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The resistance distance between any two vertices of 𝐺 is defined as the network effective resistance between them if each edge of
𝐺 is replaced by a unit resistor. The Kirchhoff index Kf(𝐺) is the sum of resistance distances between all the pairs of vertices in
𝐺. We firstly provided an exact formula for the Kirchhoff index of the hypercubes networks 𝑄

𝑛
by utilizing spectral graph theory.

Moreover, we obtained the relationship of Kirchhoff index between hypercubes networks 𝑄
𝑛
and its three variant networks 𝑙(𝑄

𝑛
),

𝑠(𝑄
𝑛
), 𝑡(𝑄

𝑛
) by deducing the characteristic polynomial of the Laplacian matrix related networks. Finally, the special formulae for

the Kirchhoff indexes of 𝑙(𝑄
𝑛
), 𝑠(𝑄

𝑛
), and 𝑡(𝑄

𝑛
) were proposed, respectively.

1. Introduction

In this work we are concerned with finite undirected con-
nected simple graphs. For the graph theoretical definitions
and notations we follow [1]. A network is usually modelled
by connected graphs 𝐺 = (𝑉, 𝐸), where 𝑉 denotes the
set of processors and 𝐸 denotes the set of communication
links between processors. It is well known that the standard
distance between two vertices of 𝐺, denoted by 𝑑

𝑖𝑗
, is the

shortest path connecting the two vertices. The Wiener index
[2], denoted by𝑊(𝐺), is a famous distance-based topological
index and is defined as the sum of distances between all the
pairs of vertices in 𝐺:

𝑊(𝐺) = ∑

𝑖<𝑗

𝑑
𝑖𝑗
(𝐺) . (1)

As an analogue to the Wiener index 𝑊(𝐺), another
novel distance function named resistance distance was firstly
proposed by Klein and Randić [3]. The resistance distance
between two arbitrary in an electrical networks, many prop-
erties over resistance distances have been actually proved
[2, 4–9]. The resistance distance between any two vertices

of 𝐺 is defined as the networks effective resistance between
them if each edge of 𝐺 is replaced by a unit resistor. They
also defined the Kirchhoff index Kf(𝐺) of 𝐺 as the sum of
resistance distances between all pairs of vertices in 𝐺; that is,

Kf (𝐺) = ∑
𝑖<𝑗

𝑟
𝑖𝑗
(𝐺) . (2)

Klein and Randić [3] proved that 𝑟
𝑖𝑗
≤ 𝑑
𝑖𝑗
and Kf(𝐺) ≤

𝑊(𝐺) with equality if and only if 𝐺 is a tree; it is shown that
the Kirchhoff index has very nice purely mathematical and
physical interpretations.

The Kirchhoff index has wide applications in physical
interpretations, electric circuit, graph theory, and chemistry
[10–15]. For example, Zhu et al. [16] and Gutman and Mohar
[17] proved that the Kirchhoff index of a graph or networks
is the sum of reciprocal nonzero Laplacian eigenvalues of the
graph or networks multiplied by the number of the vertices.
The Kirchhoff index also is a structure descriptor like the
Wiener index [9]. The Kirchhoff index has been computed
for cycles [4], geodetic graphs [5], and some fullerenes
including buckminsterfullerenes [6]. The Kirchhoff index of
some product graphs, join graphs, and corona graphs was
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studied [8]. More results of the applications on Kirchhoff
index were explored in [2, 7, 10, 14].

The hypercubes network𝑄
𝑛
obtained considerable atten-

tion due to its perfect properties, such as symmetry, regular
structure, strong connectivity, and small diameter [18, 19]. For
more results on the hypercubes network and its applications,
see [18–25]. As the importance the hypercubes networks
𝑄
𝑛
, many variants of it were presented, among which, for

instance, are generalized hypercubes, folded hypercubes, the
line graphs of hypercubes 𝑙(𝑄

𝑛
), the subdivision graphs of

hypercubes 𝑠(𝑄
𝑛
), and the total graphs of hypercubes 𝑡(𝑄

𝑛
)

[19, 20].
The hypercubes networks 𝑄

𝑛
may be constructed from

the family of subsets of a set with a binary string of length 𝑛,
by making a vertex for each possible subset and joining two
vertices by an edgewhenever the corresponding subsets differ
in a single binary string.The hypercubes networks𝑄

𝑛
admits

several definitions of which two are stated as follows [26].

Definition 1 (see [26]). The hypercubes networks 𝑄
𝑛
has 2𝑛

vertices each labelled with a binary string of length 𝑛. Two
vertices 𝑋 = 𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
and 𝑌 = 𝑦

1
𝑦
2
⋅ ⋅ ⋅ 𝑦
𝑛
are adjacent if

and only if there exists an 𝑖, 1 ≤ 𝑖 ≤ 𝑛, such that 𝑥
𝑖
= 𝑦
𝑖
, where

𝑦
𝑖
denoted the complement of binary digit 𝑦

𝑖
and 𝑥

𝑗
= 𝑦
𝑗
, for

all 𝑗 ̸= 𝑖, and 1 ≤ 𝑗 ≤ 𝑛.

Definition 2 (recursive construction [26]). The hypercubes
network 𝑄

𝑛
is recursively constructed by taking two copies

of 𝑄
𝑛−1

, denoted by 𝑄0
𝑛−1

and 𝑄1
𝑛−1

, and adding 2𝑛−1 edges as
follows: let 𝑉(𝑄0

𝑛−1
) = {0𝑈 = 0𝑢

2
𝑢
3
⋅ ⋅ ⋅ 𝑢
𝑛
: 𝑢
𝑖
= 0 or 1} and

𝑉(𝑄
1

𝑛−1
) = {1𝑉 = 1V

2
V
3
⋅ ⋅ ⋅ V
𝑛
: V
𝑖
= 0 or 1}. A vertex 0𝑈 =

0𝑢
2
𝑢
3
⋅ ⋅ ⋅ 𝑢
𝑛
of 𝑄0
𝑛−1

is joined to a vertex 1𝑉 = 1V
2
V
3
⋅ ⋅ ⋅ V
𝑛
of

𝑄
1

𝑛−1
if and only if 𝑢

𝑖
= V
𝑖
for every 𝑖, 2 ≤ 𝑖 ≤ 𝑛.

At the end of [10], the authors presented a problem to con-
sider the Kirchhoff index derived from a single graph, such as
the line graph, the subdivision graph and the total graph Gao
et al. [27] obtained special formulae for the Kirchhoff index of
𝑙(𝐺), 𝑠(𝐺), and 𝑡(𝐺), where𝐺 is a regular graph. Motivated by
the previous results, we present the corresponding formulae
for the Kirchhoff index of the hypercubes network𝑄

𝑛
and its

three variant networks 𝑙(𝑄
𝑛
), 𝑠(𝑄
𝑛
), and 𝑡(𝑄

𝑛
) in this paper.

The remainder of this paper is organized as follows.
Section 2 gives some basic notations and some prelimi-
naries in our discussion. The proofs of our main results
are in Section 3. Finally, some conclusions are given in
Section 4.

2. Notations and Some Preliminaries

In this section, we recall some basic notations and results
in graphs theory. The adjacency matrix 𝐴(𝐺) of 𝐺 is an
𝑛 × 𝑛 matrix with the (𝑖, 𝑗)-entry equal to 1 if vertices 𝑖
and 𝑗 are adjacent and 0 otherwise. Suppose that 𝐷(𝐺) =
diag(𝑑

1
(𝐺), 𝑑

2
(𝐺), . . . , 𝑑

𝑛
(𝐺)) is the degree diagonalmatrix of

𝐺, where 𝑑
𝑖
(𝐺) is the degree of the vertex 𝑖, 𝑖 = 1, 2, . . . , 𝑛. Let

𝐿(𝐺) = 𝐷(𝐺)−𝐴(𝐺) be called the Laplacianmatrix of𝐺.Then
the eigenvalues of 𝐴(𝐺) and 𝐿(𝐺) are called eigenvalues and

Laplacian eigenvalues of 𝐺, respectively. For more details the
readers may refer to [1].

Yin and Wang [28] proved the following Lemma.

Lemma 3 (see [28]). For the hypercubes networks𝑄
𝑛
with 𝑛 ≥

2,

Spec (𝑄
𝑛
) = (

0 2 ⋅ ⋅ ⋅ 2𝑖 ⋅ ⋅ ⋅ 2𝑛

𝐶
0

𝑛
𝐶
1

𝑛
⋅ ⋅ ⋅ 𝐶

𝑖

𝑛
⋅ ⋅ ⋅ 𝐶

𝑛

𝑛

) , (3)

where the 2𝑖 (𝑖 = 0, 1, . . . , 𝑛) are the eigenvalues of the Lapla-
cian matrix of hypercubes networks, and 𝐶𝑖

𝑛
are the multiplici-

ties of the eigenvalues 2𝑖.

Gutman andMohar [17] and Zhu et al. [16] presented the
Kirchhoff index of a graph in terms of Laplacian eigenvalues
as follows.

Lemma 4 (see [16, 17]). Let𝐺 be a connected graph with 𝑛 ≥ 2
vertices; then

Kf (𝐺) = 𝑛
𝑛−1

∑

𝑖=1

1

𝜆
𝑖

. (4)

Let 𝑃
(𝐺)
(𝑥) be the characteristic polynomial of the Lapla-

cian matrix of a graph 𝐺, the following results were shown in
[27].

Lemma 5 (see [27]). Let 𝐺 be an r-regular connected graph
with 𝑛 vertices and𝑚 edges; then

𝑃
𝑙(𝐺)

(𝑥) = (𝑥 − 2𝑟)
𝑚−𝑛

𝑃
𝐺
(𝑥) ,

𝑃
𝑠(𝐺)

(𝑥) = (−1)
𝑚

(2 − 𝑥)
𝑚−𝑛

𝑃
𝐺
(𝑥 (𝑟 + 2 − 𝑥)) ,

𝑃
𝑡(𝐺)

(𝑥) = (−1)
𝑚

(𝑟 + 1 − 𝑥)
𝑛

× (2𝑟 + 2 − 𝑥)
𝑚−𝑛

𝑃
𝐺
(
𝑥 (𝑟 + 2 − 𝑥)

𝑟 − 𝑥 + 1
) ,

(5)

where 𝑃
𝑙(𝐺)
(𝑥), 𝑃

𝑠(𝐺)
(𝑥), and 𝑃

𝑡(𝐺)
(𝑥) are the characteristic

polynomials for the Laplacian matrix of graphs 𝑙(𝐺), 𝑠(𝐺), and
𝑡(𝐺), respectively.

It is worthwhile to note that the conclusion of Lemma
5 is not completely correct, the authors [29] recently show
the Laplacian characteristic polynomial of t(G), where G is
a regular graph, which correct the Lemma 5 in Gao et al. [27]
(2012) as follows.

Lemma6 (see [29]). Let𝐺 be a r-regular connected graphwith
𝑛 vertices and𝑚 edges, then

𝑃
𝑠(𝐺)

(𝑥) = (−1)
𝑛

(2 − 𝑥)
𝑚−𝑛

𝑃
𝐺
(𝑥 (𝑟 + 2 − 𝑥)) ,

𝑃
𝑡(𝐺)

(𝑥) = 𝑥 (𝑥 − 𝑟 − 2) (𝑥 − 2𝑟 − 2)
𝑚−𝑛

×

𝑛−1

∏

𝑖=1

[(𝑥
2

−2𝑥−𝑟𝑥)+(3 − 2𝑥 + 𝑟) 𝜇
𝑖
+ 𝜇
2

𝑖
] .

(6)

where 𝑃
𝑠(𝐺)
(𝑥), 𝑃

𝑡(𝐺)
(𝑥) are the characteristic polynomial for

the Laplacian matrix of graphs 𝑠(𝐺) and 𝑡(𝐺), respectively.
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The following Lemma give an expression on Kf (𝑡(𝐺))
and Kf (𝐺) of a regular graph 𝐺.

Lemma7 (see [29]). Let𝐺 be a r-regular connected graphwith
𝑛 vertices and𝑚 edges, and 𝑟 ≥ 2, then

Kf (𝑡 (𝐺)) = (𝑟 + 2)
2

2 (𝑟 + 3)
Kf (𝐺) +

𝑛
2

(𝑟
2

− 4)

8 (𝑟 + 1)
+
𝑛

2

+
𝑛 (𝑟 + 2) (𝑟 + 4)

2 (𝑟 + 3)

𝑛−1

∑

𝑖=1

1

𝜇
𝑖
+ 3 + 𝑟

.

(7)

For proving the formula of the Kirchhoff index on the
subdivision graph of hypercubes, we prove the following
Lemma by utilizing Vieta’s Theorem; in our proof, some
techniques in [27] are referred to.

Lemma 8. Let 𝑃
𝑄
𝑛

(𝑥) be the characteristic polynomial of the
Laplacian matrix of the hypercubes networks 𝑄

𝑛
with 𝑛 ≥ 2

and

𝑃
𝑄
𝑛

(𝑥) = 𝑥
2
𝑛

+ 𝑎
1
𝑥
2
𝑛

−1

+ 𝑎
2
𝑥
2
𝑛

−2

+ ⋅ ⋅ ⋅ + 𝑎
2
𝑛
−1
𝑥; (8)

then

Kf (𝑄
𝑛
)

2𝑛
= −

𝑎
2
𝑛
−2

𝑎
2
𝑛
−1

, (9)

where 𝑎
2
𝑛
−1
, 𝑎
2
𝑛
−2

are the coefficients of 𝑥 and 𝑥
2 in the

characteristic polynomial, respectively.

Proof. Let Spec(𝑄
𝑛
) = (𝜆

0
, 𝜆
1
, 𝜆
2
, . . . 𝜆
𝑛
, 𝜆
𝑛+1
, . . . , 𝜆

2
𝑛
−1
).

Then 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 2

𝑛

− 1 satisfy the following equation:

𝑥
2
𝑛

−1

+ 𝑎
1
𝑥
2
𝑛

−2

+ ⋅ ⋅ ⋅ + 𝑎
2
𝑛
−1
= 0; (10)

it is not difficult to check that 1/𝜆
𝑖
, 𝑖 = 1, 2, . . . , 2

𝑛

− 1 are the
roots of equation

𝑎
2
𝑛
−1
𝑥
2
𝑛

−1

+ 𝑎
2
𝑛
−2
𝑥
2
𝑛

−2

+ ⋅ ⋅ ⋅ + 𝑎
1
𝑥 + 1 = 0. (11)

Note that 𝑄
𝑛
is connected graph and the multiplicity of

0 as an eigenvalue of 𝐿(𝑄
𝑛
) is equal to the number of the

connected components in 𝑄
𝑛
. So, 𝑎

2
𝑛
−1

̸= 0; by Lemma 4 and
Vieta’s Theorem

Kf (𝑄
𝑛
)

2𝑛
=

2
𝑛

−1

∑

𝑖=1

1

𝜆
𝑖

= −
𝑎
2
𝑛
−2

𝑎
2
𝑛
−1

, (12)

where 𝑎
2
𝑛
−1
, 𝑎
2
𝑛
−2

are the coefficients of 𝑥 and 𝑥
2 in the

characteristic polynomial of the Laplacian matrix of the
hypercubes networks 𝑄

𝑛
.

3. Main Results

3.1. The Kirchhoff Index in Hypercubes Networks 𝑄
𝑛
. In this

section, we firstly give formula for the Kirchhoff index in the
hypercubes 𝑄

𝑛
with 𝑛 ≥ 2.

Theorem 9. For the hypercubes networks 𝑄
𝑛
with 𝑛 ≥ 2,

Kf (𝑄
𝑛
) = 2
𝑛

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖
, (13)

where the 2𝑖 (𝑖 = 1, . . . , 𝑛) are the eigenvalues of the Laplacian
matrix of hypercubes networks and the binomial coefficients𝐶𝑖

𝑛

are the multiplicities of the eigenvalues 2𝑖.

Proof. Since the hypercubes networks𝑄
𝑛
have 2𝑛 vertices and

𝑛2
𝑛−1 edges, then by Lemma 3,

Spec (𝑄
𝑛
) = (

0 2 ⋅ ⋅ ⋅ 2𝑖 ⋅ ⋅ ⋅ 2𝑛

𝐶
0

𝑛
𝐶
1

𝑛
⋅ ⋅ ⋅ 𝐶

𝑖

𝑛
⋅ ⋅ ⋅ 𝐶

𝑛

𝑛

) ; (14)

then

Kf (𝑄
𝑛
) = 2
𝑛

2
𝑛

−1

∑

𝑖=1

1

𝜆
𝑖

= 2
𝑛

(
𝐶
1

𝑛

2 × 1
+

𝐶
2

𝑛

2 × 2
+ ⋅ ⋅ ⋅

+
𝐶
𝑖

𝑛

2 × 𝑛 − 1
+ ⋅ ⋅ ⋅ +

𝐶
𝑛

𝑛

2 × 𝑛
)

= 2
𝑛

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖
.

(15)

The proof of Theorem 9 is completed.

Remark 10. Palacios and Renom studied the Kirchhoff index
of the d-dimensional hypercube in [5] by using probabilistic
tools, where they obtained a closed-form formula for the
Kirchhoff index and found the asymptotic value 22𝑑/𝑑. We
present the formula for Kirchhoff index by directly calcu-
lating the eigenvalues of the Laplacian matrix of hypercubes
networks, which is different from their technique and results.

3.2. The Kirchhoff Index in the Line Graph of Hypercubes
Networks 𝑙(𝑄

𝑛
). The line graph of a graph 𝐺, denoted by

𝑙(𝐺), is the graph whose vertices correspond to the edges
of 𝐺, in which two vertices are adjacent if and only if the
corresponding edges of 𝐺 share a common vertex. In the
following theorem, we proposed a formula for the Kirchhoff
index in the line graph of hypercubes networks 𝑙(𝑄

𝑛
), denoted

by Kf(𝑙(𝑄
𝑛
)), where the eigenvalues of𝑄

𝑛
are 𝜆
0
≤ 𝜆
1
≤ 𝜆
2
≤

⋅ ⋅ ⋅ ≤ 𝜆
𝑛
≤ 𝜆
𝑛+1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
2
𝑛
−1
.

Theorem 11. Let 𝑙(𝑄
𝑛
) be line graphs of hypercubes 𝑄

𝑛
with

𝑛 ≥ 2; then

Kf (𝑙 (𝑄
𝑛
)) = 𝑛2

𝑛−1

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖
+ +𝑛2

2𝑛−3

− 2
2𝑛−2

, (16)

where the 2𝑖 (𝑖 = 1, . . . , 𝑛) are the eigenvalues of the Laplacian
matrix of hypercubes networks and the binomial coefficients𝐶𝑖

𝑛

are the multiplicities of the eigenvalues 2𝑖.
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Proof. Now, for convenience, we denoted the numbers of
vertices and edges in the hypercubes networks𝑄

𝑛
by 𝑝 and 𝑞,

respectively. Obviously, 𝑝 = 2𝑛, 𝑞 = 𝑛2𝑛−1, so the line graphs
of hypercubes 𝑙(𝑄

𝑛
) have 𝑞 = 𝑛2𝑛−1 vertices.

By Lemma 5,

𝑃
𝑙(𝑄
𝑛
)
(𝑥) = (𝑥 − 2𝑟)

𝑞−𝑝

𝑃
𝐺
(𝑥) . (17)

Comparing the spectrum of 𝑄
𝑛
,

Spec (𝑄
𝑛
) = (

0 2 ⋅ ⋅ ⋅ 2𝑖 ⋅ ⋅ ⋅ 2𝑛

𝐶
0

𝑛
𝐶
1

𝑛
⋅ ⋅ ⋅ 𝐶

𝑖

𝑛
⋅ ⋅ ⋅ 𝐶

𝑛

𝑛

) . (18)

We can easily obtain the spectrum of 𝑙(𝑄
𝑛
) as follows:

Spec (𝑙 (𝑄
𝑛
)) = (2𝑛 2𝑛 ⋅ ⋅ ⋅ 2𝑛 𝜆

0
⋅ ⋅ ⋅ 𝜆
2
𝑛
−1
) , (19)

where 𝜆
0
, 𝜆
1
, . . . 𝜆
𝑛
, 𝜆
𝑛+1
, . . . , 𝜆

2
𝑛
−1

are the eigenvalues of 𝑄
𝑛

and 𝜆
0
≤ 𝜆
1
≤ 𝜆
2
≤ ⋅ ⋅ ⋅ 𝜆

𝑛
≤ 𝜆
𝑛+1

≤ ⋅ ⋅ ⋅ ≤ 𝜆
2
𝑛
−1
.

Notice that the line graphs of hypercubes 𝑙(𝑄
𝑛
) have 𝑞 =

𝑛2
𝑛−1 vertices; by Lemma 4,

Kf (𝑙 (𝑄
𝑛
)) = 𝑞(

2
𝑛

−1

∑

𝑖=1

1

𝜆
𝑖

+
𝑞 − 𝑝

2𝑛
) (20)

=
𝑛2
𝑛−1

2𝑛
Kf (𝑄
𝑛
) +

𝑞
2

− 𝑝𝑞

2𝑛

(21)

=
𝑛

2
Kf (𝑄
𝑛
) + 𝑛2

2𝑛−3

− 2
2𝑛−2

. (22)

Substituting the results ofTheorem 9 (15) into (22), we can
get the formula for the Kirchhoff index on the line graph of
hypercubes Kf(𝑙(𝑄

𝑛
)) as follows:

Kf (𝑙 (𝑄
𝑛
)) = 𝑛2

𝑛−1

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖
+ 𝑛2
2n−3

− 2
2𝑛−2

. (23)

This completes the proof.

3.3. The Kirchhoff Index in the Subdivision Graph of Hyper-
cubes Networks 𝑠(𝑄

𝑛
). The subdivision graph of a graph 𝐺,

denoted by 𝑠(𝐺), is the graph obtained by replacing every
edge in 𝐺with a copy of 𝑃

2
(path of length two). In an almost

identical way as Theorem 11, we required the formula for the
Kirchhoff index in the subdivision graph of hypercubes 𝑠(𝑄

𝑛
),

denoted by Kf(𝑠(𝑄
𝑛
)).

Theorem12. Let 𝑠(𝑄
𝑛
) be subdivision graphs of the hypercubes

𝑄
𝑛
with 𝑛 ≥ 2; then

Kf (𝑠 (𝑄
𝑛
)) = (𝑛 + 2) (2

𝑛

+ 𝑛2
𝑛−1

)

×

𝑛

∑

𝑖=1

𝐶
𝑖

n
2𝑖
+ 2
𝑛−1

+ 𝑛
2

2
2𝑛−3

− 2
2𝑛−1

,

(24)

where the 2𝑖 (𝑖 = 1, . . . , 𝑛) are the eigenvalues of the Laplacian
matrix of hypercubes networks and the binomial coefficients𝐶𝑖

𝑛

are the multiplicities of the eigenvalues 2𝑖.

Proof. Now supposing that 𝑛 ≥ 2,𝑃
(𝑄
𝑛
)
(𝑥) is the characteristic

polynomial of the Laplacian matrix of the hypercubes 𝑄
𝑛
,

𝑃
𝑄
𝑛

(𝑥) = 𝑥
2
𝑛

+ 𝑎
1
𝑥
2
𝑛

−1

+ 𝑎
2
𝑥
2
𝑛

−2

+ ⋅ ⋅ ⋅ + 𝑎
2
𝑛
−1
𝑥, and

Spec (𝑄
𝑛
) = {𝜆

0
, 𝜆
1
, 𝜆
2
, . . . 𝜆
𝑛
, 𝜆
𝑛+1
, . . . , 𝜆

2
𝑛
−1
} , (25)

where 𝜆
𝑖
, 𝑖 = 0, 1, 2, . . . , 2

𝑛

− 1 are the Laplacian eigenvalues
of 𝑄
𝑛
Then by Lemma 8,

Kf (𝑄
𝑛
)

2𝑛
= −

𝑎
2
𝑛
−2

𝑎
2
𝑛
−1

. (26)

By Lemma 5, we have

𝑃
𝑠(𝑄
𝑛
)
(𝑥) = (−1)

𝑝

(2 − 𝑥)
𝑞−𝑝

× [𝑥
2
𝑛

(𝑛 + 2 − 𝑥)
2
𝑛

+ 𝑎
1
𝑥
2
𝑛

−1

(𝑛 + 2 − 𝑥)
2
𝑛

−1

+ ⋅ ⋅ ⋅ + 𝑎
2
𝑛
−2
𝑥
2

(𝑛 + 2 − 𝑥)
2

+ 𝑎
2
𝑛
−1
𝑥 (𝑛 + 2 − 𝑥) ] .

(27)

Consequently, the coefficient of 𝑥2 in 𝑃
𝑠(𝑄
𝑛
)
(𝑥) is

𝑎
2
𝑛
−2
= (−1)

𝑝

2
𝑞−𝑝

[(𝑛 + 2)
2

𝑎
2
𝑛
−2
− 2
𝑞−𝑝

𝑎
2
𝑛
−1

− (𝑞 − 𝑝) 2
𝑞−𝑝−1

(𝑛 + 2) 𝑎
2
𝑛
−1
] ,

(28)

and the coefficient of 𝑥 in 𝑃
𝑠(𝑄
𝑛
)
(𝑥) is

(−1)
𝑝

2
𝑞−𝑝

(𝑛 + 2) 𝑎
2
𝑛
−1
. (29)

Note that 𝑠(𝑄
𝑛
) has 2𝑛 + 𝑛2𝑛−1 vertices. By Lemma 6 and

substituting the coefficients into (26),

Kf (𝑠 (𝐺))
2𝑛 + 𝑛2𝑛−1

= − (2
𝑞−𝑝

(𝑛 + 2)
2

𝑎
2
𝑛
−2
− 2
𝑞−𝑝

𝑎
2
𝑛
−1

− (𝑞 − 𝑝) 2
𝑞−𝑝−1

𝑎
2
𝑛
−1
(𝑛 + 2))

× (2
𝑞−𝑝

𝑎
2
𝑛
−1
(𝑛 + 2))

−1

(30)

= −
𝑎
2
𝑛
−2
(𝑛 + 2)

𝑎
2
𝑛
−1

+
1

𝑛 + 2
+
𝑞 − 𝑝

2
. (31)

By substituting 𝑞 = 𝑛2𝑛−1, 𝑝 = 2𝑛 and the results of Lemma 5
into (31), we have

Kf (𝑠 (𝑄
𝑛
))

2𝑛 + 𝑛2𝑛−1

= −
𝑎
2
𝑛
−2
(𝑛 + 2)

𝑎
2
𝑛
−1

+
1

𝑛 + 2
+
𝑛2
𝑛−1

− 2
𝑛

2

(32)

=
(𝑛 + 2)Kf (𝑄

𝑛
)

2𝑛
+

1

𝑛 + 2
+
𝑛2
𝑛−1

− 2
𝑛

2
. (33)
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Simplifying (33) and substituting the results ofTheorem 9
(15), we can get the formula of the Kirchhoff index on the
subdivision graph of the hypercubes Kf(𝑠(𝑄

𝑛
)) as follows:

Kf (𝑠 (𝑄
𝑛
)) =

(𝑛 + 2) (2
𝑛

+ 𝑛2
𝑛−1

)

2𝑛
Kf (𝑄
𝑛
)

+
2
𝑛

+ 𝑛2
𝑛−1

𝑛 + 2
+

(2
𝑛

+ 𝑛2
𝑛−1

) (𝑛2
𝑛−1

− 2
𝑛

)

2

=

(𝑛 + 2) (2
𝑛

+ 𝑛2
𝑛−1

)

2𝑛
Kf (𝑄
𝑛
)

+ 2
𝑛−1

+ 𝑛
2

2
2𝑛−3

− 2
2𝑛−1

= (𝑛 + 2) (2
𝑛

+ 𝑛2
𝑛−1

)

×

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖
+ 2
𝑛−1

+ 𝑛
2

2
2𝑛−3

− 2
2𝑛−1

.

(34)

Thus, the results of the Theorem 12 hold.

3.4. The Kirchhoff Index in the Total Graph of Hypercubes
Networks 𝑡(𝑄

𝑛
). The total graph of a graph 𝐺, denoted by

𝑡(𝐺), is the graph whose vertices correspond to the union of
the set of vertices and edges of 𝐺, with two vertices of 𝑡(𝐺)
being adjacent if and only if the corresponding elements are
adjacent or incident in 𝐺. We now proved the formula of the
Kirchhoff index in the total graph of the hypercubes networks
𝑡(𝑄
𝑛
), denoted by Kf(𝑡(𝑄

𝑛
)).

Theorem 13. Let 𝑡(𝑄
𝑛
) be the total graphs of the hypercubes

networks 𝑄
𝑛
with 𝑛 ≥ 2; then

Kf (𝑡 (𝑄
𝑛
))

=
2
𝑛−1

(𝑛 + 2)
2

𝑛 + 3

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖
+
𝑛
4

− 4𝑛
2

8 (𝑛 + 1)

+
𝑛

2
+

(𝑛
2

+ 2𝑛) (𝑛 + 4)

2 (𝑛 + 3)

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖 + 3 + 𝑛
,

(35)

where the 2𝑖 (𝑖 = 0, 1, . . . , 𝑛) are the eigenvalues of the Lapla-
cian matrix of hypercubes networks and the binomial coeffi-
cients 𝐶𝑖

𝑛
are the multiplicities of the eigenvalues 2𝑖.

Proof. Let

𝑃
𝑡(𝑄
𝑛
)
(𝑥) = 𝑥

2
𝑛

+ 𝑎
1
𝑥
2
𝑛

−1

+ 𝑎
2
𝑥
2
𝑛

−2

+ . . . + 𝑎
2
𝑛
−1
𝑥. (36)

Then by Lemma 8,

Kf (𝑡 (𝑄
𝑛
))

2𝑛
= −

𝑎
2
𝑛
−2

𝑎
2
𝑛
−1

. (37)

Applying Lemma 6, the Laplacian characteristic polynomial
of 𝑡(𝑄

𝑛
) is

𝑃
𝑡(𝑄
𝑛
)
(𝑥) = 𝑥 (𝑥 − 𝑛 − 2) (𝑥 − 2𝑛 − 2)

𝑞−𝑝

×

2
𝑛

−1

∏

𝑖=1

{[𝑥
2

− 2𝑥 − 𝑛𝑥] + [3 − 2𝑥 + 𝑛] 𝜆
𝑖
+ 𝜆
2

𝑖
}

= 𝑥 (𝑥 − 𝑛 − 2) (𝑥 − 2𝑛 − 2)
𝑞−𝑝

×

2
𝑛

−1

∏

𝑖=1

[𝑥
2

− (2 + 𝑛 + 2𝜆
𝑖
) 𝑥 + 𝜆

2

𝑖
+ (𝑛 + 3) 𝜆

𝑖
] .

(38)

Consider that 𝑄
𝑛
has 2𝑛 vertices and 𝑟 = 𝑛, by Lemma 7, we

can get the following equality,

Kf (𝑡 (𝑄
𝑛
)) =

(𝑟 + 2)
2

2 (𝑟 + 3)
Kf (𝑄
𝑛
) +

𝑛
2

(𝑟
2

− 4)

8 (𝑟 + 1)
+
𝑛

2

+
𝑛 (𝑟 + 2) (𝑟 + 4)

2 (𝑟 + 3)

2
𝑛

−1

∑

𝑖=1

1

𝜆
𝑖
+ 3 + 𝑟

=
(𝑛 + 2)

2

2 (𝑛 + 3)
Kf (𝑄
𝑛
) +

𝑛
4

− 4𝑛
2

8 (𝑛 + 1)
+
𝑛

2

+

(𝑛
2

+ 2𝑛) (𝑛 + 4)

2 (𝑛 + 3)

2
𝑛

−1

∑

𝑖=1

1

𝜆
𝑖
+ 3 + 𝑛

.

(39)

Consequently, the relationships between the hypercubes net-
works 𝑄

𝑛
and its variant networks 𝑡(𝑄

𝑛
) for Kirchhoff index

is

Kf (𝑡 (𝑄
𝑛
)) =

(𝑛 + 2)
2

2 (𝑛 + 3)
Kf (𝑄
𝑛
) +

𝑛
4

− 4𝑛
2

8 (𝑛 + 1)
+
𝑛

2

+

(𝑛
2

+ 2𝑛) (𝑛 + 4)

2 (𝑛 + 3)

2
𝑛

−1

∑

𝑖=1

1

𝜆
𝑖
+ 3 + 𝑛

.

(40)

Substitutes the result of Theorem 9 and simplifies about
equation, we can get the formula for the Kirchhoff index on
the total graph of hypercubes networks Kf(𝑡(𝑄

𝑛
)) as follows.

Kf (𝑡 (𝑄
𝑛
)) =

(𝑛 + 2)
2

2 (𝑛 + 3)
Kf (𝑄
𝑛
) +

𝑛
4

− 4𝑛
2

8 (𝑛 + 1)
+
𝑛

2

+

(𝑛
2

+ 2𝑛) (𝑛 + 4)

2 (𝑛 + 3)

2
𝑛

−1

∑

𝑖=1

1

𝜆
𝑖
+ 3 + 𝑛

=
2
𝑛−1

(𝑛 + 2)
2

𝑛 + 3

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖
+
𝑛
4

− 4𝑛
2

8 (𝑛 + 1)
+
𝑛

2

+

(𝑛
2

+ 2𝑛) (𝑛 + 4)

2 (𝑛 + 3)

𝑛

∑

𝑖=1

𝐶
𝑖

𝑛

2𝑖 + 3 + 𝑛
.

(41)

This completes the proof of the Theorem.
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4. Conclusions

In this paper, we focused on the Kirchhoff index of the
hypercubes networks and related networks, which are impor-
tant networks topology indexes for parallel processing com-
puter systems. We obtained some exact formulae for the
Kirchhoff index of the hypercubes networks 𝑄

𝑛
and related

networks by utilizing spectral graph theory, such as Kf(𝑄
𝑛
) =

2
𝑛

∑
𝑛

𝑖=1
(𝐶
𝑖

𝑛
/2𝑖), where the 2𝑖 (𝑖 = 1, . . . , 𝑛) are the eigenvalues

of the Laplacianmatrix of hypercubes networks and the bino-
mial coefficients𝐶𝑖

𝑛
are themultiplicities of the eigenvalues 2𝑖.

We also obtained the relationship for Kirchhoff index
between hypercubes networks 𝑄

𝑛
and its three variant net-

works 𝑙(𝑄
𝑛
), 𝑠(𝑄

𝑛
), and 𝑡(𝑄

𝑛
), respectively, by deducing the

characteristic polynomial of the Laplacian matrix related
networks.

Finally, the special formulae for the Kirchhoff indexes
of 𝑙(𝑄

𝑛
), 𝑠(𝑄

𝑛
), and 𝑡(𝑄

𝑛
) were proposed, respectively, by

making use of spectral graph theory and Vieta’s Theorem.
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