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A newnonlinear adaptive control law for a class of uncertain nonlinear systems is proposed.Theproposed control law is designed by
a modified adaptive control Lyapunov function (ACLF) which satisfies a Hamilton-Jacobi-Bellman (HJB) equation. The modified
ACLF is derived from transformation of an ACLF.The proposed control law is different from the inverse optimal one in decreasing
the value of a cost function specified by a designer. In this paper, we show a transformation coefficient for an ACLF and a design
method of a nonlinear adaptive controller. Finally, it is shown by a numerical simulation that the proposed control law decreases
the value of a given cost function and achieves the desirable trajectory.

1. Introduction

Design of control laws considering stability and optimality is
the central issue in control theory [1]. For stability, Lyapunov
theory is a strong tool to design controllers and to assure the
stability of systems. For optimality, a value function which is
the solution to a Hamilton-Jacobi-Bellman (HJB) equation is
derived from dynamic programming. If a value function and
an optimal control law can be found, then the closed system
possesses robustness such as gain margin, phase margin, and
low sensitivity against parameter variations [2, 3].

However, a general approach to find the value function
has not been shown and it is not easy to design the optimal
control. Due to the difficulty, the inverse optimal control
problem which minimizes a meaningful cost function was
proposed by Freeman and Kokotovic. If the inverse optimal
problem is solved, namely, a control Lyapunov function
(CLF) is found, it is possible to design a control law with the
good characteristics mentioned above by applying a CLF to
the Pointwise Min-Norm (PMN) control law [4]. But the
minimized cost function and the trajectory may not be desir-
able. In order to improve this problem, a locally approximate

approach around the origin by numerical calculation and
transformation of a CLF was proposed. The approach gives
characteristics of local optimality without loss of characteris-
tics of the global inverse optimality [5, 6], and it is based on
the fact that the PMN control law can minimize the desired
cost function if a CLF has the same level sets as the value
function [7].

The inverse optimal control law was applied to robust
control and adaptive control [8, 9]. Moreover, a control law
in which a Sontag type control law and a PMN control
law were generalized has been proposed [10–12]. Also, many
approaches to approximate the value function have been
proposed. They are based on numerical calculation and
focus on improvement of calculation speed and accuracy of
approximation [5, 13].

Recently, a new approach has been provided by [14]. The
new approach in [14] is different from the inverse optimal
and approximate approaches in directly considering a cost
function specified by a designer and provides a modified
ACLF by introducing a transformation coefficient.This paper
expands [14] and proves a modified ACLF and a control

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2014, Article ID 280951, 9 pages
http://dx.doi.org/10.1155/2014/280951



2 Journal of Control Science and Engineering

law designed by a modified ACLF minimize the value of a
cost function specified by a designer in the set of control
laws based on an ACLF. Also, the condition under which a
controller and a transformation coefficient are continuous is
provided and the problem of overparameterization which is
to increase the number of parameter estimation according to
the order of a system is solved.

In this paper, the design of a modified ACLF and a
nonlinear adaptive control law is shown in Sections 3 and 4
and effectiveness of the proposed controller is shown by a
numerical simulation in Section 5.

The following notations are used in this paper.R denotes
the sets of real value.R+ denotes the sets of positive real value.
V
𝑥
(𝑥) denotes the derivative of V(𝑥) with respect to 𝑥. For

a matrixA, A > 0 (≥ 0) denotes that a matrixA is positive
definite (semipositive definite) matrix.A𝑇 denotes transpose
of matrixA.

2. Preliminaries

We deal with a nonlinear strict-feedback system with un-
known parameters described by
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where 𝑖 = 1, . . . , 𝑛−1, 𝑥
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the state, the control input, and a vector of unknown constant
parameters, respectively. It is assumed in this paper that all
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are smooth and 𝑓(0) = 0, 𝐹(0) = 0, so that 𝑥 = 0 is an
equilibrium of the uncontrolled plant. In order to estimate
the unknown parameter 𝜃 ∈ R𝑝, the following adaptive law
is introduced:

̇̂
𝜃 (𝑡) = Γ𝜏 (𝑥, 𝜃) , (3)

where 𝜃 ∈ R𝑝 is the estimation of the parameter 𝜃, Γ = Γ𝑇 >

0 ∈ R𝑝×𝑝 is a constant parameter specified by a designer,
and 𝜏(𝑥, 𝜃) : R𝑛+𝑝 → R𝑝 is the tuning function. The
construction of the tuning function is explained in Section 4.

The cost function is defined as
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where 𝑞(𝑥) : R𝑛 → R and 𝑟(𝑥) : R𝑛 → R are weighting
functions and satisfy 𝑞(𝑥) > 0 for all 𝑥 ̸= 0, 𝑞(0) = 0, and
𝑟(𝑥) > 0 for all 𝑥.

It is well known that the optimal control problem which
minimizes the cost function (4) is reduced to the problem to
find the value function satisfying the following HJB equation
[10]:
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where the optimal control law 𝑢(𝑡) is given by
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However, it is generally difficult to solve theHJB equation and
to find the value function. In this paper, assuming that there
exists an ACLF for the system (1), a certain transformation
coefficient is introduced and a nonlinear adaptive control
law is constructed by a modified ACLF based on an original
ACLF.

3. Main Results

In this section, we show the controller based on a modified
ACLF by a certain transformation coefficient.

First, anACLFwith unknownparameters and an adaptive
law is defined as the following definition.

Definition 1. V(𝑥, 𝜃) : R𝑛+𝑝 → R+ is called an ACLF
for the system (2) and (3) if it is a positive definite function
which is continuous and radially unbounded and satisfies the
following inequality:
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(7)

The following theorem gives the transformation coefficient
for themodifiedACLF and the control law based on anACLF.

Theorem 2. It is assumed that there exists an ACLF V(𝑥, 𝜃)

for the system (2) and (3). Let Ṽ(𝑥, 𝜃) be
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where 𝑘(𝑥, 𝜃) is defined by
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respectively.𝐶 denotes a constant and is sufficiently large so that
Ṽ(𝑥, 𝜃) is a positive definite function. Then, 𝑘(𝑥, 𝜃) > 0 for all
𝑥 ̸= 0 and Ṽ(𝑥, 𝜃) satisfies HJB equation (5) with the following
control input:
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where input 𝑢(𝑡) is given by (12) from H
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Equation (13) can easily be solved with respect to 𝑘(𝑥, 𝜃);
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Therefore we also obtain V̇(𝑥, 𝜃) < 0 in the case of (16b) and
V̇(𝑥, 𝜃) < 0 is satisfied for all 𝑥 ̸= 0. As a result, V(𝑥, 𝜃)

is the ACLF for the system (2) and (3) with the input (9a)–
(9c) and (12). We show that Ṽ(𝑥, 𝜃) is also an ACLF. It is
trivial that the time derivative of Ṽ(𝑥, 𝜃) is 𝑘(𝑥, 𝜃)V̇(𝑥, 𝜃) < 0

for all 𝑥 ̸= 0 because 𝑘(𝑥, 𝜃) > 0 and V̇(𝑥, 𝜃) < 0 for all
𝑥 ̸= 0. Since Ṽ(𝑥(𝑡), 𝜃(𝑡)) changes its value with 𝑡 similarly
as V(𝑥(𝑡), 𝜃(𝑡)) and ̇̃

V(𝑥(∞), 𝜃(∞)) = 0 and there always
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positive definite for all 𝑥 ̸= 0. Therefore, Ṽ(𝑥, 𝜃) is an ACLF
for the system. Therefore, the solution of the system (2) and
(3) converges to the maximum invariant sets S included in
the setU = {𝑥 |

̇̃
V(𝑥, 𝜃) = 0} by LaSalle’s invariance principle

[15]. Since the invariant sets S consist of the origin only, the
closed system is asymptotically stable to the origin.
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In Theorem 2, the ACLF V(𝑥, 𝜃) is modified by the
transformation coefficient 𝑘(𝑥, 𝜃) and the modified Ṽ(𝑥, 𝜃)

is an ACLF and satisfies HJB equation.
Theorems about the cost function (4), the transformation

coefficient 𝑘(𝑥, 𝜃), and the control input (12) are given as
follows.

Corollary 3. The value of cost function is given by the
following equation if the transformation coefficient (9a)–(9c)
and control law (12) are applied:
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∞
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𝑑𝑡

= −∫
∞

0

𝑘 (𝑥, 𝜃)V
𝑇

𝑥
(𝑥, 𝜃)

× {𝑓 (𝑥) + 𝐹
𝑇

(𝑥) 𝜃

+ 𝑔 (𝑥)(V −
𝑘 (𝑥, 𝜃)

2𝑟 (𝑥)
𝑔
𝑇

(𝑥)V
𝑥
(𝑥, 𝜃))}𝑑𝑡

− ∫
∞

0

𝑘 (𝑥, 𝜃)V
𝑇

̂
𝜃
(𝑥, 𝜃) Γ𝜏 (𝑥, 𝜃) 𝑑𝑡

+ ∫
∞

0

𝑟 (𝑥) V (𝑡)2 𝑑𝑡

= −∫
∞

0

𝑘 (𝑥, 𝜃) V̇ (𝑥, 𝜃) 𝑑𝑡 + ∫
∞

0

𝑟 (𝑥) V (𝑡)2 𝑑𝑡.

(21)

Since the first term in (21) is positive, (21) is minimized when
V(𝑡) = 0. Therefore, the cost function (4) is minimized by the
control law (12) using the ACLFV(𝑥, 𝜃).

Theorem 5. If 𝜎
1
(𝑥, 𝜃), V𝑇

𝑥
(𝑥, 𝜃)𝑔(𝑥), 𝑞(𝑥), and 𝑟(𝑥) are

continuous and differentiable for all𝑥 ̸= 0, then transformation
coefficient (9a)–(9c) is continuous and differentiable for all 𝑥 ̸=

0.

Proof. H(𝑥, 𝜃) of (13) can be regarded as the function of 𝑥(𝑡)
and 𝑘(𝑥, 𝜃), namely, H(𝑥, 𝑘). The derivative of the function
H(𝑥, 𝑘) with respect to 𝑘(𝑥, 𝜃) is given by

H
𝑘
(𝑥, 𝑘 (𝑥, 𝜃)) = −𝜎

2
(𝑥, 𝜃) (V

𝑇

𝑥
(𝑥, 𝜃) 𝑔 (𝑥) ̸= 0) ,

(22a)

H
𝑘
(𝑥, 𝑘 (𝑥, 𝜃)) = 𝜎

1
(𝑥, 𝜃) (V

𝑇

𝑥
(𝑥, 𝜃) 𝑔 (𝑥) = 0) ,

(22b)

where we used (9a)–(9c). In (22a), 𝜎
2
(𝑥, 𝜃) > 0 for all 𝑥 ̸= 0.

In (22b), 𝜎
1
(𝑥, 𝜃) < 0 for all 𝑥 ̸= 0 sinceV(𝑥, 𝜃) is an ACLF.

Therefore,H
𝑘
(𝑥, 𝑘) < 0 for all 𝑥 ̸= 0. From implicit function

theorem, 𝑘(𝑥, 𝜃) is continuous and differentiable for all 𝑥 ̸= 0

if 𝜎
1
(𝑥, 𝜃), V𝑇

𝑥
(𝑥, 𝜃)𝑔(𝑥), 𝑞(𝑥), and 𝑟(𝑥) are continuous and

differentiable for all 𝑥 ̸= 0.

Remark 6. It is assumed that the weighting function 𝑞(𝑥) > 0

for all 𝑥 ̸= 0 in this paper. But even if 𝜎
1
(𝑥, 𝜃) ̸= 0 when

𝑞(𝑥) = 0 for all 𝑥 ̸= 0, the proposed approach can also be
applied (refer to Section 5).

Remark 7. The control law includes the unknown parameters
in (10). Therefore, it is required to estimate them by an
adaptive law. The adaptive law is given in Section 4.

Remark 8. Theproposed approach does not provide the value
function but the transformation coefficient is determined
such that the modified ACLF (8) satisfies the HJB equation.
Since the modified ACLF (8) depends on the original ACLF,
the value of the cost function (17) varies depending on the
selection of the original ACLF.

4. Application of Theorem 2 to
ACLF Obtained by Backstepping

In this section, the transformation coefficient, the modified
ACLF, and a nonlinear adaptive control law are designed
by applying Theorem 2 to the ACLF which is chosen in the
following backstepping. Backstepping can be applied to the
strict-feedback system (1) by the following procedure [16].

Step 𝑖 (𝑖 = 1, . . . , 𝑛). We introduce the variables of 𝑧
𝑖
(𝑡),

𝛼
𝑖
(𝑥
𝑖
, 𝜃), and 𝛼

𝑛
(𝑥
𝑛
, 𝜃) defined by (23) and (24):

𝑧
𝑖
(𝑡)
Δ

= 𝑥
𝑖
(𝑡) − 𝛼

𝑖−1
(𝑥
𝑖−1

, 𝜃) , (23)

𝑢
𝐵
𝑠

(𝑡) = 𝛼
𝑛
(𝑥
𝑛
, 𝜃) , (24)
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where 𝑥
𝑖
= (𝑥
1
, . . . , 𝑥

𝑖
), 𝛼
𝑖
(𝑥
𝑖
, 𝜃) ∈ R𝑖+𝑝 → R (𝑖 = 1, . . . ,

𝑛 − 1) are the virtual inputs and 𝛼
0
(𝑥
0
, 𝜃) = 0 and 𝑢

𝐵
𝑠

(𝑡)

denotes the control law derived in the step 𝑛 of backstepping.
Differentiating (23) with respect to 𝑡 and using (1), 𝑧 system
is written as

�̇�
𝑖
(𝑡) = 𝑓

𝑖
(𝑥
𝑖
) + 𝐹
𝑇

𝑖
(𝑥
𝑖
) 𝜃 − �̇�

𝑖−1
(𝑥
𝑖−1

, 𝜃)

+ 𝑔
𝑖
(𝑥
𝑖
) (𝑧
𝑖+1

(𝑡) + 𝛼
𝑖
(𝑥
𝑖
, 𝜃)) ,

(25)

where 𝑧
𝑛+1

(𝑡) = 0 and �̇�
𝑖
(𝑥
𝑖
, 𝜃) is given by

�̇�
𝑖
(𝑥
𝑖
, 𝜃) =

𝑖

∑
𝑗=1

𝜕𝛼
𝑖
(𝑥
𝑖
, 𝜃)

𝜕𝑥
𝑗

�̇�
𝑗
(𝑡) + (

𝜕𝛼
𝑖
(𝑥
𝑖
, 𝜃)

𝜕𝜃
)

𝑇

̇̂
𝜃 (𝑡) .

(26)

If the 𝑧 system (25) is asymptotically stable, then the 𝑥

system (1) is also asymptotically stable. Therefore, we solve
the problem of stabilization of the 𝑧 system by Lyapunov
approach considering the Lyapunov function candidate as
follows (in this paper,V⋆(⋅, 𝜃) denotes the ACLF derived by
backstepping. 𝑢⋆(𝑡), 𝑘⋆(𝑥, 𝜃) denote the control law and the
transformation coefficient based onV⋆(⋅, 𝜃), respectively):

V
⋆

𝑖
(𝑧, 𝜃) =

1

2

𝑖

∑
𝑗=1

𝑧
2

𝑗
(𝑡) +

1

2
(𝜃 − 𝜃 (𝑡))

𝑇

Γ
−1

(𝜃 − 𝜃 (𝑡)) .

(27)

The virtual input 𝛼
𝑖
(𝑥
𝑖
, 𝜃) is chosen as

𝛼
𝑖
(𝑥
𝑖
, 𝜃) = −

1

𝑔
𝑖
(𝑥
𝑖
)

× [

[

𝑔
𝑖−1

(𝑥
𝑖−1

) 𝑧
𝑖−1

(𝑡) + 𝑐
𝑖
𝑧
𝑖
(𝑡)

+ 𝑓
𝑖
(𝑥
𝑖
) + 𝑤
𝑇

𝑖
(𝑥
𝑖
, 𝜃) 𝜃 (𝑡)

−

𝑖−1

∑
𝑗=1

{
𝜕𝛼
𝑖−1

(𝑥
𝑖−1

, 𝜃)

𝜕𝑥
𝑗

× (𝑓
𝑗
(𝑥
𝑗
) + 𝑔
𝑗
(𝑥
𝑗
) 𝑥
𝑗+1

(𝑡))}

−

𝑖−1

∑
𝑗=1

𝑧
𝑗
(𝑡) (

𝜕𝛼
𝑗−1

(𝑥
𝑗−1

, 𝜃)

𝜕𝜃
)

𝑇

Γ𝑤
𝑖
(𝑥
𝑗
, 𝜃)

− (
𝜕𝛼
𝑖−1

(𝑥
𝑖−1

, 𝜃)

𝜕𝜃
)

𝑇

Γ

𝑖

∑
𝑗=1

𝑤
𝑗
(𝑥
𝑗
, 𝜃) 𝑧
𝑗
(𝑡)]

]

,

(28)

where 𝑧
0
(𝑡) = 0 and 𝑐

𝑖
∈ R+ is a design parameter and

𝑤
𝑖
(𝑥
𝑖
, 𝜃) = 𝐹

𝑖
(𝑥
𝑖
) −

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

(𝑥
𝑖−1

, 𝜃)

𝜕𝑥
𝑗

𝐹
𝑗
(𝑥
𝑗
) . (29)

The time derivative of V⋆
𝑛
(𝑧, 𝜃) along the solution of (25) in

the Step 𝑖 is given by

V̇
⋆

𝑛
(𝑧, 𝜃) = −

𝑛

∑
𝑖=1

𝑐
𝑖
𝑧
2

𝑖
(𝑡)

−
{

{

{

𝑛

∑
𝑖=1

𝑧
𝑖
(𝑡) (

𝜕𝛼
𝑖−1

(𝑥
𝑖−1

, 𝜃)

𝜕𝜃
)

𝑇

+ (𝜃 − 𝜃 (𝑡))
𝑇

Γ
−1
}

}

}

× (
̇̂
𝜃 (𝑡) − Γ

𝑛

∑
𝑖=1

𝑤
𝑖
(𝑥
𝑖
, 𝜃) 𝑧
𝑖
(𝑡)) .

(30)

If the tuning function 𝜏(𝑥
𝑛
, 𝜃) is chosen as

̇̂
𝜃 (𝑡) = Γ

𝑛

∑
𝑖=1

𝑤
𝑖
(𝑥
𝑖
, 𝜃) 𝑧
𝑖
(𝑡) , (31)

then we get

V̇
⋆

𝑛
(𝑧, 𝜃) = −

𝑛

∑
𝑖=1

𝑐
𝑖
𝑧
2

𝑖
(𝑡) < 0. (32)

Thus,V⋆
𝑛
(𝑧, 𝜃) is an adaptive Lyapunov function for the 𝑧 sys-

tem, the 𝑧 system is asymptotically stable, and the estimation
error 𝜃 − 𝜃 is stable; then 𝑥 system is asymptotically stable.
Since the adaptive Lyapunov function and the asymptotic
stabilizing control law are given,V⋆

𝑛
(𝑧, 𝜃) is an ACLF.

ApplyingTheorem 2 to ACLF (27), we obtain the control
law 𝑢
⋆(𝑡) as

𝑢
⋆

(𝑡) = −
𝑘
⋆
(𝑥
𝑛
, 𝜃)

2𝑟 (𝑥)
V
⋆

𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃) 𝑔
𝑛
(𝑥
𝑛
) , (33)

where the transformation coefficient 𝑘⋆(𝑥
𝑛
, 𝜃) is given by

𝑘
⋆

(𝑥
𝑛
, 𝜃) = 2𝑟 (𝑥

𝑛
)
𝜎⋆
1
(𝑥
𝑛
, 𝜃) + 𝜎⋆

2
(𝑥
𝑛
, 𝜃)

(V⋆
𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃)𝑔
𝑛
(𝑥
𝑛
))
2

(V
⋆

𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃) 𝑔
𝑛
(𝑥
𝑛
) ̸= 0) ,

(34a)

𝑘
⋆

(𝑥
𝑛
, 𝜃) = −

𝑞 (𝑥
𝑛
)

𝜎⋆
1
(𝑥
𝑛
, 𝜃)

(V
⋆

𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃) 𝑔
𝑛
(𝑥
𝑛
) = 0) ,

(34b)

𝑘
⋆

(𝑥
𝑛
, 𝜃) = 0 (𝑥

𝑛
= 0) (34c)
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and 𝜎⋆
1
(𝑥
𝑛
, 𝜃) and 𝜎⋆

2
(𝑥
𝑛
, 𝜃) are given by

𝜎
⋆

1
(𝑥
𝑛
, 𝜃)

=

𝑛−1

∑
𝑖=1

V
⋆

𝑛
𝑥
𝑖

(𝑥
𝑛
, 𝜃)

× (𝑓
𝑖
(𝑥
𝑖
) + 𝐹
𝑇

𝑖
(𝑥
𝑖
) 𝜃 + 𝑔

𝑖
(𝑥
𝑖
) 𝑥
𝑖+1

(𝑡))

+V
⋆

𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃) (𝑓

𝑛
(𝑥
𝑛
) + 𝐹
𝑇

𝑛
(𝑥
𝑛
) 𝜃)

− (

𝑛

∑
𝑖=1

(𝑥
𝑖
(𝑡) − 𝛼

𝑖−1
(𝑥
𝑖−1

, 𝜃))
𝜕𝛼
𝑖−1

(𝑥
𝑖−1

, 𝜃)

𝜕𝜃
)

𝑇

× Γ

𝑛

∑
𝑖=1

𝑤
𝑖
(𝑥
𝑖
, 𝜃) (𝑥

𝑖
(𝑡) − 𝛼

𝑖−1
(𝑥
𝑖−1

, 𝜃)) ,

𝜎
⋆

2
(𝑥
𝑛
, 𝜃)

= √(𝜎⋆
1
(𝑥
𝑛
, 𝜃))
2

+
𝑞 (𝑥
𝑛
)

𝑟 (𝑥
𝑛
)
(V⋆
𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃)𝑔
𝑛
(𝑥
𝑛
))
2

(35)

from the following which is rewritten by (23) and (27):

V
⋆

𝑛
(𝑥
𝑛
, 𝜃) =

1

2

𝑛

∑
𝑖=1

(𝑥
𝑖
(𝑡) − 𝛼

𝑖−1
(𝑥
𝑖−1

, 𝜃))
2

+
1

2
(𝜃 − 𝜃 (𝑡))

𝑇

Γ
−1

(𝜃 − 𝜃 (𝑡)) .

(36)

Now, we show the stability of the system (2). The time
derivative of (36) along the solution of (2) with the control
input (33) yields

V̇
⋆

𝑛
(𝑥
𝑛
, 𝜃) = −𝜎

⋆

2
(𝑥
𝑛
, 𝜃) (V

⋆

𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃) 𝑔
𝑛
(𝑥
𝑛
) ̸= 0) ,

(37a)

V̇
⋆

𝑛
(𝑥
𝑛
, 𝜃) = 𝜎

⋆

1
(𝑥
𝑛
, 𝜃) (V

⋆

𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃) 𝑔
𝑛
(𝑥
𝑛
) = 0) .

(37b)

Since V⋆
𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃)𝑔
𝑛
(𝑥
𝑛
) = 𝑧

𝑛
(𝑡)𝑔
𝑛
(𝑥
𝑛
) and 𝑧

𝑛
(𝑡) = 0, (37b)

becomes

𝜎
⋆

1
(𝑧, 𝜃) = −

𝑛−1

∑
𝑖=1

𝑐
𝑖
𝑧
2

𝑖
(𝑡) < 0 (V

⋆

𝑛
𝑥𝑛

(𝑥
𝑛
, 𝜃) 𝑔
𝑛
(𝑥
𝑛
) = 0)

(38)

from (32). Now, it is shown that (36) is an adaptive Lyapunov
function and the system is, therefore, asymptotically stable to
the origin.

Finally, we show that Ṽ(𝑥
𝑛
, 𝜃)which is related toV(𝑥

𝑛
, 𝜃)

by (8) satisfies HJB equation. Using Ṽ(𝑥
𝑛
, 𝜃) instead of

V(𝑥
𝑛
, 𝜃), we obtain HJB equation (39) for the system (1) and

(3) with the cost function (4):

H (𝑥
𝑛
, 𝜃) = 𝑞 (𝑥

𝑛
) + 𝑘
⋆

(𝑥
𝑛
, 𝜃)

𝑛−1

∑
𝑖=1

V
⋆

𝑥
𝑖

(𝑥
𝑛
, 𝜃)

× (𝑓
𝑖
(𝑥
𝑖
) + 𝐹
𝑇

𝑖
(𝑥
𝑖
) 𝜃 + 𝑔

𝑖
(𝑥
𝑖
) 𝑥
𝑖+1

(𝑡))

+ 𝑘
⋆

(𝑥
𝑛
, 𝜃)V

⋆

𝑥
𝑛

(𝑥
𝑛
, 𝜃) (𝑓

𝑛
(𝑥
𝑛
) + 𝐹
𝑇

𝑛
(𝑥
𝑛
) 𝜃)

+ 𝑘
⋆

(𝑥
𝑛
, 𝜃)

𝑛

∑
𝑖=1

V
⋆

̂
𝜃
(𝑥
𝑛
, 𝜃) Γ𝜏 (𝑥

𝑛
, 𝜃)

−
1

4𝑟 (𝑥
𝑛
)
(𝑘
⋆

(𝑥
𝑛
, 𝜃)V

⋆

𝑥
𝑛

(𝑥
𝑛
, 𝜃) 𝑔
𝑛
(𝑥
𝑛
))
2

.

(39)

By substituting (34a)–(34c) into (39), it is shown that HJB
equation is satisfied.

From the above, it is confirmed that Theorem 2 is satis-
fied.

5. Numerical Example

The effectiveness of the proposed control law is shown by a
numerical example of a system with an unknown parameter.
The numerical simulation is done for the second order system
(40) and the cost function (41) [10]:

�̇�
1
(𝑡) = 𝑥

2
(𝑡)

�̇�
2
(𝑡) = −𝑥

1
(𝑡) (

𝜋

2
+ arctan (5𝑥

1
(𝑡)))

−
5𝑥
2

1
(𝑡)

2 (1 + 25𝑥2
1
(𝑡))

+ (3.5 + 𝜃) 𝑥
2
(𝑡) + 3𝑢 (𝑡) ,

(40)

J =∫
∞

0

(𝑥
2

2
(𝑡) + 𝑢

2

(𝑡)) 𝑑𝑡, (41)

where the true value of the unknown parameter is 𝜃 = 0.5.
The value function of the optimal control problem for

the system (40) with the cost function (41) is given by the
following equation if the true value of 𝜃 in (40) is 0.5 (the
value function of the HJB equation is given in the existing
result [10]):

V (𝑥
2
) = 𝑥
2

1
(𝑡) (

𝜋

2
+ arctan (5𝑥

1
(𝑡))) + 𝑥

2

2
(𝑡) (42)

and the optimal control law is 𝑢(𝑡) = −3𝑥
2
(𝑡) from (6).

On the other hand, using the ACLFwhich is given by (43)
from (27),

V
⋆

2
(𝑥
2
) =

1

2
{𝑥
2

1
(𝑡) + (𝑐

1
𝑥
1
(𝑡) + 𝑥

2
(𝑡))
2

+
1

Γ
(𝜃 − 𝜃 (𝑡))

2

} ,

(43)
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the control law is derived as (44) by backstepping:

𝑢
𝐵
𝑠

(𝑡) =
1

3
{𝑥
1
(𝑡) (

𝜋

2
+ arctan (5𝑥

1
(𝑡)) − 𝑐

1
𝑐
2
− 1)

+
5𝑥2
1
(𝑡)

2 (1 + 25𝑥2
1
(𝑡))

− 𝑥
2
(𝑡) (𝑐
1
+ 𝑐
2
+ 3.5 + 𝜃 (𝑡))} .

(44)

Then, applying Theorem 2 to ACLF (43), the proposed
control is

𝑢
⋆

(𝑡) = −
3

2
𝑘
⋆

(𝑥
2
) (𝑐
1
𝑥
1
(𝑡) + 𝑥

2
(𝑡)) (45)

and the transformation coefficient is

𝑘
⋆

(𝑥
2
)

= 2

𝜎⋆
1
(𝑥
2
, 𝜃) + √(𝜎⋆

1
(𝑥
2
, 𝜃))
2

+ {3𝑥
2
(𝑡) (𝑐
1
𝑥
1
(𝑡) + 𝑥

2
(𝑡))}
2

{3 (𝑐
1
𝑥
1
(𝑡) + 𝑥

2
(𝑡))}
2

(V
⋆𝑇

2
𝑥
2

(𝑥
2
) 𝑔 (𝑥
2
) ̸= 0) ,

(46a)

𝑘
⋆

(𝑥
2
) = −

𝑥2
2

𝜎⋆
1
(𝑥, 𝜃)

(V
⋆𝑇

2
𝑥
2

(𝑥
2
) 𝑔 (𝑥
2
) = 0) , (46b)

𝑘
⋆

(𝑥
2
) = 0 (𝑥

2
= 0) , (46c)

𝜎
⋆

1
(𝑥
2
, 𝜃)

= 𝑥
1
(𝑡) 𝑥
2
(𝑡) − (𝑐

1
𝑥
1
(𝑡) + 𝑥

2
(𝑡))

× {𝑥
1
(𝑡) (

𝜋

2
+ arctan (5𝑥

1
(𝑡))) +

5𝑥2
1
(𝑡)

2 (1 + 25𝑥2
1
(𝑡))

− 𝑥
2
(𝑡) (𝑐
1
+ 3.5 + 𝜃 (𝑡))} .

(47)

It should be noted that if 𝑥
1
(𝑡) ̸= 0 and 𝑥

2
(𝑡) = 0, then

𝑞(𝑥
2
) = 0. In this case, we need to show that 𝜎⋆

1
(𝑥
2
, 𝜃) ̸= 0

mentioned in Remark 6. Actually, we can obtain (48) from
(47) when 𝑥

2
(𝑡) = 0:

𝜎
⋆

1
(𝑥
2
, 𝜃) = −𝑐

1
𝑥
2

1
(𝑡) (

𝜋

2
+ arctan (5𝑥

1
(𝑡)))

−
5𝑐
1
𝑥3
1
(𝑡)

2 (1 + 25𝑥2
1
(𝑡))

< 0 (𝑞 (𝑥) = 0) .

(48)

Table 1: CostJ.
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Therefore, the proposed approach can be applied to ACLF
(43).

The simulation results are shown in Figures 1, 2, 3, and 4.
The initial state is 𝑥

2
(0) = (−1.0 5.0) and design parameters

are 𝑐
𝑖
= 1 and Γ = 1.The value of the cost functionJ is shown

in Table 1.
Figures 1–3 show that the trajectories by the proposed

control law are close to the optimal trajectories and Table 1
shows that the value of the cost function by the proposed
control law is smaller than the one by backstepping and close
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to the optimal value for the system of which parameter 𝜃 is
known.

6. Conclusions

In this paper, a nonlinear adaptive control law is proposed.
The control law is designed by a modified ACLF which
satisfies the HJB equation. It is proved that a cost function
specified by a designer is minimized in the set of the control
laws based on an ACLF for the strict-feedback system. The
condition under which the proposed control law and the
transformation coefficient are continuous is provided. The
effectiveness of the proposed control law is shown by the
simple numerical simulation.

If an ACLF is given, then the proposed approach enables
designing a control law. Therefore, the proposed approach
can also be applied to other nonlinear systems compared to
strict-feedback systems.

Research subject in the future is extension to systems in
which all the states cannot be accessed.
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