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In order to calculate the ground movement induced by displacement piles driven into horizontal layered strata, an axisymmetric
model was built and then the vertical and horizontal ground movement functions were deduced using stochastic medium theory.
Results show that the vertical ground movement obeys normal distribution function, while the horizontal ground movement is an
exponential function. Utilizing fieldmeasured data, parameters of these functions can be obtained by back analysis, and an example
was employed to verify this model. Result shows that stochastic medium theory is suitable for calculating the ground movement
in pile driving, and there is no need to consider the constitutive model of soil or contact between pile and soil. This method is
applicable in practice.

1. Introduction

Displacement piles are widely used in pile foundation engi-
neering and ground treatment. During the driving process
of displacement piles, the lateral expansion and uplift of
surrounding soil may have significant effect on adjacent
buildings, underground structures, and municipal pipelines.
It is an important issue in geotechnical engineering.

At present,methodswhich arewidely used in compaction
effect analysis of displacement piles are cylindrical cavity
expansion method, spherical cavity expansion method, and
strain path method. Cylindrical cavity expansion method [1–
6] assumes that the initial holes are cylindrical with infinite
length, and the pile driving process is equivalent to the
expansion process of the cylindrical cavity. Then the three-
dimensional problem is simplified to a plane strain problem,
which makes it impossible to solve ground movement.
Spherical cavity expansion method assumes that the initial
holes are spherical, and the soil is simplified to infinite
space or semi-infinite space [7–13]. But this method is only
applicable to homogeneous soil, and boundary condition of
the semi-infinite space’s surface is complicated. Strain path
method was proposed by Baligh et al. [14–18]. It overcomes

the shortcoming that the cavity expansion theory does not
consider the impact of depth. An independent strain field is
obtained by analyzing the process of a smooth, round pile
driven into soil. Owing to the fact that the rotation of soil
units and the surface effect of ground are neglected, this
method is also unable to calculate the ground movement.
Numerical analyses are widely used in the calculation of soil
deformation [19–23], but their accuracy depends highly on
the stress-strain relationships and parameters of soil and pile-
soil interface.

Stochastic medium theory was initially proposed by the
Polish scholar Litwiniszyn, and then it was developed by
Bao-chen et al. [24–28]. Compared with mechanical analysis
method, stochastic medium theory does not need constitu-
tive model of rock or soil and its mechanical parameters.
At present, stochastic medium theory is mainly used to
calculate ground movement caused by mining, tunnel con-
struction, and so on, which is convergent movement caused
by excavation of underground space. While in the process
of pile driving, soil is vertically and radially compacted, and
the ground movement is mainly expanding movement—a
process with same property but opposite direction.
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In this paper, the problem of pile driving into trans-
verse isotropy layered soil is simplified to an axisymmetric
problem. Then vertical and horizontal ground movement
functions are obtained using stochastic medium theory,
and ground movement parameters are calculated by back
analysis. At last, an engineering example is also presented to
verify the theoretical answer.

2. Calculation Model of Ground Movement

2.1. Introduction to the Stochastic Medium Theory. In an
Euclidean space where 𝑧 is the vertical coordinate and
𝑥 and 𝑦 are orthogonal horizontal coordinates, according
to the movement transfer process of medium, the vertical
movement function𝑊(𝑧, 𝑥, 𝑦) in depth 𝑧 is subjected to
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by the properties of medium. Equation (1) is similar to the
Kolmogorov equation in continuous stochastic process, so
medium which satisfies (1) is named as stochastic medium,
such as soil, sand, and rock.

If the unit verticalmovement𝑊
𝑒
caused by excavation of a

1×1×1 space underground at a depth𝐻 (as shown in Figure 1)
can be obtained, vertical movements induced by excavation
of any other shapes can be calculated through integration.The
unit vertical movement function can be solved as in Figure 1.
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Figure 1: Calculation model for unit excavation.

For typical transverse isotropy layered soil, (2) can be
simplified to
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If the volumeof soil remains the sameduring deformation
process (a coefficient will be introduced afterwards to take
the deformation of soil into account), it can be deduced that
vertical displacement 𝑊
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Assuming the displacement vector of soil point to the
center of the unit, from (3) and (4), the movement of layered
soil caused by unit excavation can be acquired as
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2.2. Calculation Model. The process of driving a pile into
horizontally layered soil can be simplified to an axisymmetric
problem. Then, (5) can be expressed as below in cylindrical
coordinates (𝑧
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The influence radius 𝑟(𝑧
𝑒
) is a complex function without

specific function. A parameter—influence angle 𝛽(𝑧
𝑒
)—can

be defined as
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𝛽(𝑧
𝑒
) reflects the mechanical property of overlying soil.

At ground surface, 𝛽(𝑧
𝑒
) is a constant 𝛽(𝐻), hereinafter

abbreviated as 𝛽.
In order to calculate the horizontal movement at ground,

another parameter—horizontalmovement coefficient 𝑏—was
defined, and for ground surface,

[
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In pile driving, the compaction process of soil is equiva-
lent to the expansion process of a series of zero-volume units
along the pile axis [7]. Supposing the pile’s cross-section area
at depth 𝑧 is𝐴(𝑧), the volume of amicro unit will change from
0 to 𝐴(𝑧)𝑑𝑧. As shown in Figure 2, when a pile whose length
is 𝑙 is driven into soil, the groundmovement can be expressed
as

F = ∫
𝑙

0

F
𝑒
𝐴 (𝑧) 𝑑𝑧, (9)

where F is groundmovement vector, F = (𝑊,𝑈). F
𝑒
is ground

movement vector caused by unit excavation, F
𝑒
= (𝑊
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, 𝑈
𝑒
).

In order to take the compaction of soil into consideration,
a compaction coefficient 𝜂 was defined. Then (9) can be
modified to
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0

F
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Figure 2: Integral domain in pile driving.
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Figure 3: Positions of ground movement monitoring points.

For piles with constant cross-section area 𝐴, the ground
movement in pile driving can be deduced from (7), (8) and
(10):
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(11)

where 𝜌 is the distance from calculation point to the center
of pile. Φ(𝑥) is the distribution function of standard normal
distribution.

2.3. Parameters’ Determination. There are three parameters
in the calculation model, respectively, influence angle 𝛽, hor-
izontal movement coefficient 𝑏, and compaction coefficient
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Figure 4: Observational data and calculated results of vertical movement.

𝜂, which can be expressed as a vector X, X = {𝛽, 𝑏, 𝜂}. The
ground movement can be calculated after X was obtained
from observational data using back analysis method.

If𝑊∗
𝑖
, 𝑈∗
𝑖
represent a series of ground movement obser-

vational data, and 𝑊
𝑖
, 𝑈
𝑖
are corresponding calculated data

based on parameter X, according to least square method,
their consistency can be assessed by
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The less the 𝑅(X) is, the better the parameterX is. To find
the best groundmovement parameters through back analysis
is to find a set of X ∈ R3 which makes
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This is an unconstrained optimization problem. In this
paper, a program PAFI written by Visual Basic was used to
find the best groundmovement parameters.Then the relative
ground movement can be obtained by (11).

3. Engineering Example

In order to verify the calculation model and program, results
of the in situ test conducted byHwang et al. [29] are employed
in this paper. Test pile is a precast concrete pile whose

diameter 𝑑 is 800mm and length 𝑙 is 34m. From the ground
surface to the depth of 40m, the strata are, respectively, layers
of yellow clays with organic materials (0∼3m), gray silty
sands (3∼8m), soft clays (8∼12m), medium-dense sands (12∼
21m), a clay layer interbedded with some thin layers of fine
sand (21∼32m), andmedium-to-dense sands (32∼40m) [29].
Locations of groundmovement monitoring points are shown
in Figure 3. Three inclinometer tubes are laid, respectively, at
distances of 3𝑑, 6𝑑, and 9𝑑 from the centre of the pile. Nine
settlementmarks are located at different positions on one line.

In the test, ground movement was measured when the
pile was driven in 9m, 17m, 25m, and 34m. Monitoring
results of ground movement induced by pile driving are
shown in Figures 4 and 5. Using the test results, back analysis
conducted by PAFI program shows that influence angle 𝛽 =
0.222 rad, horizontal movement coefficient 𝑏 = 0.353, and
compaction coefficient 𝜂 = 0.601. Then ground movement
can be obtained by (11). Their comparison with measured
results is also shown in Figures 4 and 5. As can be seen,
calculated results agree well with observational data, which
means this method has good applicability.

4. Conclusions

For horizontally layered soil, ground movement in pile
driving was calculated by stochastic medium theory.
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(1) The pile driving process was simplified to an axisym-
metric problem. Then the vertical and horizontal
ground movement functions are derived.The vertical
ground movement is a normal distribution function,
and the horizontal ground movement is an exponen-
tial function.

(2) There are three parameters in the calculation model,
respectively, influence angle 𝛽, horizontal movement
coefficient 𝑏, and compaction coefficient 𝜂. They
can be obtained from observational data using back
analysis.

(3) Analysis of an engineering examples shows that this
method is applicable to compute surface movement
caused by pile driving. Stochastic medium theory
does not need to consider the constitutive model of
soil or pile-soil interface, so it is easier to be applied
in practice.
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