the vehicle’s velocity is adjusted in the process
of obstacle avoidance to remain consistent with the actual
traffic characteristics.

5. Conclusion

(1) Based on the characteristics of intelligent vehicle driving,
combined with behavioral dynamics method, we established
method of the navigation path of the intelligent vehicle. The
target is the time-variant.

(2) Using PSO algorithm and competition behavior algo-
rithm toward the target and avoidance weight coefficients
to optimize shows that PSO algorithm in behavior weight
coeficient optimization has advantages: fast convergence and
less parameter setting, using behavioral dynamics method
to realize the control of the intelligent vehicle for the lateral
heading control and the longitudinal velocity control, so that
the intelligent vehicle along a desired direction path can pass
safely through the obstacles to target position.
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FIGURE 2: Straight to heading direction coordinate.

In addition, using the behavior dynamics to the naviga-
tion path can provide the relevant parameters for the next
motion control. Lateral control is concerned with steering the
vehicle automatically to follow the reference path. The lon-
gitudinal control is concerned with accelerating the vehicle
automatically. The variable behavior dynamics is the relation
between ¢ = f. and the yaw, the relation of ¥ = f_ (v)

longitudinal acceleration. The intelligent vehicle is controlled
by using actuators such as the brakes, the accelerator, and the
steering wheel so that it adheres to the reference path [42].

(3) The experimental results show that behavioral dynam-
ics method has the real-time performance and reliability, and
the PSO algorithm can be a good alternative to the behavior
coordination problems.
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