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We introduce a new class of boundary value problems for Langevin quantum difference systems. Some new existence and
uniqueness results for coupled systems are obtained by using fixed point theorems. The existence and uniqueness of solutions
are established by Banach’s contraction mapping principle, while the existence of solutions is derived by using Leray-Schauder’s

alternative. The obtained results are well illustrated with the aid of examples.

1. Introduction

Quantum calculus (g-calculus) has a rich history and the
details of its basic notions, results, and methods can be
found in the text [1]. Apart from the traditional treatment of
quantum calculus, many interesting questions and problems,
especially from theoretical point of view, either remained
open or were partially answered. In recent years, the topic
has attracted the attention of several researchers and a
variety of new results can be found in the papers [2-12].
However, there are many aspects of boundary value problems
of quantum difference equations that need attention. For
instance, quantum difference Langevin systems with nonlocal
g-derivative conditions are yet to be addressed.

In this paper, we investigate the sufficient conditions
for existence of solutions for quantum difference Langevin
system of the form

D, (D, +A)x(®) = f(tx(®),y(®), te],

D,(D,+4,)y®)=g(tx(®),y®), te],

x(0) =D, x(0),
y(T) =D, x(§),
y(0) =D, y(0),

x(T)=D,,y (1),
€))

where J = [0,T],0 < p,q,u,u,,2,2, < 1, are quantum
numbers, A, A,, a;, &, € R are constants, f, g € C(J xR, R)
are continuous functions, and &, 7 € J are fixed points.

The Langevin equation (first formulated by Langevin in
1908) is found to be an effective tool to describe the evolution
of physical phenomena in fluctuating environments [13]. For
some new developments on the fractional Langevin equation
in physics, see, for example, [14-22].

In this paper, we prove existence and uniqueness of solu-
tions by using Banach’s contraction principle and existence of
solutions via Leray-Schauder’s alternative.

The paper is organized as follows. In Section 2, we recall
some preliminary results from quantum calculus needed in



the sequel. Also two basic lemmas are proved. The main
existence and uniqueness results are contained in Section 3.
Finally, in Section 4, examples illustrating the obtained results
are presented.

2. Preliminaries

Let us recall some basic concepts of g-calculus [1, 23].

Definition 1. For 0 < q < 1, we define the g-derivative of a
real valued function f as

f((?:—g)(ft), tey\{o},
@)
D, f (0) = lim D, f (1)

qu (t) =

The higher order g-derivatives are given by

Dyf ()= f (),

D)f(t)=D,D) ' f(1), neN.

(3)

For x > 0, weset ], = {xq" : n € NU{0}} U {0} and define
the definite g-integral of a function f: J, — R by

LIW= | fOds=Yr(-a)d'fxg) @
n=0

provided that the series converges.
Fora,b € J,, we set

b
J f(s)dqs = qu(b)—qu(a)
o )
=(1-9q) Zq" [bf (bq") - af (aq")] .

Note that, for a,b € ], we have a = xq™, b = xq"™, for

. b .
some n,,1, € N, thus the definite integral _[a f(s)dgs is justa
finite sum, so no question about convergence is raised.

We note that

Dquf (%)= f(x); (6)
while, if f is continuous at x = 0, then
Iquf (X) = f (X) - f (0) . (7)

In g-calculus, the product rule and integration by parts
formula are

D, (gh) (t) = (D,g (1)) 1 (t) + g (qt) Dh (t) ,

| FODg0de=1r 0901 (8)

0

[ Darwatandy
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Further, the reversing order of integration is given by
t s t rt
I I fr)dgrdgs = I I frydysd,r. ©9)
0 Jo 0 Jgr

In the limit ¢ — 1 the above results correspond to their
counterparts in standard calculus.

Lemma 2. Let f: ] — R be a continuous function and 0 < p,
q < 1. Then we have the following:

(@)
D, || Fodys] -

! Jt f(s)dgs,

LJO pt
t+0, (10)
lim D, _L £ @) dys| = £ 0
(ii)
t rr
D, “o L f(s) dqsdqr]
™ (t-a)
_ L f(s)dqs+jpt ()il O 10 @
lim D, “0 JO £ dqsdqr] - 0.

Proof. To prove (i), using the definition of p-derivative, we
have

oo
| o

t
- —1P)t J @ dgs, t#0.

P
For t — 0, we obtain
t
%i_I;%Dp “0 f(s)dqs]
=limD, [t(l -q) Y 4" f (fq”)]
t—0 = (13)
) [ ]
=1 t) — ;
l =) ;’qf(q) P;Oqf(pq)
= 1(0).

Next, we will show that (ii) holds. From the reversing order of
integration, the double g-integral can be reduced to a single
integral as

t rr t
[ [rodsdr=[ G-a9r0ds
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Taking the p-derivative to the both sides of the above y(T) =D, x(§),
equation, it follows that

y(0) =, D, y(0),

x(T) =D, y(n),

t orr ¢
Pr “o Jo R qudqr] =D, “O (t-as) f(s)dys
1 t (20)
) (1-p)t [L (t—qs)f(s)dqs if and only if
¢ t
=0 [ xOdgs+ [ (-6 dys

+ Lpt (gs—pt) f(s) dqs]

[t(1+0hy) + o] (1+,1,)
; I

" ’ T-u)
s

o Hot (t—qs) f(s)dys

(1-p)t : e
. . | @ ds— | T 0dys
_ L (t—gs) f(s) dqs + J (t-pt) f(s) dqs] w € 0
¢ (€-a9) !
pt t - P(s)dgs—Ay | y(s)dys
= L f(s)dgs+ L ((1 q)) f)d, we (1—up)& Jo
T T
Since + . (T—ps)y(s)dys+Q, <—)L1 L x(s)d,s
(t-gs) 1 ! T h) 1
th (l—p)tf( )d s = (1_ ) thf(s)qu +J“0 (T—q5)¢($)dqs+mjuﬂy(.?)dps
q (1 B ) U1 n (;1 - ps)
(l—p)tJ sf(s)dgs = ) " -, w(s)dps—J'uz” (l_uz)nw(s)dps)],
& t t (D)
St 6 - pif (i) - 1D y0 = [ 5@ [ €= py s
n=0
© [t(1+a,M,) + 0] (1+051,) A
Y [Pd (") - (pt) 4" f (ptd")] * = = [Q u)E
n=0
cp s wé
it is easy to see that .J:x(s)qu_L gb(s)dqs
t rr !
li =0. 3 - T
50 D, [Jo Jo @) dys dqr] 0 ) - J ((15 qS))E¢(S) dgs—2A, J y(s)d,s
213 —u 0
This completes the proof. O - 1 -
Let + L (T - ps)y (s) dps> -\ L x(s)dys
- _ T
A=(1+o01)(1+a4,)[1-Q,9,], (18) +L (T 49)¢ () dys + ; A; - J'r/ S (9)dys
with ) 2
_ x [ (" (1=ps) ]
Ql_T+1+oc1/\1’ L w(s)dps Lm( W) w(s)ds
_T o, 9 Proof. Simplifying the first two equations of problem (20) and
Q, =T+ 1+a,), applying the double quantum integral, we obtain
Lemma 3. Let A # 0 and the functions ¢,y € C(J,R). Then X(t) = A, Jf () dqs . J,t a6 dqs o
x, ¥ € C(J, R) are solutions of the problem 0 0
C,,
D, (D, +MA)x(t)=¢(t), te], " Zt t (22)
y()=-Ay | y(s)dys+ | (t—ps)y(s)d,s+Cst
0 0

D,(D,+X,)y®) =y (), te],

x(0) =D, x(0), +Cy,



where C;, i = 1,2,3,4 € R. From the conditions x(0) =
oD, x(0), y(0) = a,D, y(0), Lemma 2, and oA, oy, #
—1, we have

o, Gy

271y o,
(23)
6,C;

S l+ad,

Using the coupled nonlocal boundary conditions and
Lemma 2, we get the following system:

-1, J y(s)d 5+J (T = ps)w(s)dps
T(1+0A,) +a,
+( 1+ A, >C3

4
=—(1_)L—;)£J- gx(s)d s+J ¢ (s)dys
1 u;

J (E P ) g das+Cn
“15 (24)
1J x(s)d s+j (T —gs) ¢ (s)d,s

(T1+oc1 +ocl>
¢
1+
B 04, | v
= _— yS s+ 1//5 S
(1_u2)71 un r

+J"(W ps)

1-u,)n
Solving system (24) for constants C,; and Cj;, we have

(s)d s+Cs.

a 1 Al g u§
Cl = Z [m ngx(s) qu— J;) (/5(5) qu

(€-as) !
J'ulf (- (/)(s)d s—A, L y(s)d,s

T

T
+| (T-ps)w(s)d s+QZ( J x(s)dqs
0

J,
+LT T —gs) ¢ (s)dys + U/\W L;y(s)dps
I

" (n- ps)
v || (v ods)|

_1 Ay ¢

wé 13 (E q)
), e | et o

T T
-1, L y(s)dys+ L (T—ps)y/(s)dps)

International Journal of Mathematics and Mathematical Sciences

T
—)LIJ x(s)d S+J (T —qs) ¢ (s)d,s

A

n w1
+ m quny(S) d,s— JO v (s) dps

[,
Ly o]

(25)

Substituting all values of constants C;, i = 1,2,3,4, in (22),
we obtain the solutions of system (20) as in (21). The converse
follows by direct computation. This completes the proof. [

3. Main Results

In this section, we are going to prove the existence and
uniqueness of solutions for the Langevin quantum difference
system (1) with coupled boundary g-derivative conditions by
using fixed point theorems. Let & = C([0,T],R) be the
Banach space of all continuous functions from [0,T] to R
with the norm defined by |lx]| = sup,;|x(¢)|. Obviously
(2,1l - ) is a Banach space. In addition the product space
(X x Z,1I(x, »)I) is a Banach space with norm [|(x, y)| =
Iocl + 1yl

In view of Lemma 3, we define an operator G : £’ x X —
I x X by

G, (x.9) (t)>
G (x, t) = 26
0@ <G2(x>y)(t) 2
where
G, (x, ) () = ) L x(s)dgs + L (t—gs)

f(sx(5),y(5))dys

N [t(1+oAy) + o] (1+a),) [ Ay
A (1-u))&

13 u§
. ng x(s)dgs - Jo f(sx(s),y(s) dgs

14
L (£- q)f(sx(s) y(s))ds

£ (l-u)é
-1, jTy(s>ds+j (T - ps)
L9 (5,x(9), 7 (9) dps+ O, (—M joTx(s> ds
T A
+f (T ~a5) f (5%, y ) s+ (2

n un
J y(s)dps—J g(s,x(s),y(s))dps
un 0

n —
[ ey @)as) |,
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G, (x,y) (t) = -7, J-O y(s)dys+ L (t - ps)
g (s,x(s), y(5)) dys

[t(1+0,4,) + ) (1+0yAy) A
' A [Ql ((1_’/‘1)5

3 wé
. I x(s)dys — JO f(sx(s),y(s))d,s

Uy

5 (8-
- ju1f %f (S’ > (S) 7 (S)) dqs

T
-1, J y(s) dps

0

T
+ J (T-ps)g(s,x(s),y(s) dys
0

T T
-\ L x(s)dys + Jo (T -gs)

A
f(sx(5),y(s))dys + m

n un
. J y(s)dps—J g(s,x(S),y(S))dpS
U 0

n (- ps)
_ qu mg (s, x(s),y(s) dps|.

(27)
In addition, we set constants
M,
~ T? |A| + [ulf(l +q)+(1-uq)é+T? lQZH é
|AI(1 +q)

>

[T2 + Q| upn (1+ p) + (1 = uyp) |Qzl’7] q
M, = >

|Al (1 + p)
M. = (M| T AL +[Q,] [A,| TS + [A4] 8
3= >
|A|
_ o] T8 + |0y [A,] 8
4 |A| >
B [T2 +]Q|u§ (1+9) + (1 -uyq) |Ql|£] P
’ Al (1 +4q) ’
M,

B T?|A| + [7/‘2’1(1 +p)+(1-wp)n+T° |91|]P
|AI(1+p)

>

5
M, = M Tp + 9] |A1|P’
|Al
M. = |/\2| T |A| + |Ql| |A2| Tp + |)\2| P
8= ,
|Al
(28)
where
§=T((1+ |“1A1|) + |“1|) (1+ l“zlzl) >

(29)

p=T((1+|aA,]) + |ey|) (1 + |y Ay])-

Theorem 4. Assume that f,g : [0,T] x R* — R are
continuous functions and there exist positive constants m;, n; =
1,2 such that, forallt € J and x;, ¥, € R, i =1,2,

|f (txp 1) = f (8 x2>)/2)|

=m |x1 —x2|+m2 |)’1 _)’2|>

(30)
g (t. %1, y1) = g (t. x5, )]
=n |x1 - le +m |)’1 _)’2|-
In addition, assume that
1
B, < -,
2
(31)
1
U <=,
2
where
B, = (m, + my) M, + (n; +ny) M, + M5 + My,
(32)
U, = (m; + my) Mg + (n, +n,) Mg + M, + Mg.
Then problem (1) has a unique solution on J.
Proof. Define sup,;|f(£,0,0))] = N; < oo and
sup;;19(t,0,0)] = N, < oo and choose a real number
R such that
RZmaX{MINl +M2N2’M5N1 +M6N2} (33)
1/2-B, 1/2-U,

Note that from (31) the constant R > 0.

Firstly, we will show that GBy < By, where By = {(x,
y) € T x X : |(x, )l < R}. For (x, y) € By, we have
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[t(1+a )+ o] (1+ayM,)

|G, (% )| < sup H—/\l J x(s)dgs + L (t=gs) f (s,x(s), y(s)) dys +

A
A u ¢ (€-ad)
[(I—Tul)fj x(9)dys - L f(s,x(5)>}’(5))dqs—L1£(l_ul)gf(s,x(S),y(s))dqs

T T T
-1, L y(s)dps+J0 (T-ps)g(sx(s),y(5)dps +Q, (— IL x(s)dqs+L (T —gs) f(s;x(s),y(s))dys

A [ 1 " (1= ps)
STl L | g(s[’x;()’y“)))d(f’s‘hgl— ) T’](”“) @)} =
T A+ |u,E(1+¢g) + (1 - +T%|Q
< (my llxll +mz [y + Ny) 1 |Z|(1+q) . : >+(n1 ladll + 7, 7] + No)

([T +19a]uan (1 + p) + (1 - w,p) [ Q5] 1] 6 L ITIAL+ [0, 11| T8 + 4,0 Il + I,| T8 +]Q,] A, 6 b
AT (1+ p) 4] 4] g
< ((my + my) M, + (n, + ny) M, + M5 + My) R+ M,N, + M,N, = B_R+ M;N, + M,N, < g,
and in a similar way . AL Tp + || Ay p i
|A]
+ |A2| TIAl+ |Ql| |/\2| TP + |A2| P ")’"
IG, (x. Y| < (my lxll + my [l y] + Ny) |A]
| ( [T2 10| & (1+q) + (1-1u,q) |91|5] p) < ((m, + my) My + (n, + ny) Mg + M, + M;) R
AI(1+4) + MyN, + M{N, = U;R + M, N, + M,N, sg
G b+ ]+ ) >
2 _ 2 This shows that GB C By.
) (T 1Al + [u2’7 (1+p)+(1-upp)n+T |Ql|] p) Next, we will prove that the operator G is contractive. For
|Al (1 + P) any (x, y1), (xy, ¥,) € T x X, and t € ], we have

T T
IG: (52032 =Gy Gero)l < Ll | b )=, @l dys+ | (T=a9) 1 (5 90,2, 9) = f (6.3 (93 )] s

i[ A
JAl [ (1-uy)¢

1 u§
L . %5 () = x, ()| dys + L |f (5,2, (8), 32 (8)) = f (5, %1 (), 3, (5))| dys

¢
*Jug((f . Pl (52:9.329) - f(s,x1<s),y1<s))l+|*2|J b2~ yl(s)|ds+J e

T
| (5%, (5), 3, (5)) = g (5, %1 (), 31 (5))) dps + |2, | <|A1| L %, (s) = x; (s)] dgs

T A
+J (T - gs) |f (8,2, (5), 3, (5)) = f (5,2, (8), 31 (5) |d s+ | I J |J’2 (8)=n (5)|d S
0 ( 2)’1

un
# [ x 000 6) - 965, 91 0)]dys

o

n
[ P 00,959 - (53190 O dys )| < o o =l s
U U

.<T2 |A] + [u@(l +q)+(1 —ulq)£+T2|Qz|]6

+ (1 || X, —X,|| + 1 —
e )+ b=l b
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_ [T2 + Qo upn (1 + p) + (1 - up) |02|’7] 0 + [M| T AL+ Q| Ay TS + A, | & s =,
|AI(1+p) Al 2
A, | TS +|Qy) |A,| 8
| 2| |f|X| 2| | 2| ”)’2 - )’1" < (myM; +n, M, + M;) ||x2 - xl" + (myM, +n,M, + M,) "J’z N “
(36)
Thus, For convenience, we set constants
”Gl (%2 2) = Gy (xl’yl)" E, = (M, + Ms) Ly + (M, + Mg) R, + M + M, (1)
(37)
<5yl el B = (M + M) Ly s (M M) Ry My
Similarly, E" =min{l -E},1-E,}. (42)
G ; -G , Theorem 6. Assume that f,g [0,T] x R? — R are
[G: Gexr32) = Ga (a3 (38)  continuous functions and there exist real constants L;,R; >
<y (||x2 - xl" + ||y2 -y ||) 0@G=1,2)andLy, >0, Ry > 0, such that Vx; € R (i = 1,2);
we have
It follows from (37) and (38) that
( | ( | |f (£x1, %) < Lo+ Ly |x;] + Ly x5, )
G(xp9,)=G(xp,y
" no vl (39) |9 (t, xl’x2)| SRy + R, |x1| +R, |x2|.

< (B, +Uy) ([|x = x| + 2 = 3D -

From (31), therefore, G is a contraction mapping. So, by
Banach’s fixed point theorem, the operator G has a unique
fixed point, which is the unique solution of problem (1). This
completes the proof. O

In the next result, we prove the existence of solutions for
problem (1) by Leray-Schauder alternative.

Lemma 5 ((Leray-Schauder alternative) (see [24])). Let G
be a nonmed linear space and let F G —- Gbea
completely continuous operator (i.e., a map that is restricted to
any bounded set in G is compact). Let

E(F)={xeG:x=xF(x), 0<x<1}. (40)

Then either the set &(F) is unbounded or F has at least one
fixed point.

IfE, <1, E, <1, Ms+ M, # 1, and M, + Mg # 1, then there
exists at least one solution for problem (1) on J.

Proof. Now we show that the operator G : U x X — X' x X is
completely continuous. Let B, ¢ & x X where B, = {(x, y) €
I x X : |(x, p)Il < r}. Then there exist positive constants P,
and P, such that

|f (tx @), y®)] <P,
|lg(t.x(t),y(®)| < Py, (44)
V(x,y) € B,

and a positive real number  such that

r = max

{ P M, + M, P,Ms+ P,M; } )
|1 - (M, +M4)| |1 - (M, +Ms)|

For any (x, y) € B,, we have

t t
-\ L x(s)dgs+ L (t=gs) f(sx(s), y () dys +

|Gy (. )| < sup
te]

¢ (E-gs) , i
N ng mf (s, x(s),y(s) ds -1, JO

Ay

T T
+Q, (4»1 L x(s)dgs + J-O (T~gs) f(sx(s),y(s))dys + a

[t(1+a1A1)+a11<1+azAz>[( M f x(s)dqs_j“‘f

J'l ()d J”z'l
2 s s—
uz)’? “2’7}/ r 0

A 1-u))§ f(s’x(s),y(s))dqs

783 0

Oyt [ (1= p9)g(sx(6, ) dys

g(sx(9),y(s))dys ~ J:n (gnfiui;)ny(s,x (s)y (S))dpS)H (46)

S (T2 Al + [, (1+ ) + (1 - uyq) €+ T7 Iﬂzl]«?)P1 . < (17 +|Qy| tyn (1+ p) + (1 —“2P)|Qz|ﬂ]5)Pz +(|)L1|T|A|+|Qz||/\1|T6+|/\1|5

[AI(1 +q)

RSECEA AP

Tl >r:M1P1 + M,P, + (M5 + M,) .

[AI(1+ p)

14|



In the same way, we deduce that

t t
IG: (el < sup [ [y @+ [ (0= p99(s2(6) 7 () dys
te] 0 0

. [t(1+ah,) + o] (1 +eA) [ ( A
A ! (1-u;) & Jue

3 hé &
J x(s)dqs—J‘0 f(s,x(s),y(s))dqs J (£~ as)
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(- '4)5 (sx(s),y(s))dqs—)tzj. y(s)d S+J. (T-ps)g (sx(s),y(s))dps>

’ Ao (! 'l " (n-ps) (47)
-A L x(s)d, 5+J’ (T- qs)f(s,x(s),y(s))dqs+ -uw)y quvy(s)dps—J g(s,x(s),y(s))dps— J’uﬂ (1= L{2)ﬂg(ax(s),y(s))ﬂlps:|
([T2 [Q|uE(1+q)+(1-uq |Qj§]p> <T2|A|+[u2r1(l+p)+(1 w,p)n+ Ty ”‘D>p+<M1|TP+|QI|M1|P+|/\21T|A|+|Ql|1/\2|TP+IA21P>r7MP
141 (1 +q) ' 1411+ p) ’ 14| I4] B
+ MgP, + (M, + Mg)r.
Therefore, G is uniformly bounded. &) <916 -6l + t, = 5| (£, +1,)
Next, we show that G is equicontinuous. Let t,,t, € g ~hih 1+p
[0, T] with t, < t;. Setting sup,,;| (¢, x(¢), y(t))| = f and .
sup,¢;1g(t, x(2), y(t))| = g and for any x, y € B,, we get T ([|t: = t2] (1 + |axA,]) + o] (1 + |y A4]))
|0
|Gy (%, y) (1) = Gy (x, ) (82)| < 7 [ M| |11 — 15 un+ (1 —wp)+ ——— 1+ p
(49)

+ 1A ([[ty = ] (U + oy Ay ]) + o ] (1 + |p2,]))

P T+ ] T )

|t =t (t + 1)

+7[|t1—t2|t2+ l+gq

1 (48)
+ — ([[ty =t (1 + |y Ay ]) + 0y ] (1 + |ey5])

Al
=)

v o (=l 0o ] 1+ o)

-<u15+(1 —uq) &+

TZ
(55 #wanlenl+ (-l )|
Similarly, we obtain
G2 (502 (6) = Ga () ()] < 7 [Pl Iy
+ 14] ([ = 2] (1 + o)) + ] (1 + [ 4,4]))

(Pl Pl T+ o] T o

+f[|A| (e~ ] (1 + Jos]) + ]

2

+ 1,8 Q| + (1 - uyq) Q]

(1 |y 4y ]) ( IT

tq

Then G is equicontinuous. So G is relatively compact on B,,
and by the Arzeld-Ascoli theorem G is completely continuous
on B,.

Finally, it will be verified that the set & = {(x, y) € I'xX" |
(x,y) = kG(x,y), 0 < k < 1} is bounded. Let (x, y) € &;
then (x, y) = kG(x, y). For any t € ], we have

x (t) = kG (x, ) (),
y () =G, (x, ) (1).

(50)
Therefore, we obtain
x ()] = [xG, (x,7) 0] < A, |||x||j 1d,s + (Lo
L L) [ (- a)ds

Y r
+— | 2 14 s+ (Ly+ Ly x|
|A|[<1—u1)z e e ¥ (o L

+La |yl j:lg dgs + (Lo + Ly Ixll + Ly )

r (E q
e (1-u))E

+R, ||ly]) J-OT (T - ps) dps + |2,

T
. (A1T||x|| J 1dq5
0

T
#(Lo+Ly lxll + Ly y]) jo (T - qs)d,s

Pl I [ s+ Ry Ry
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L Pl J
1d s
( u2)’7 Un b

w1
# Ry Ry el + Ry ) | 1

Rt R R [ %dﬁ)]

=(Lo+L, x| +L, ”)’”)Ml + (R + Ry ]|

+ Ry ||y])) My, + llxll My + || y|| M,,
|y (8)] = [xG, (%, ) ()] < |A2|||y||j 1d,s + (R,

FR R D [ (a9 £ oy

A llx
(LT v o [ 1

u§
+(Lo+Lylxll+ Ly |¥]) L 1d,s

T
+ (Ry + Ry Il + R, | y]) L (T - ps)d,s

(§-as) )

4
+(L0+L1||x||+L2“y||)L ( -u)& i

s |||x||j 1dys + (Lo + Ly Ixl + Ly [y])

J (T - QS)d s+ (| ilbltlzy)”n Lm 1d,s + (R,

un
+ Ry Ixll + R, [|y[) L 1d,s + (Ry + Ry ||
" (n-ps)
R — = d =(L L
+ Ry [[y]) LG (1—uy)7 ps] (Lo+Ly x|
+ Ly 7)) Ms + (Ry + Ry x|l + Ry || y]]) Mg + x|

- M; + ")’" M.

So, we have
lIxll + [ly]| < (M, + Ms) Ly + (M, + Mg) Ry
+((My + Ms) Ly + (M, + Mg) R, + M5 + M)
il

+((My + Ms) L, + (M, + Mg) Ry + My + M)

-

(51)

(52)

Consequently,

"(X, )" < (Ml + MS)LO + (MZ + MG)RO’ (53)
y E*

for any t € ], where E* is defined by (42), so that & is
bounded. Thus, by Lemma 5, the operator G has at least one
fixed point. Hence, problem (1) has at least one solution on J.
The proof is completed. O
4. Examples

In this section, we present examples to illustrate our result.

Example 1. Consider the following system of Langevin quan-
tum difference equations subject to the coupled nonlocal g-
derivatives boundary conditions:

1
D <D + —) x (t
14\ Puat 35 (1)

|x|e™ +l)/lsin2(1f)( ly| )

C500+8)°  (14-1)° \|y]+1

€ [0,4]
1
D, /g <D2/9 + g) y (t)
2 |x| |x| 12|y| cos® (t)
= 2 + 3 (54)
12 (5t +10)* \ |x] + 3 5(t +10)

€ [0,4]

2
x(0) = HDI/‘!x (0),
y(4)= D3/11x(1),
¥(0) = -Dyy (0),

x(4) = D1/13y(2).

Hereq=1/4,p=2/9,A, =1/30, A, = 1/35, oy = 2/11,
a, =3/16,z; = 1/4,z, =5/6,u; = 3/11,u, = 1/13,T =4,
E=1Ln=2 ft,x,y) = |xle™/5(10 + £)* + |y|sin2(t)/(14 -
> (Iyl/lyl + 1), and g(t, x, y) = 2|x|/12(5¢ + 10)*(|x|/|x| +
3) + 12| y|cos*(t)/5(t + 10)°.

We have

|f (t 1 01) = f (%5 3,)]

]
< 590 P 7%l + 100

lg (£, x1, 1) — g (t x5, )]

I)’l _}’2|’

1
600| 1 x2|+m|)’1_}’2|’

o 44| = 0.00606 # 1,
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oy A,| = 0.00536 # 1,

|0, =T+ —1— = 418072,
1+oc1)t
Q| =T+ —=— = 4.18650,
0] 1+<x2A
1Al = |(1 +a3dy) (1 +a2,) [1 - Q]|
=~ 16.69158,

8 =T ((1+|agAy]) + Joy|) (1 + |ayA,]) = 4.77698,

= 4.8004.
(55)

p=T((1+]oyA,]) + |ay]) (1 + |oyAy])

Then, the assumption of Theorem 4 is satisfied with m,
1/500, m, = 1/1000, n, = 1/600, n, = 1/2400, M,
28.42756, M, = 5.85791, M; = 0.30263, M, = 0.06694, M
4.90542, M = 29.33758, M, = 0.07269, Mg = 0.25991, and

I

I

B, = (m; + my) My + (n, +ny) My + My + M,

1
= 0.46701 < 2’
(56)
U, = (my + my) Mg + (n, +n,) Mg + M, + Mg
1
=0.40844 < —.
2
Therefore, we get that
B, +U,; =0.87545 < 1. (57)

Hence, by Theorem 4, problem (54) has a unique solution on
[0,4].

Example 2. Consider the following system of Langevin quan-

tum difference equations subject to the coupled nonlocal g-
derivatives boundary conditions:

—t

D3 <D1/3 +

1

T2

7]

lyl+3)’

t €[0,5]

|x|e

N 4|y|cos2 (t)
8 (15— 1)?

6(10 — t)°

[

%)y(t)

2 |x]
241 (3 +1)

D4 (D1/4 +

V3

4

|y| sin’ (t)
47(19-1)

|x|
|x] +2

(rv2)

t €0,5]

x(0) = ~2Dy5% (0),

International Journal of Mathematics and Mathematical Sciences

y (5) = Dz/sx ),
3
y(0) = §D1/4y (0),
x(5) =Dy;sy(3).
(58)
Hereq = 1/3, p = 1/4, A, = 1/32, A, = 1/36, oy =
~2/3, 0, = 3/5,2, = 1/5,2, = 1/4,u; = 2/3,u, = 2/5,
T=5E&=2n=3f(t,x,y) = 1/2 + |xle/8(15 - t)* +
(4]ylcos*()/6(10 — £)*)(|yl/|y + 3]), and g(t, x, y) = V3/4 +
(21x]/241(3 + £)*)(|x|/ || + 2) + | ylsin®(£)/47(19 — t).
So that
[f (el < 5+ oo bl + oo bl
2 800 750
V32
|9 (8:21,50)| < =+ == | + =2 |xal.
oy A| = 0.020833 # 1,
oy 25| = 0.035294 # 1,
0, =T+ —2— = 5653061
e l+ad, ’
0, = T + —2— = 5579546, (59)
1+a,0,

JA] = |(1+ a;Ay) (1 + aph,) [1 - Q9 ]]
= 32.278176,
§=T((1+ I“IAID + |‘X1|) (1+ l“z)Lzl)
~ 8.735291,
p=T((1+|aA,])+

= 8.346811.

lots]) (1 + |y A4])

Then, the assumptions of Theorem 6 are satisfied with L, =
1/2,L, = 1/800, L, = 1/750, Ry = \/3/4, R, = 2/723,R, =
1/658, M, = 47.738433, M, = 10.485993, M; = 0.400639,
M, = 0.079530, M, = 8.503122, M, = 50.105354, M, =
0.086087, Mg = 0.349103, and

E, =(M;+ M) L, + (M, + Mg) R, + M + M,
=~ (0.724639 < 1,
(60)
E,=(M;+M;)L, + (M, + Mg) R, + My + Mg
= 0.595706 < 1.

Consequently all conditions in Theorem 6 are satisfied.
Therefore, problem (1) has at least one solution on [0, 5].
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