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In recent years, spiral-grooved air bearing systems have attracted much attention and are especially useful in precision instruments
and machines with spindles that rotate at high speed. Load support can be multidirectional and this type of bearing can also be
very rigid. Studies show that some of the design problems encountered are dynamic and include critical speed, nonlinearity, gas
film pressure, unbalanced rotors, and even poor design, all of which can result in the generation of chaotic aperiodic motion and
instability under certain conditions. Such irregular motion on a large scale can cause severe damage to a machine or instrument.
Therefore, understanding the conditions underwhich aperiodic behaviour and vibration arise is crucial for prevention. In this study,
numerical analysis, including the Finite Difference and Differential TransformationMethods, is used to study these effects in detail
in a front opposed-hemispherical spiral-grooved air bearing system. It was found that different rotor masses and bearing number
could cause undesirable behaviour including periodic, subperiodic, quasi-periodic, and chaotic motion. The results obtained in
this study can be used as a basis for future bearing system design and the prevention of instability.

1. Literature Review

The mathematical theory of gas lubrication was first intro-
duced by Reynolds [1] in 1886 and he derived a partial
differential equation related to pressure, density, relative
motion, and speed, the well-known Reynolds equation. This
established the foundation of fluid lubrication theory. In
1958, Whipple [2] was the first to study the properties of an
air bearing with herringbone grooves. In 1959, Whitley and
Williams [3] studied the model proposed by Whipple and
also published a great number of methods for the design of
the herringbone groove. In 1963, Vohr and Pan [4] studied
air bearings with spiral grooves and derived a differential
equation for the gas film pressure based on an assumption of
the number of spiral grooves close to infinity and this became
the “Narrow Groove Theory.” Our survey of the literature
revealed that the dynamic characteristics, particularly the gas
film pressure, gas film rigidity, and the damping effect of the
gas film can have a significant impact on the entire bearing
supporting system. In 1994, Bonneau and Absi [5] used
the finite element method to study characteristics related to

the herringbone groove, including stability analysis, pressure
analysis, and the impact of several important parameters
on the system. Recently, Hirayama et al. [6] discussed the
optimization of groove dimensions in herringbone grooved
journal bearings for the design of precision spindles with
improved run-out characteristics. Schiffmann and Favrat [7]
studied the comparison of the influences on the real gas
and the perfect gas for herringbone grooved gas journal
bearing system and suggested bearing designers to further
consider the real gas effects. In 2011, Chen et al. [8] ana-
lyzed the groove-ridge discontinuity effect for herringbone
grooved gas journal bearings and obtained the pressure
distribution of the fluid film on the herringbone grooves.
In 2013, Schiffmann [9] optimized the groove geometry of
the gas bearing system and set up the design guidelines for
enhanced herringbone grooved gas journal bearings. For the
transient analysis for the gas bearing system, Hassini and
Arghir [10, 11] proposed a novel simplified method for sim-
ulating large nonlinear displacements and stability analysis
in gas-lubricated bearings. However, none of the references
provided an analysis on the dynamic characteristics of a
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Figure 1: The structure and coordinate system of hemispherical spiral-grooved air bearing.

bearing. Furthermore, no series of complete and effective
analytic methods for the motion behaviour of spiral groove
air bearings and rotors could be found.

In 2013, Grigor’ev and Smirnov [12] used finite element
method for calculating the characteristics of gas-lubricated
spiral-grooved bearings based on integrating the Reynolds
equation and the thrust bearing is also considered as a
specific example. The results on the dependence of the
carrying capacity on the compressibility number and the
number of grooves are presented and compared with the
asymptotic Narrow Groove Theory. With regard to studies
of the dynamic behaviour of rotors, Bently [13] discovered in
1974 that a rotary oil film bearing system could exhibit two-
or even three-stage subharmonic vibration and Child et al.
[14, 15] used an analyticmethod to prove the existence of sub-
harmonic vibration in a rotor-bearing system.However, these
investigations were all directed towards oil film bearings, and
there have been very few studies of rotor behaviour in an
air bearing system. From 2007 to 2011, Wang [16–18] used
the Finite Difference Method to investigate gas film pressure
in a herringbone air bearing system, and he also used orbit
graphs, spectrograms, and bifurcation diagrams to analyze
the dynamic behaviour of the centres of the rotor and the
journal. He learned that, under different operational condi-
tions, the centres of the rotor and the journal demonstrated
periodic, quasi-periodic, and subharmonic motion, and he
also discovered that the system could generate nonlinear
chaotic motion. These results proved useful for this present
study. In 2015, Guangwei et al. [19, 20] studied the spiral-
grooved opposed-hemisphere gas bearing systemwith a rigid
rotor and focused particular attention on its whirl motion.
They used finite element method combined with the Finite
Difference Method to solve the time-dependent Reynolds
equation and analyze the complicated dynamic behaviour of
the rotor-bearing system by phase portraits, power spectra,
Poincare maps, and bifurcation diagrams obtained from the
numerical procedure. The results revealed that the conical
whirl instability appears earlier than the cylindrical whirl
instability with increasing rotational speed for the rotor-
bearing system with no unbalance mass.

In addition, a spiral-grooved air bearing system is typi-
cally nonlinear. Conventionally, the steady-state condition of
a deterministic nonlinear dynamic system can be regarded

as being in one of three main states: equilibrium, periodic
motion, and quasi-periodic motion. These may collectively
be described as the “attractor” because, after a transient-state
response, a system in a steady state can be attracted towards
another state. However, recent research shows that a nonlin-
ear dynamic system can exhibit not only regular behaviour
but also randomor chaoticmotion. In a situationwhere a tiny
uncertainty exists in the initial state of motion, the associated
dynamic behaviour cannot easily be predicted.The geometric
shape formed in the phase space may also differ significantly
from that of a normal qualitative system. When chaotic
behaviour arises it is very difficult to predict the outcome
which may be totally unexpected and even include damage
to the system. There is a definite need for a means to prevent
the occurrence of such phenomena and the objective of this
study is the analysis of the characteristics of a spiral-grooved
air bearing and an evaluation of its dynamic behaviour in
response to different operational criteria. The bifurcation
characteristics associated with nonlinear behaviour gener-
ated by the rotor in the system are also discussed. Based
on such analysis and study, determinations on whether the
chaotic phenomena occur in the system and accurate predic-
tion on the dynamic orbits of the system can be achieved.

2. Theoretical Analysis and
Model Construction

2.1. System Governing Equation. Front opposed-hemispher-
ical spiral-grooved air bearing (FOSAB) systems are used
extensively in precision instruments, such as gyroscopes,
and in other aerospace applications and are suitable for
multidirectional load bearing. They can handle heavy loads
making them extremely suitable for many practical engi-
neering applications. In this study two different numerical
analytic methods have been used to study a FOSAB system
and the performance and dynamic characteristics of the
bearing were investigated in some detail. The diagrams in
Figures 1 and 2 show the structure of a FOSAB in which the
centre𝑂𝑥𝑦𝑧 and the centre of the sphere coincide.The 𝑧-axis
is vertical and downwards and the corresponding spherical
coordinate is (𝜑, 𝜃, 𝜉).

As shown in the Figures 1 and 2, the spherical radius
of the bearing is 𝑅𝑜, the average clearance is 𝐶𝑟, and the
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Figure 2: Types of opposed-hemispherical spiral-grooved air bearing: (a) front opposed type and (b) rear opposed type.

rotational speed is 𝜔. Parameters of the spiral groove include
angle of groove 𝛼, depth of groove 𝛿, width of groove 𝑏1, and
separation between grooves 𝑏2. The compressible Reynolds
equation of the bearing of such type uses the spherical
coordinate system in principle, which is modified as follows:

1
sin 𝜃 𝜕𝜕𝜃𝐹𝜃 + 𝜕𝜕𝜑𝐹𝜑 = 2Λ 𝜕𝜕𝜏 (𝑃̂ℎ̂) (1)

wherein

𝐹𝜃 = 𝑃̂ {𝜂1 sin 𝜃𝜕𝑃̂𝜕𝜃 + 𝜂2 𝜕𝑃̂𝜕𝜑
+ 2𝜆𝑐Λ𝜂4 (Ω2 − Ω1) sin2𝜃} ,

(2)

𝐹𝜑 = 𝑃̂ {𝜂2 sin 𝜃𝜕𝑃̂𝜕𝜃 + 𝜂3 𝜕𝑃̂𝜕𝜑
+ 2𝜆𝑠Λ𝜂4 (Ω2 − Ω1) sin2𝜃 − Λℎ̂ (Ω1 + Ω2) sin2𝜃} ,

(3)

𝑃̂ = 𝑃𝑃𝑎 ,
𝛿̂1 = 𝛿ℎ2 ,
𝐵̂1 = 𝑏1𝑏 ,
𝑏̂1 = 𝑏2𝑏1 ,
Λ = 6𝜇𝜔𝑃𝑎 (𝑅𝑜𝐶𝑟)

2 ,

(4)

Ω1 = 𝜔1𝜔 = −1 (grooved surface rotation) ,
Ω2 = 𝜔2𝜔 = 1 (smooth surface rotation) , (5)

ℎ̂𝑜 = 1 − 𝜀𝑧 cos 𝜃,
ℎ̂ = ℎ̂𝑜 − 𝜀𝑟 cos𝜑 sin 𝜃, (6)

ℎ̂1 = ℎ1𝐶𝑟 = ℎ̂ + 𝐵̂1𝛿̂1,
ℎ̂2 = ℎ2𝐶𝑟 = ℎ̂ + 𝛿̂1,

(7)

𝛽1 = (ℎ̂32 − ℎ̂3) 𝐵̂1 (1 − 𝐵̂1) ,
𝛽2 = (1 − 𝐵̂1) ℎ̂32 + 𝐵̂1ℎ̂3,

(8)

𝜂1 = [𝛽1sin2𝛼 + ℎ̂32ℎ̂3]
𝛽2 ,

𝜂2 = −𝛽1𝛽2 ,
(9)

𝜂3 = [𝛽1cos2𝛼 + ℎ̂32ℎ̂3]
𝛽2 ,

𝜂4 = (ℎ̂32 − ℎ̂3)
𝛽2 ,

(10)

𝜆𝑐 = (1 − 𝐵̂1) 𝐵̂1𝛿̂1 sin𝛼 cos 𝛼2 ,
𝜆𝑠 = (1 − 𝐵̂1) 𝐵̂1𝛿̂1sin2 𝛼2 .

(11)

𝑃̂ is the dimensionless gas film pressure, ℎ̂ is the dimen-
sionless gas film thickness, 𝜌 is the gas film density, and 𝜇
is the gas film viscosity. To solve the bearing gas pressure
distribution the traditional Finite Difference Method and a
hybrid method [21, 22] were used. The hybrid method is
a combination of the Differential Transformation Method
(DTM) and the Finite Difference Method (FDM). For the
nonlinear Reynolds equation time domain, the Differential
Transformation Method was first used to discretize the time
into intervals and the central difference scheme of the Finite
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Table 1: Basic arithmetic formula for the Differential Transformation.

Before transformation After transformation
𝑎𝑓 (𝑡) ± 𝑏𝑔 (𝑡) 𝑎𝑓 (𝑘) ± 𝑏𝑔 (𝑘)
𝑓 (𝑡) 𝑔 (𝑡) 𝑘∑

𝑙=0

𝑓 (𝑘 − 𝑙) 𝑔 (𝑙) = 𝑘∑
𝑙=0

𝑓 (𝑙) 𝑔 (𝑘 − 𝑙)
𝑓 (𝑡)𝑔 (𝑡)

𝑓 (𝑘) − ∑𝑘−1𝑙=0 (𝑓 (𝑙) /𝑔 (𝑙)) 𝑔 (𝑘 − 𝑙)𝑔 (0) = 𝑓 (𝑘) − ∑𝑘−1𝑙=0 (𝑓 (𝑘 − 𝑙) /𝑔 (𝑘 − 𝑙)) 𝑔 (𝑙)𝑔 (0)
cos(𝑎𝑡 + 𝑏), 𝑎 ̸= 0 (𝑎𝑇)𝑘𝑘! cos(𝜋𝑘2 + 𝑏)
𝑑𝑛𝑓 (𝑡)𝑑𝑡𝑛 (𝑘 + 𝑛)!𝑘!𝑇𝑛 𝑓 (𝑘 + 𝑛)
𝑓𝑚 (𝑡) 𝑘∑

𝑙=0

𝑓 (𝑘 − 𝑙) 𝑙∑
𝑛=0

𝑓𝑚−2 (𝑛) 𝑓 (𝑙 − 𝑛)

Difference Method was then applied to the coordinates of
the locations. The Differential Transformation Method was
used to solve the nonlinear Reynolds equation, and the basic
principle is as follows.

The differential transformation of the function of 𝑓(𝑡) is
defined as

𝑓 (𝑘) = 𝑇𝑘𝑘! [𝜕
𝑘𝑓 (𝑡)
𝜕𝑡𝑘 ]

𝑡=0

. (12)

Wherein𝑓(𝑘) refers to the transformation function in the
transformation domain,𝑓(𝑡) refers to the original function in
the time domain, 𝑇 refers to the time separation, and 𝑘 refers
to the conversion parameter. The reverse equation of 𝑓(𝑘) is

𝑓 (𝑡) = ∞∑
𝑘=0

𝑓 (𝑘) ( 𝑡𝑇)
𝑘 . (13)

Calibration is needed to ensure precision during the
calculation; therefore, when the second time interval is used,
(14) and (15) are used to perform calibration.

𝑓𝑖−1 (0) = 𝑓𝑖 (0) + ∞∑
𝑘=1

𝑓𝑖 (𝑘) (−𝑇𝑖−1𝑇𝑖 )𝑘. (14)

If 𝑇𝑜 = 𝑇1 = 𝑇2 = ⋅ ⋅ ⋅ then the above equation becomes

𝑓𝑖−1 (0) = 𝑓𝑖 (0) + ∞∑
𝑘=1

𝑓𝑖 (𝑘) (−1)𝑘 . (15)

If the calculated values on each side of the equals’ signs in
(14) and (15) vary greatly, precision is insufficient. Therefore,
the time interval 𝑇 needs to be reduced and recalculation is
necessary.

The basic arithmetic operation for the differential trans-
formation is as shown in Table 1.

The differential transformation of the governing equation
and the boundary condition are obtained and the pressure
function theorem domain is divided into 𝑛 number of
subintervals; the pressure solution 𝑝𝑓 for each subinternal
is expressed as an inverse transformation equation. If the

theorem domains of the subintervals are 𝑇0, 𝑇1, 𝑇2, 𝑇3, . . .,
then the expression for the function in the first interval, based
on (13), will be

𝑃𝑜 (𝑡) = ∞∑
𝑘=0

𝑃𝑜 (𝑘) ( 𝑡𝑇𝑜)
𝑘 , 0 ≤ 𝑡 ≤ 𝑇𝑜. (16)

If the initial value of 𝑃𝑜(0) is known, then, from the above
equation, 𝑃𝑜(0) = 𝑃𝑜(0) can be obtained. From 𝑃𝑜(0), other
discrete values of 𝑃𝑜(𝑘), 𝑘 = 1, 2, . . . in this interval can be
obtained. In the first subinterval, the destination value 𝑃𝑜(𝑡 =𝑇𝑜) of the function of 𝑃𝑜(𝑡) refers to the initial value 𝑃1(𝑡 = 0)
of the function 𝑃1(𝑡) in the second subinterval. The function𝑃1(𝑡) in the second subinterval is

𝑃1 (𝑡) = ∞∑
𝑘=0

𝑃1 (𝑘) ( 𝑡𝑇1)
𝑘 , 0 ≤ 𝑡 ≤ 𝑇1. (17)

From𝑃1(0), other𝑃1(𝑘), 𝑘 = 1, 2, . . . can also be obtained.
In such order, the value of 𝑃𝑖(𝑘) can be obtained. Then, the
inverse differential transformation can be further used to
obtain the solution at each time domain, and the equation for
the series solution is as follows:

𝑃𝑖 (𝑡) = 𝑚∑
𝑘=0

𝑃𝑖 (𝑘) ( 𝑡𝑇𝑖)
𝑘 , 0 ≤ 𝑡 ≤ 𝑇𝑖. (18)

2.2. Numerical Analysis. The traditional Finite Difference
Method is used first on the Reynolds equation and to apply
the central difference scheme to the spatial coordinates. For
the time domain, the implicit backwards differencemethod is
used. Equation (1) is transformed into a differential equation,
and the Finite DifferenceMethod of SuccessiveOver Relation
(SOR) is used to reduce the five unknown numbers to
three, following which iteration is used to obtain the correct
pressure value at each time interval. Iteration at each time
interval is performed in the 𝜃 direction only, and the three
points of 𝐼, 𝐼−1, 𝐼+1 are unknownnumbers.The twopoints of𝐽+1 and 𝐽−1 that are originally unknown are replaced by the
previous iteration values. Consequently, all the equations can
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be formed into a triple-diagonal matrix, which can be then
solved by Gaussian Elimination.

After obtaining the pressure distribution between the
bearing and the rotor, the bearing force of the gas film can
be obtained by integration.The numerical calculations of the
hybrid method can be done using (12)–(18), as shown in the
following:

𝜂1 𝜕𝑃̂𝜕𝜃 ⊗ 𝜕𝑃̂𝜕𝜃 + 𝜂2 csc 𝜃 ⊗ 𝜕𝑃̂𝜕𝜃 ⊗ 𝜕𝑃̂𝜕𝜑
+ 2Λ𝜆𝑐𝜂4 (Ω2 − Ω1) sin 𝜃 ⊗ 𝜕𝑃̂𝜕𝜃 + 𝜂1 cot 𝜃 ⊗ 𝜕𝑃̂𝜕𝜃
⊗ 𝑃̂ + 𝜂1𝑃̂ ⊗ 𝜕2𝑃̂𝜕𝜃2 + 𝜂2 csc 𝜃 ⊗ 𝑃̂ ⊗ 𝜕2𝑃̂𝜕𝜑𝜕𝜃
+ 4Λ𝜆𝑐𝜂4 (Ω2 − Ω1) cos 𝜃 ⊗ 𝑃̂ + 𝜂2 sin 𝜃 ⊗ 𝜕𝑃̂𝜕𝜃

⊗ 𝜕𝑃̂𝜕𝜑 + 𝜂2 𝜕𝑃̂𝜕𝜑 ⊗ 𝜕𝑃̂𝜕𝜑 + 2Λ𝜆𝑠𝜂4 (Ω2 − Ω1) sin 𝜃
⊗ sin 𝜃 ⊗ 𝜕𝑃̂𝜕𝜑 + 𝜂2 sin 𝜃 ⊗ 𝑃̂ ⊗ 𝜕2𝑃̂𝜕𝜑𝜕𝜃 + 𝜂3𝑃̂
⊗ 𝜕2𝑃̂𝜕𝜑2 − 2Λ (Ω2 + Ω1) ℎ̂ ⊗ sin 𝜃 ⊗ sin 𝜃 ⊗ 𝜕𝑃̂𝜕𝜑
+ Λ (Ω2 + Ω1) 𝑃̂ ⊗ sin 𝜃 ⊗ sin 𝜃 ⊗ 𝜕ℎ̂𝜕𝜑

= 2Λ𝜕𝑃̂𝜕𝜏 ⊗ ℎ̂ + 2Λ𝜕ℎ̂𝜕𝜏 ⊗ 𝑃̂.
(19)

Next, the Differential Transformation Method is applied
to the time domain in (19) to produce discrete time intervals,
and the central difference scheme of the Finite Difference
Method is then applied to the coordinates of the locations.
The following can then be derived:

𝜂1 𝑘∑
𝑙=0

[(𝑃̂𝑖+1,𝑗 (𝑘 − 𝑙) − 𝑃̂𝑖−1,𝑗 (𝑘 − 𝑙)2Δ𝜃 ) ⋅ (𝑃̂𝑖+1,𝑗 (𝑙) − 𝑃̂𝑖−1,𝑗 (𝑙)2Δ𝜃 )] + 𝜂2 csc (𝑖Δ𝜃)

⋅ 𝑘∑
𝑙=0

[(𝑃̂𝑖+1,𝑗 (𝑘 − 𝑙) − 𝑃̂𝑖−1,𝑗 (𝑘 − 𝑙)2Δ𝜃 ) ⋅ (𝑃̂𝑖,𝑗+1 (𝑙) − 𝑃̂𝑖,𝑗−1 (𝑙)2Δ𝜑 )]

+ 2Λ𝜆𝑐𝜂4 (Ω2 − Ω1) 𝑘∑
𝑙=0

[⋅(𝑃̂𝑖+1,𝑗 (𝑘 − 𝑙) − 𝑃̂𝑖−1,𝑗 (𝑘 − 𝑙)2Δ𝜃 ) sin (𝑙Δ𝜃)] + 𝜂1 cot (𝑖Δ𝜃)

⋅ 𝑘∑
𝑙=0

[(𝑃̂𝑖+1,𝑗 (𝑘 − 𝑙) − 𝑃̂𝑖−1,𝑗 (𝑘 − 𝑙)2Δ𝜃 ) ⋅ 𝑃̂𝑖,𝑗 (𝑙)] + 𝜂1 𝑘∑
𝑙=0

[(𝑃̂𝑖+1,𝑗 (𝑘 − 𝑙) − 2 ⋅ 𝑃̂𝑖,𝑗 (𝑘 − 𝑙) + 𝑃̂𝑖−1,𝑗 (𝑘 − 𝑙)
(Δ𝜃)2 ) ⋅ 𝑃̂𝑖,𝑗 (𝑙)]

+ 𝜂2 csc (𝑖Δ𝜃) ⋅ 𝑘∑
𝑙=0

[(𝑃̂𝑖+1,𝑗+1 (𝑘 − 𝑙) − 𝑃̂𝑖+1,𝑗−1 (𝑘 − 𝑙) − 𝑃̂𝑖−1,𝑗+1 (𝑘 − 𝑙) + 𝑃̂𝑖−1,𝑗−1 (𝑘 − 𝑙)Δ𝜃Δ𝜑 ) ⋅ 𝑃̂𝑖,𝑗 (𝑙)]

+ 4Λ𝜆𝑐𝜂4 (Ω2 − Ω1) 𝑘∑
𝑙=0

[𝑃̂𝑖,𝑗 (𝑘 − 𝑙) ⋅ sin (𝑙Δ𝜃)] + 𝜂2 sin (𝑖Δ𝜃)

⋅ 𝑘∑
𝑙=0

[(𝑃̂𝑖+1,𝑗 (𝑘 − 𝑙) − 𝑃̂𝑖−1,𝑗 (𝑘 − 𝑙)2Δ𝜃 ) ⋅ (𝑃̂𝑖,𝑗+1 (𝑙) − 𝑃̂𝑖,𝑗−1 (𝑙)2Δ𝜑 )]

+ 𝜂2 𝑘∑
𝑙=0

[(𝑃̂𝑖,𝑗+1 (𝑘 − 𝑙) − 𝑃̂𝑖,𝑗−1 (𝑘 − 𝑙)2Δ𝜑 ) ⋅ (𝑃̂𝑖,𝑗+1 (𝑙) − 𝑃̂𝑖,𝑗−1 (𝑙)2Δ𝜑 )] + 2Λ𝜆𝑠𝜂4 (Ω2 − Ω1) sin (𝑖Δ𝜃)

⋅ 𝑘∑
𝑙=0

[⋅(𝑃̂𝑖,𝑗+1 (𝑘 − 𝑙) − 𝑃̂𝑖,𝑗−1 (𝑘 − 𝑙)2Δ𝜑 ) sin (𝑙Δ𝜃)] + 𝜂2 sin (𝑖Δ𝜃)

⋅ 𝑘∑
𝑙=0

[(𝑃̂𝑖+1,𝑗+1 (𝑘 − 𝑙) − 𝑃̂𝑖+1,𝑗−1 (𝑘 − 𝑙) − 𝑃̂𝑖−1,𝑗+1 (𝑘 − 𝑙) + 𝑃̂𝑖−1,𝑗−1 (𝑘 − 𝑙)Δ𝜃Δ𝜑 ) ⋅ 𝑃̂𝑖,𝑗 (𝑙)] − 2Λ (Ω2 + Ω1) sin (𝑖Δ𝜃)
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⋅ 𝑘∑
𝑙=0

ℎ̂𝑖,𝑗 (𝑘 − 𝑙) 𝑙∑
𝑚=0

[⋅(𝑃̂𝑖,𝑗+1 (𝑙 − 𝑚) − 𝑃̂𝑖,𝑗−1 (𝑙 − 𝑚)2Δ𝜑 ) sin (𝑚Δ𝜃)] + Λ (Ω2 + Ω1) sin (𝑖Δ𝜃)

⋅ 𝑘∑
𝑙=0

𝑃̂𝑖,𝑗 (𝑘 − 𝑙) 𝑙∑
𝑚=0

[⋅(ℎ̂𝑖,𝑗+1 (𝑙 − 𝑚) − ℎ̂𝑖,𝑗−1 (𝑙 − 𝑚)2Δ𝜑 ) sin (𝑚Δ𝜃)]

+ 𝜂3 𝑘∑
𝑙=0

[(𝑃̂𝑖,𝑗+1 (𝑘 − 𝑙) − 2 ⋅ 𝑃̂𝑖,𝑗 (𝑘 − 𝑙) + 𝑃̂𝑖,𝑗−1 (𝑘 − 𝑙)
(Δ𝜑)2 ) ⋅ 𝑃̂𝑖,𝑗 (𝑙)] = 2Λ ⋅ 𝑘∑

𝑙=0

[(𝑙 + 1𝐻̃ ) 𝑃̂𝑖,𝑗 (𝑘 − 𝑙) ⋅ ℎ̂𝑖,𝑗 (𝑙 + 1)] + 2Λ

⋅ 𝑘∑
𝑙=0

[(𝑙 + 1𝐻̃ ) ℎ̂𝑖,𝑗 (𝑘 − 𝑙) ⋅ 𝑃̂𝑖,𝑗 (𝑙 + 1)] .
(20)

2.3. Dynamic Equations of the Rotor. In this system, the ends
of a flexible rotor of mass 𝑚𝑟 are supported on two identical
and symmetrical air bearings secured on a rigid base. Under
such ideal conditions the motion of the rotor can be treated
as two having two directions of movement. 𝑂2 refers to the
geometric centre of the rotor, 𝑂3 to the geometric centre of
the journal, 𝜌 to the eccentricity of the rotor,𝐾𝑝 to the rigidity
of the rotating axle, and 𝜔 to the rotational speed of the rotor.

In a steady state, the equation ofmotion of the rotor centre𝑂2 is as follows:
𝑚𝑟 𝑑2𝑥2𝑑𝑡2 + 𝐾𝑝 (𝑥2 − 𝑥3) = 𝑚𝑟𝜌𝜔2 cos𝜔𝑡, (21)

𝑚𝑟 𝑑2𝑦2𝑑𝑡2 + 𝐾𝑝 (𝑦2 − 𝑦3) = 𝑚𝑟𝜌𝜔2 sin𝜔𝑡. (22)

The force equilibrium equation at the journal centre𝑂3 is
as follows:

𝑓𝑔𝑥 = 𝐾𝑝 (𝑥2 − 𝑥3)2 , (23)

𝑓𝑔𝑦 = 𝐾𝑝 (𝑦2 − 𝑦3)2 . (24)

Upon dimensionless transformation:

𝑋2 = 𝑥2𝐶𝑟 ;
𝑋3 = 𝑥3𝐶𝑟 ;
𝑌2 = 𝑦2𝐶𝑟 ;
𝑌3 = 𝑦3𝐶𝑟 ;
𝜏 = 𝜔𝑡;
𝑑𝑑𝑡 = 𝜔 𝑑𝑑𝜏 .

(25)

In addition, the dimensionless parameters are introduced
as follows:

𝐹𝑔𝑥 = 𝑓𝑔𝑥𝑃𝑎𝑅𝐿;

𝐹𝑔𝑦 = 𝑓𝑔𝑦𝑃𝑎𝑅𝐿;

𝑀𝑟 = 𝑚𝑟𝜔2𝐾𝑝 ;

𝜉 = 𝑚𝑟𝜌𝜔2𝐾𝑝𝐶𝑟 .

(26)

By substituting (25) into (21)∼(24) and introducing the
dimensionless parameters (26), the following equations can
be obtained:

𝐹𝑔𝑥 = 𝐾𝑝𝐶𝑟2𝑃𝑎𝑅𝐿 (𝑋2 − 𝑋3) , (27)

𝐹𝑔𝑦 = 𝐾𝑝𝐶𝑟2𝑃𝑎𝑅𝐿 (𝑌2 − 𝑌3) , (28)

𝑀𝑟 𝑑2𝑋2𝑑𝜏2 + (𝑋2 − 𝑋3) = 𝜉 cos 𝜏, (29)

𝑀𝑟 𝑑2𝑌2𝑑𝜏2 + (𝑌2 − 𝑌3) = 𝜉 sin 𝜏. (30)

In this study iteration was used to calculate the motion
behaviour of the rotor. First, the acceleration, speed, and
displacement were calculated, step by step, with respect to
time. The initial state of the system was taken as static, and
the initial displacement (𝑋2𝑜, 𝑌2𝑜) of the rotor refers to the
location of the rotor centre when the system was in static
equilibrium; such equilibrium position also defines the initial
gas film thickness value ℎ̂. In addition, the initial speed was
set to zero.
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Table 2: Comparison of numerical calculation results by Poincaré map of numerical displacement of rotor centre.

Conditions
Poincaré map𝑋2(𝑛𝑇) 𝑌2(𝑛𝑇)

𝐻̃ = 0.001 𝐻̃ = 0.01 𝐻̃ = 0.001 𝐻̃ = 0.01
FDM 𝑚𝑟 = 5.1 kg𝜔 = 6 × 106 rpm

0.1037130279 0.1038378524 −0.2539313115 −0.2538991587
DTM and FDM 0.1038771861 0.1038756587 −0.2535875862 −0.2535826268
Perturbation Method 0.1032651536 0.1070747058 −0.2558305761 −0.2523962686
FDM 𝑚𝑟 =6.2 kg𝜔 = 6 × 106 rpm

0.1333187451 0.1330440082 −0.2452767681 −0.2454073653
DTM and FDM 0.1334811874 0.1334689894 −0.2457199581 −0.2457613815
Perturbation Method 0.1332782833 0.1331421019 −0.2458672612 −0.2456736825

The steps of calculation are as follows.

Step 1. At time 𝜏 = 0, the initial condition is used; after a
period of time Δ𝜏, (31)∼(36) can be used to calculate the new
acceleration, speed, and displacement of the rotor:

𝑑2𝑋2𝑑𝜏2 = 𝜉 cos 𝜏 − (𝑋2 − 𝑋3)𝑀𝑟 = 𝐴𝑋, (31)

𝑑2𝑌2𝑑𝜏2 = 𝜉 sin 𝜏 − (𝑌2 − 𝑌3)𝑀𝑟 = 𝐴𝑌, (32)

𝑉𝑋 = 𝑉𝑋𝑜 + 𝐴𝑋 ⋅ Δ𝜏, (33)

𝑉𝑌 = 𝑉𝑌𝑜 + 𝐴𝑌 ⋅ Δ𝜏, (34)

𝑋2 = 𝑋2𝑜 + 𝑉𝑋 ⋅ Δ𝜏 + 12𝐴𝑋 ⋅ Δ𝜏2, (35)

𝑌2 = 𝑌2𝑜 + 𝑉𝑌 ⋅ Δ𝜏 + 12𝐴𝑌 ⋅ Δ𝜏2. (36)

Step 2. The displacement of the rotor centre obtained from
Step 1 can be used to calculate the new displacement of the
journal centre. The rotation of the journal causes changes
in the gas film thickness ℎ̂; consequently, after the new
displacement value yields a new ℎ̂, this is substituted into (2)
to calculate a new pressure value, and the gas film bearing
force can be derived by integration.

Step 3. From the displacement and velocity values obtained
in Step 1 and the pressure distribution from Step 2, a new
set of initial conditions can be derived from the gas film
force obtained. When the time is increased by Δ𝜏, (i.e.,Δ𝜏 → 2Δ𝜏), the aforementioned new initial conditions
are used again to further calculate all the variations in the
system.These three steps allow determination of the pressure
distribution, the relationship between the gas film thickness
and change of position, variation of the gas film bearing
force, the dynamic orbits of the rotor, and so on at each time
point. In addition, themaximum Lyapunov exponents can be
used as a primary determination factor to predict periodic,
quasi-periodic, aperiodic, and chaoticmotion caused by such
factors as the bearing number andmass of the rotor. By using
the bearing number and the rotor mass of the air bearing as
bifurcation parameters, a full view bifurcation diagram can be

constructed. An analysis of stability can be conducted and the
relationship between themaximumLyapunov exponents and
each of the previously mentioned factors can be interpreted.
The parameters of the stable and the nonstable region of the
system can be determined.

To further verify accuracy of the numerical analysis,
two different numerical methods were used (as previously
mentioned) to ensure that the hybrid method proposed in
this paper was applicable and to increase the calculation
precision.

3. Results and Discussion

3.1. Comparison between Results Generated by Different
Numerical Methods. The results obtained by the hybrid
method that combines both the Differential Transformation
Method (DTM) and the Finite Difference Method (FDM)
agree with the results of the traditional Finite Difference
Method and Perturbation Method. This was confirmed by
use of the two different methods as previously mentioned.
The values of the Finite Difference Method and Perturbation
Method obtained under certain parameters would cause
unstable phenomena; in addition, the result also shows that
the hybrid method (DTM and FDM) yields greater accuracy.
Table 2 shows a comparison of the values of the trace of the
rotor centre (𝑋2, 𝑌2), wherein 𝐻̃ refers to the time step for
calculation. With regard to the analysis on the stability of the
values, the impact of different time step on the values is also
completed, showing that the stability of the values obtained
from the hybridmethod is indeed greater than those obtained
from the traditional Finite Difference Method. Furthermore,
precision of the displacement calculation can be accurate to
five decimal places by hybrid method.

The results show that the hybrid method presented here
demonstrates excellent convergence and applicability. The
method can be used to effectively calculate the orbits of
the system with different rotor mass and increased bearing
number (rotational speed). Examination of the test results
in Table 3 shows that the time step selected does not need
to be highly precise to obtain sufficiently accurate numerical
results and this further reduces the bifurcation characteristics
of subsequent calculations. Therefore, 𝜋/300 is used as the
time step for dynamic analysis calculation.
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Figure 3: Continued.
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Figure 3: Dynamic orbits ((a1)–(a7)) of the rotor centre of the front opposed-hemispherical spiral-grooved air bearing systemwhen the rotor
mass is 𝑚𝑟 = 5.1, 7.06, 8.06, 8.21, 8.52, 9.30, and 10.76 kg, respectively; dynamic orbits of the journal centre ((b1)–(b7)); spectrum response
diagrams for the rotor centre in the horizontal direction ((c1)–(c7)) and the vertical direction ((d1)–(d7)), where the system bearing number
is Λ = 2.2.

Table 3: Comparison of rotor centre displacement under different time steps by hybrid method.

𝑚𝑟 = 6.2 kg 𝑚𝑟 = 11.1 kg𝜏 𝑋2(𝑛𝑇) 𝑌2(𝑛𝑇) 𝜏 𝑋2(𝑛𝑇) 𝑌2(𝑛𝑇)
𝜋/300 0.1334893205 −0.2457499192 𝜋/300 −0.0195491566 −0.4737438386𝜋/600 0.1334152991 −0.2457851961 𝜋/600 −0.0195681361 −0.4737158324

Λ = 2.0 Λ = 5.0𝜏 𝑋2(𝑛𝑇) 𝑌2(𝑛𝑇) 𝜏 𝑋2(𝑛𝑇) 𝑌2(𝑛𝑇)
𝜋/300 −0.0923588407 −0.0567265833 𝜋/300 0.5145289218 −0.0817031729𝜋/600 −0.0923990874 −0.0567583091 𝜋/600 0.5145152184 −0.0817172361
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Figure 4: Bifurcation diagrams of (a) 𝑋2(𝑛𝑇) and (b) 𝑌2(𝑛𝑡) for the rotor centre of the front opposed-hemispherical spiral-grooved air
bearing system with respect to different rotor masses, where the system bearing number is Λ = 2.2.
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Figure 5: Poincaré maps of the rotor centre with respect to different rotor masses: (a) 𝑚𝑟 = 5.1, (b) 7.06, (c) 8.06, (d) 8.21, (e) 8.52, (f) 9.30,
and (g) 10.76 kg.
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Figure 6: Maximum Lyapunov exponents of the rotor centre with respect to different rotor masses: (a) 𝑚𝑟 = 5.1, (b) 7.06, (c) 8.06, (d) 8.21,
(e) 8.52, (f) 9.30, and (g) 10.76 kg.
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3.2. Analysis of the Dynamic Behaviour of a FOSAB System:
Using Rotor Mass as a Bifurcation Parameter. In this section,
analysis of the impact of rotor mass on the air bearing system
is conducted; here the bearing number of the FOSAB system
is set to Λ = 2.2, and the rotor mass 𝑚𝑟 is used as the
bifurcation parameter.

3.2.1. Dynamic Orbits Analysis. An examination of Figures
3(a1, b1), 3(a2, b2), . . ., and 3(a7, b7) show that the orbits
of the centres of the rotor (𝑋2, 𝑌2) and the journal (𝑋3,𝑌3) will follow regular paths when the mass is small (𝑚𝑟 =
5.1 kg). However, when the mass is increased to𝑚𝑟 = 7.06 kg,
aperiodic motion occurs. This shows that, with a rotor mass
of less than 7.06 kg, the system will remain relatively stable.
When the rotor mass reaches𝑚𝑟 = 8.06 kg, aperiodic motion
is reduced but comes back when 𝑚𝑟 = 8.21 kg. However,
the nonperiodicity stabilizes when 𝑚𝑟 = 8.52 kg. This stable
behaviour does not last long, and the rotor centre becomes
unstable again when its mass reaches 9.30 kg. Finally, at𝑚𝑟 =
10.76 kg, the system becomes relatively stable.

3.2.2. Spectrum Analysis. Figures 3(c1, d1), 3(c2, d2), . . ., and
3(c7, d7) show the dynamic response of the rotor centre in
the horizontal and vertical directions of rotation. The results
show that when the rotor mass is 𝑚𝑟 = 5.1 and 10.76 kg,
motion of the rotor centre is periodic; when 𝑚𝑟 = 7.06 and
9.30 kg, the spectrum response graphs (Figures 3(c2, d2),
3(c6, d6)) show that the motion of the rotor centre becomes
chaotic. When the rotor mass is 8.06 and 8.52 kg, the system
generates 2𝑇 subharmonic motion. However, motion of the
system is quasi-periodic when the rotor mass is 8.21 kg.

3.2.3. Bifurcation Analysis. The effect of different rotor mass
on the system was studied using rotor mass 𝑚𝑟 as an
analytic parameter, as shown in Figure 4. The mass was set
within a range of 1.0 to 12.0 kg according to actual operating
conditions. Figure 5 shows that when𝑚𝑟 < 7.06 kg, the rotor
centre undergoes 𝑇 periodic motion in both the horizontal
and vertical directions, and this is illustrated by the Poincaré
map shown in Figure 5(a). Nevertheless, when the mass
was increased to 𝑚𝑟 = 7.06 kg, the 𝑇 periodic motion of
the rotor centre was replaced by chaotic motion, as shown

in Figure 5(b). When the mass reached 𝑚𝑟 = 8.06 kg, the
system returned to 2𝑇 subperiodic motion (see Figure 5(c)).
Although this motion continued over the range 8.06 ≤ 𝑚𝑟 <
8.21 kg it did not last to the end. When 𝑚𝑟 increased to
8.21 kg, quasi-periodic motion appeared (see Figure 5(d))
and continued over the range 8.21 ≤ 𝑚𝑟 < 8.52 kg. This is
illustrated by the closed curve formed by multiple discrete
points shown on the Poincarémap in Figure 5(d). As themass
increased to 𝑚𝑟 = 8.52 kg, the quasi-periodic motion of the
original system bifurcated into 2𝑇 subharmonic motion, as
shown in Figure 5(e)where themap shows twodiscrete points
and this type of motion is present throughout the range of
8.52 ≤ 𝑚𝑟 < 9.30 kg. Next, as the mass increased further to𝑚𝑟 = 9.30 kg, the subharmonic motion of the original system
became chaotic motion, as shown in Figure 5(f). Here the
map generates two attraction subregions, and this is present
throughout the range of 9.30 ≤ 𝑚𝑟 < 10.76 kg. Finally, when
the rotor mass is increased to 𝑚𝑟 = 10.76 kg, the chaotic
motion of the system has become a periodic motion that is
relatively stable, as shown in Figure 5(g).

The maximum Lyapunov exponents have been very use-
ful for the analysis and verification of the chaotic behaviour
of the system. From Figures 6(a), 6(c), 6(d), 6(e), and 6(g), it
can be seen that when 𝑚𝑟 = 5.1, 8.06, 8.21, 8.52 and 10.76 kg,
the maximum Lyapunov exponents are close to zero, and the
system is nonchaotic. However, when 𝑚𝑟 = 7.06 and 9.30, as
shown in Figures 6(b) and 6(f), the exponents are greater than
zero and the system state of motion is indeed chaotic. A full
view of the maximum Lyapunov exponents of the system is
shown in Figure 7, and the result indicates that the areas of
chaotic behaviour (exponent greater than zero) occur at two
intervals, 7.06 ≤ 𝑚𝑟 < 8.06 kg and 9.30 ≤ 𝑚𝑟 < 10.76 kg. This
is in clear agreement with the results. However, these results
show that the motion of the rotor can be a relatively com-
plicated model. A summary of the different kinds of system
motion, with rotors of different mass, is given in Table 4.

3.3. Analysis on Dynamic Behaviour of FOSAB System: Using
the Bearing Number as the Bifurcation Parameter. For an air
bearing system, the rotational speed referred to that bearing
number of the rotor-bearing has a direct effect on pressure
distribution inside the bearing, which in turn has a direct
effect on the relevant performance and stability of the entire
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Figure 8: Dynamic orbits ((a1)–(a6)) of the rotor centre when the bearing number Λ = 2.3, 3.12, 3.84, 3.86, 4.55, and 4.89, respectively.
Dynamic orbits of the journal centre ((b1)–(b6)). Spectrum response diagrams for the rotor centre in the horizontal direction ((c1)–(c6)) and
the vertical direction of rotation ((d1)–(d6)), with a rotor mass𝑚𝑟 = 2.3 kg.
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Figure 9: Bifurcation diagrams: (a)𝑋2(𝑛𝑇) and (b) 𝑌2(𝑛𝑡) for the rotor centre with respect to different bearing numberΛ, with a rotor mass𝑚𝑟 = 2.3 kg.

Table 4: Dynamic behaviour of rotor centre with different rotor mass.

Rotor mass [1.0, 7.06) [7.06, 8.06) [8.06, 8.21) [8.21, 8.52) [8.52, 9.3) [9.3, 10.76) [10.76, 12.0]
Behavior 𝑇 Chaotic 2𝑇 Quasi 2𝑇 Chaotic 𝑇

system. Accordingly, in this section, the bearing number Λ is
used as the bifurcation parameter, and the rotor mass is set
to𝑚𝑟 = 2.3 kg to analyze and study the dynamic behaviour of
the system with respect to bearing number.

3.3.1. Dynamic Orbits Analysis. An examination of Figures
8(a1, b1), 8(a2, b2), . . ., and 8(a6, b6) shows that when the
bearing number is small, Λ = 2.3, 3.12, the behaviour of the
journal and the rotorwill be relatively regular.However, whenΛ is increased to 3.84, behaviour of the journal and the rotor
centre will become irregular and asymmetrical. When the
bearing number is further increased to 3.86, the dynamic
orbits return to relatively regular periodic motion. However,
irregular motion reappears whenΛ = 4.55 and only becomes
regular again when the bearing number is increased to 4.89.

3.3.2. Spectrum Analysis. Figures 8(c1, d1), 8(c2, d2), . . .,
and 8(c6, d6) show the dynamic responses of the rotor
centre in the horizontal and vertical directions of rotation

with different bearing numbers. The study shows that at
bearing numbers of Λ = 2.3, 3.86, and 4.89 the rotor centre
demonstrates 𝑇 periodic motions. When Λ = 3.84, the
spectrum response diagram shows aperiodic motion of the
rotor centre, but when the bearing number is Λ = 3.12, the
motion becomes 2𝑇 subharmonic motion. However, when Λ
= 4.55, the rotor centre motion becomes aperiodic.

3.3.3. Bifurcation Analysis. As shown in Figure 9, the bearing
number Λ can be used as a primary analytic parameter for
studying the behaviour of an air bearing system and has
been set within a range of 1.0 to 5.5 according to actual
operational conditions. When the bearing number is small,
such as Λ = 2.3, the rotor centre exhibits 𝑇 periodic motion
in both the horizontal and rotational directions and this can
be verified by the appearance of a single dot on the Poincaré
map as shown in Figure 10(a). When the bearing number
is increased to Λ = 3.12, the system will bifurcate and
generate 2𝑇 periodic motion, clearly shown by the presence
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Figure 10: Poincaré maps of the rotor centre with respect to different bearing numbers Λ = (a) 2.3, (b) 3.12, (c) 3.84, (d) 3.86, (e) 4.55, and (f)
4.89.

of two discrete dots on the map as shown in Figure 10(b).
When the bearing number increases to 3.84 ≤ Λ < 3.86,
the system motion becomes chaotic, clearly shown by the
irregular discrete points generated on themap in Figure 10(c).
When Λ = 3.86, the chaotic motion becomes 𝑇 periodic
motion, as shown in Figure 10(d), and the same occurs in the
interval of 3.86 ≤ Λ < 4.55; see Figure 9. In addition, for
the interval of 4.55 ≤ Λ < 4.89, the system generates quasi-
periodic motion, as shown in Figure 10(e). When Λ = 4.89,
the system assumes𝑇-periodicmotion that is relatively stable
and this continues up to Λ = 5.5; see Figure 10(f).

With regard to the question about whether a change
of bearing number will cause the generation of chaotic
behaviour, in this paper, similarly, the maximum Lyapunov
exponents are also used for determination and further verifi-
cation. From Figures 11(a), 11(b), 11(d), 11(e), and 11(f), it can
be seen that whenΛ = 2.3, 3.12, 3.86, 4.55, and 4.89, the expo-
nents obtained can all be smaller than or equal to zero and
the systemmotion is nonchaotic. In view of the complexity of
the relationship between the motion of the rotor centre and
bearing number, all motions and behaviours generated with
respect to the interval of 1.0 ≤ Λ ≤ 5.5 are summarized in
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Figure 11: Maximum Lyapunov exponents of the rotor centre with respect to different bearing number Λ = (a) 2.3, (b) 3.12, (c) 3.84, (d) 3.86,
(e) 4.55, and (f) 4.89.

Table 5: Dynamic behaviour of the rotor centre with different bearing number (1.0 ≤ Λ ≤ 5.5).
Λ [1.0, 3.12) [3.12, 3.84) [3.84, 3.86) [3.86, 4.55) [4.55, 4.89) [4.89, 5.5]
Behavior 𝑇 2𝑇 Chaos 2𝑇 Quasi 𝑇

Table 5 and a full view of the maximum Lyapunov exponents
for the system is shown in Figure 12. The result indicates
that chaotic regions (exponents greater than zero) only occur
when 3.84 ≤ Λ < 3.86, which agrees with the results shown in
Table 5.

4. Conclusion

The objective of this study was an analysis of the dynamic
behaviour of a flexible rotor supported by a front opposed-
hemispherical spiral-grooved air bearing system. The Finite
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Difference Method, Perturbation Method, and a hybrid
method were used to solve the pressure distribution at the
highest nonlinearity in the system, after which dynamic
equations of the flexible rotor centre were used to obtain the
orbits of the rotor centre. Analysis was then conducted on
the orbit data to generate spectrum diagrams, Poincaré maps,
bifurcation diagrams, and maximum Lyapunov exponents.
This showed that the orbits of the rotor centre change along
with the mass and the bearing number and synchronously
generate complicated motion in the horizontal and vertical
directions and include normal and subharmonic vibration,
as well as periodic, quasi-periodic, and chaotic motion.
The hybrid method applied in this paper yields better
accuracy and precision for the verification of values than
the Finite Difference Method and Perturbation Method.
Accurate solutions can be obtained without the need for very
precise position and time step determination. Findings with
respect to the motion and behaviour of the rotor revealed
that the rotor orbits demonstrate unstable nonlinear chaotic
behaviour when themass of the rotor is high but the system is
relatively stable at the other intervals and ranges.The bearing
number affects the orbits of the rotor which show chaotic
behaviour in the interval 3.84 ≤ Λ < 3.86 while the orbits in
the other intervals and ranges show relatively organized and
stable motion. The results obtained in this study can be used
as a basis for future bearing system design and the prevention
of instability.

Competing Interests

The author declares that they have no competing interests.

Acknowledgments

The author gratefully acknowledges the financial support
provided to this study by the Ministry of Science and
Technology of Taiwan under Grant nos. MOST-105-2221-E-
167-010 and MOST-105-2622-E-167-007-CC3.

References

[1] O. Reynolds, “On the theory of lubrication and its application to
Mr. Beauchamp tower’s experiments including an experimental

determination of the viscosity of olive oil,” Philosophical. Trans-
actions of the Royal Society A, vol. 177, pp. 157–234, 1886.

[2] R. T. P. Whipple, “The inclined groove bearing,” AERE Report
T/R622, Atomic Energy Research Establishment, Berkshire,
UK, 1958.

[3] S. Whitley and L. G. Williams, “The gas-lubricated spi-
ral groove. Thrust bearing,” United Kingdom Atomic Energy
Authority, I. G. Report 28(RD/CA), Industrial Group Head-
quarters, Risley, Warrington, Lancashire, England, 1959.

[4] J. H. Vohr and C. H. T. Pan, “On the spiral-grooved, self-acting
gas bearing,” MTI Technical Report MTI63TR52, Prepared
under Office of Naval Research Contract Nonr-3780(00), Task
NR061-131, 1963.

[5] D. Bonneau and J. Absi, “Analysis of aerodynamic journal
bearings with small number of herringbone grooves by finite
element method,” Journal of Tribology, vol. 116, no. 4, pp. 698–
704, 1994.

[6] T. Hirayama, N. Yamaguchi, S. Sakai, N. Hishida, T. Mat-
suoka, and H. Yabe, “Optimization of groove dimensions in
herringbone-grooved journal bearings for improved repeatable
run-out characteristics,” Tribology International, vol. 42, no. 5,
pp. 675–681, 2009.

[7] J. Schiffmann and D. Favrat, “The effect of real gas on the
properties of herringbone grooved journal bearings,” Tribology
International, vol. 43, no. 9, pp. 1602–1614, 2010.

[8] C. Y. Chen, R.H. Yen, andC. C. Chang, “Spectral element analy-
sis of herringbone-grooved journal bearings with groove–ridge
discontinuity,” International Journal for Numerical Methods in
Fluids, vol. 66, no. 9, pp. 1116–1131, 2011.

[9] J. Schiffmann, “Enhanced groove geometry for herringbone
grooved journal bearings,” Journal of Engineering for Gas
Turbines and Power, vol. 135, no. 10, Article ID 102501, 2013.

[10] M. A. Hassini and M. Arghir, “A simplified nonlinear transient
analysis method for gas bearings,” Journal of Tribology, vol. 134,
no. 1, Article ID 011704, 2012.

[11] M. A. Hassini and M. Arghir, “A simplified and consistent
nonlinear transient analysis method for gas bearing: extension
to flexible rotors,” Journal of Engineering for Gas Turbines and
Power, vol. 137, no. 9, Article ID 092502, 2015.

[12] B. S. Grigor’ev and D. B. Smirnov, “Calculation of static
characteristics of spiral-grooved thrust bearings over a wide
compressibility range,” Journal of Machinery Manufacture and
Reliability, vol. 42, no. 3, pp. 236–239, 2013.

[13] D. E. Bently, “Forced subrotative speed dynamic action of
rotating machinery,” ASME Paper 74-Pet-16, 1974.



18 Shock and Vibration

[14] D. W. Childs, “Fractional-frequency rotor motion due to non-
symmetric clearance effects,” Journal of Engineering for Power,
vol. 104, no. 3, pp. 533–541, 1982.

[15] Y.-S. Choi and S. T. Noah, “Nonlinear steady-state response of
a rotor-support system,” Journal of Vibration, Acoustics, Stress,
and Reliability in Design, vol. 109, no. 3, pp. 255–261, 1987.

[16] C.-C. Wang, “Bifurcation analysis of an aerodynamic journal
bearing system considering the effect of stationary herringbone
grooves,”Chaos, Solitons & Fractals, vol. 33, no. 5, pp. 1532–1545,
2007.

[17] C.-C. Wang, “Theoretical and nonlinear behavior analysis of a
flexible rotor supported by a relative short herringbone-grooved
gas journal-bearing system,” Physica D. Nonlinear Phenomena,
vol. 237, no. 18, pp. 2282–2295, 2008.

[18] C. Wang, “Application of a hybrid method to the bifurcation
analysis of a relative short gas journal bearing system with
herringbone grooves,” Industrial Lubrication and Tribology, vol.
63, no. 5, pp. 307–319, 2011.

[19] Y. Guangwei, G. Weiping, D. Jianjun, and L. Tun, “Numerical
analysis of spiral grooved opposed-hemisphere gas bearings: a
parametric study,” Proceedings of the Institution of Mechanical
Engineers, Part J: Journal of Engineering Tribology, vol. 230, no.
8, pp. 930–943, 2016.

[20] J. Du, G. Yang, W. Ge, and T. Liu, “Nonlinear dynamic
analysis of a rigid rotor supported by a spiral-grooved opposed-
hemisphere gas bearing,” Tribology Transactions, vol. 59, no. 5,
pp. 781–800, 2016.

[21] C.-C. Wang, H.-T. Yau, and C.-C. Wang, “Chaotic and subhar-
monic motion analysis of floating ring gas bearing system by
hybrid numerical method,”Mathematical Problems in Engineer-
ing, vol. 2013, Article ID 145716, 14 pages, 2013.

[22] J.-H. Chen and C.-C. Wang, “Chaotic and dynamic analysis of
a flexible rotor supported by ultra short aero-lubricated bearing
system,” Journal of Applied Research and Technology, vol. 13, no.
2, pp. 328–341, 2015.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


