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The problem of passivity analysis for discrete-time stochastic neural networks with time-varying delays is investigated in this paper.
New delay-dependent passivity conditions are obtained in terms of linear matrix inequalities. Less conservative conditions are
obtained by using integral inequalities to aid in the achievement of criteria ensuring the positiveness of the Lyapunov-Krasovskii
functional. At last, numerical examples are given to show the effectiveness of the proposed method.

1. Introduction

Neural networks have been greatly applied in many areas in
the past few decades, such as static processing, pattern recog-
nition, and combinatorial optimization [1–3]. In practice,
time-delays are frequently encountered in neural networks.
As the finite signal propagation time and the finite speed of
information processing, the existence of the delays may cause
oscillation, instability, and divergence in neural networks.
Moreover, stochastic perturbations and parameter uncertain-
ties are two main resources which could reduce the perfor-
mances of delayed neural networks. Due to the importance in
both theory and practice, the problem of stability for stochas-
tic delayed neural networks with parameter uncertainties is
one of hot issues.Therefore, there have been lots of important
and interesting results in this field [3–17].

It should be noticed that most neural networks are
focused on continuous-time case [3, 7–12]. However,
discrete-time systems play crucial roles in today’s information
society. Particulary, when implementing the delayed
continuous-time neural networks for computer simulation, it
needs to formulate discrete-time system.Thus, it is necessary
to research the dynamics of discrete-time neural networks. In
recent years, a lot of important results have been published in

the literatures [13–17]. Kwon et al. [14] discussed the stability
criteria for the discrete-time system with time varying
delays. Wang et al. [16] researched the exponential stability
of discrete-time neural networks with distributed delays by
means of Lyapunov-Krasovskill functional theory and linear
matrix inequalities technology. In [17], the authors are con-
cerned with the robust state estimation for discrete neural
networks with successive packet dropouts, linear fractional
uncertainties, and mixed time-delays.

On the other hand, passivity is a significant concept that
represents input-output feature of dynamic systems, which
can offer a powerful tool for analyzing mechanical systems,
nonlinear systems, and electrical circuits [18]. The passivity
theorywas firstly presented in the circuit analysis [19].During
the past several decades, the passivity theory has found
successful applications in various areas such as complexity,
signal processing, stability, chaos control, and fuzzy control.
Thus, the problem of passivity for time-delay neural networks
has received much attention and lots of effective approaches
have been proposed in this research area [20–27].The authors
[21, 22] discussed the problem of passivity for neural net-
works with time-delays. Recently, Lee et al. [23] further stud-
ied the problem of dissipative analysis for neural networks
with times-delays by using reciprocally convex approach and
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linear matrix inequality technology. Very recently, in [24],
the problem of passivity criterion of discrete-time stochastic
bidirectional associative memory neural networks with time-
varying delays has been developed. In [25], some delay-
dependent sufficient passivity conditions have been obtained
for stochastic discrete-time neural networks with time-
varying delays in terms of linear matrix inequalities technol-
ogy and free-weighting matrices approach. A less conserva-
tive passivity criterion for discrete-time stochastic neural net-
workswith time-varying delays was derived in [26]. However,
there is still a room for decreasing the conservatism.

Motivated by the above discussion, the problem of pas-
sivity for discrete-time stochastic neural networks with time-
varying delays is studied. The major contribution of this
paper lies in that, first of all, different from the traditional
way, a new inequality is introduced to deal with terms
∑
𝑘−1

𝑖=𝑘−𝜏
𝑚

𝜂𝑇(𝑖)𝑇1𝜂(𝑖) and∑
𝑘−𝜏
𝑚
−1

𝑖=𝑘−𝜏
𝑀

𝜂𝑇(𝑖)𝑇1𝜂(𝑖). This method can
effectively reduce the conservatism. Secondly, we do not need
all the symmetric matrices in the Lyapunov functional to be
positive definite and take advantage of the relationships of
𝜏(𝑘) − 𝜏𝑚 and 𝜏𝑀 − 𝜏(𝑘). New passivity conditions are pre-
sented in terms of matrix inequalities. Finally, numerical
examples are given to indicate the effectiveness of the pro-
posed method.

Notations. Throughout this paper, the superscripts “−1” and
“𝑇” stand for the inverse and transpose of a matrix, respec-
tively; 𝑃 > 0 (𝑃 ⩾ 0, 𝑃 < 0, 𝑃 ⩽ 0) means that the matrix
𝑃 is symmetric positive definite (positive semidefinite, neg-
ative definite, and negative semidefinite); 𝐸{⋅} stands for the
mathematical expectation operator with respect to the given
probability measure; ‖ ⋅‖ refers to the Euclidean vector norm;
(Ω,F,P) denotes a complete probability space with a filtra-
tion containing all 𝑝-null sets and is right conditions;𝑁[𝑎, 𝑏]
denotes the discrete interval given𝑁[𝑎, 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏 −
1, 𝑏}; 𝑅𝑛 denotes 𝑛-dimensional Euclidean space; 𝑅𝑚×𝑛 is the
set of 𝑚 × 𝑛 real matrices; ∗ denotes the symmetric block in
symmetric matrix; 𝜆max(𝑄) and 𝜆min(𝑄) denote, respectively,
the maximal and minimal eigenvalue of matrix 𝑄.

2. Problem Statement and Preliminaries

Consider the following DSNN with time-varying delays:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵1𝑔 (𝑥 (𝑘)) + 𝐵2𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))

+ 𝑢 (𝑘) + 𝛿 (𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) 𝜔 (𝑘) ,

𝑦 (𝑘) = 𝑔 (𝑥 (𝑘)) ,

𝑥 (𝑗) = 𝜓 (𝑗) , 𝑗 = −𝜏𝑀, −𝜏𝑀 + 1, . . . , 0,

(1)

where 𝑥(𝑘) = [𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝑛(𝑘)]
𝑇 ∈ 𝑅𝑛 is the neuron

state vector of the system; 𝑦(𝑘) is the output of the neural
networks; 𝑢(𝑘) = [𝑢1(𝑘), 𝑢2(𝑘), . . . , 𝑢𝑛(𝑘)]

𝑇 is the input
vector; 𝜓(𝑗) is the initial condition; 𝐴 = diag(𝑎1, 𝑎2, . . . , 𝑎𝑛)
is the state feedback coefficient matrix; 𝐵1 and 𝐵2 are the
connection weight matrices and the delayed connection

weight matrices, respectively; 𝑔(𝑥(𝑘)) = [𝑔1(𝑥1(𝑘)),

𝑔2(𝑥2(𝑘)), . . . , 𝑔𝑛(𝑥𝑛(𝑘))]
𝑇 ∈ 𝑅𝑛 represents the neuron acti-

vation functions; 𝜏(𝑘) denotes the known time-varying delay
and satisfies 0 < 𝜏𝑚 ≤ 𝜏(𝑘) ≤ 𝜏𝑀; 𝛿 is diffusion coefficient
vector and 𝜔(𝑘) is a scalar Brownian motion defined on the
probability space (Ω,F,P) with

𝐸 {𝜔 (𝑘)} = 0,

𝐸 {𝜔 (𝑘) 𝜔 (𝑘)} = 1,

𝐸 {𝜔 (𝑖) 𝜔 (𝑗)} = 0, (𝑖 ̸= 𝑗) .

(2)

Assumption 1. The neuron activation function 𝑔(⋅) satisfies

𝑙−
𝑠
⩽
𝑔𝑠 (𝑎) − 𝑔𝑠 (𝑏)

𝑎 − 𝑏
⩽ 𝑙+
𝑠
, 𝑔𝑠 (0) = 0, 𝑠 = 1, 2, . . . , 𝑛, (3)

for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 𝑏, where 𝑙−
𝑠
and 𝑙+
𝑠
are known real con-

stants.

Remark 2. In Assumption 1, 𝑙−
𝑠
and 𝑙+
𝑠
can be positive, nega-

tive, or zero. Moreover, when 𝑙−
𝑠
= 0, then 𝑙+

𝑠
> 0.

Assumption 3. 𝛿(𝑥(𝑘), 𝑥(𝑘−𝜏(𝑘))) is the continuous function
satisfying

𝛿𝑇 (𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) 𝛿 (𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘)))

≤ 𝜌1𝑥
𝑇
(𝑘) 𝑥 (𝑘) + 𝜌2𝑥

𝑇
(𝑘 − 𝜏 (𝑘)) 𝑥 (𝑘 − 𝜏 (𝑘)) ,

(4)

where 𝜌1, 𝜌2 are known constant scalars.

The following lemmas and definitionwill be used in proof
of main results.

Lemma 4. For integers 𝜏(𝑘) and vector function 𝑥(𝑘 + ⋅) :
𝑁[−𝜏𝑀, −𝜏𝑚] 󳨃→ 𝑅𝑛, 𝜂(𝑘) = 𝑥(𝑘 + 1) − 𝑥(𝑘), for any positive
semidefinite matrix

𝑋 = [

[

𝑋11 𝑋12 𝑋13
𝑋𝑇
12

𝑋22 𝑋23
𝑋𝑇
13

𝑋𝑇
23

𝑋33

]

]

≥ 0, (5)

the following inequality holds:

−
𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) 𝑋33𝜂 (𝑖)

≤
𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

[𝑥𝑇 (𝑘) 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝜂𝑇 (𝑖)]

⋅ [

[

𝑋11 𝑋12 𝑋13
𝑋𝑇
12

𝑋22 𝑋23
𝑋𝑇
13

𝑋𝑇
23

0

]

]

[

[

𝑥 (𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

𝜂 (𝑖)

]

]

.

(6)
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Proof. In fact, we have

0 ≤
𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

[𝑥𝑇 (𝑘) 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝜂𝑇 (𝑖)]

⋅ [

[

𝑋11 𝑋12 𝑋13
𝑋𝑇
12

𝑋22 𝑋23
𝑋𝑇
13

𝑋𝑇
23

𝑋33

]

]

[

[

𝑥 (𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

𝜂 (𝑖)

]

]

=
𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

(𝜂𝑇 (𝑖) 𝑋33𝜂 (𝑖)

+ [𝑥𝑇 (𝑘) 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝜂𝑇 (𝑖)]

⋅ [

[

𝑋11 𝑋12 𝑋13
𝑋𝑇
12

𝑋22 𝑋23
𝑋𝑇
13

𝑋𝑇
23

0

]

]

[

[

𝑥 (𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

𝜂 (𝑖)

]

]

) .

(7)

Thus, one can easily obtain

−
𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) 𝑋33𝜂 (𝑖)

≤
𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

[𝑥𝑇 (𝑘) 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝜂𝑇 (𝑖)]

⋅ [

[

𝑋11 𝑋12 𝑋13
𝑋𝑇
12

𝑋22 𝑋23
𝑋𝑇
13

𝑋𝑇
23

0

]

]

[

[

𝑥 (𝑘)
𝑥 (𝑘 − 𝜏 (𝑘))

𝜂 (𝑖)

]

]

.

(8)

The proof is completed.

Remark 5. The new inequality was proposed in [5, 6] for
continuous-time systems; it is worth noting that we firstly
extend this method to study discrete-time neural networks in
this paper.

Lemma 6 (see [4, 13]). Let 𝑀 ∈ 𝑅𝑛×𝑛 be a positive-definite
matrix,𝑋𝑖 ∈ 𝑅𝑛; then

− (𝑚 − 𝑛)
𝑘−𝑛−1

∑
𝑖=𝑘−𝑚

𝑋𝑇
𝑖
𝑀𝑋𝑖

⩽ −(
𝑘−𝑛−1

∑
𝑖=𝑘−𝑚

𝑋𝑖)

𝑇

𝑀(
𝑘−𝑛−1

∑
𝑖=𝑘−𝑚

𝑋𝑖) .

(9)

Lemma 7 (see [24]). Let 𝐴 = 𝐴𝑇, 𝐷, 𝐸 be real matrices
with appropriate dimensions, with matrix 𝐹(𝑘) satisfying
𝐹𝑇(𝑘)𝐹(𝑘) ≤ 𝐼; there exists a scalar 𝜀 > 0 such that

𝐴 + 𝐷𝐹 (𝑡) 𝐸 + 𝐸
𝑇𝐹𝑇 (𝑡) 𝐷

𝑇 ≤ 𝐴 + 𝜀𝐷𝐷𝑇 + 𝜀−1𝐸𝑇𝐸. (10)

Lemma 8 (see [3]). For any constant matrices Ω, Υ1, Υ2 with
appropriate dimensions, and a function 𝜏(𝑘) satisfying 𝜏𝑚 ≤
𝜏(𝑘) ≤ 𝜏𝑀, then

Ω + (𝜏 (𝑘) − 𝜏𝑚) Υ1 + (𝜏𝑀 − 𝜏 (𝑘)) Υ2 < 0, (11)

if and only if

Ω + (𝜏𝑀 − 𝜏𝑚) Υ1 < 0,

Ω + (𝜏𝑀 − 𝜏𝑚) Υ2 < 0.
(12)

Definition 9 (see [25]). The system (1) is said to be passive if
there exists a scalar 𝛾 > 0 satisfying

2
𝑘
0

∑
𝑖=0

𝐸 {𝑦𝑇 (𝑖) 𝑢 (𝑖)} ≥ −𝛾
𝑘
0

∑
𝑖=0

𝐸 {𝑢𝑇 (𝑖) 𝑢 (𝑖)} , (13)

for all 𝑘0 ∈ 𝑁 and for all solution of (1) with 𝜓(0) = 0.

3. Main Results

In this section, the passivity of discrete-time stochastic neural
networks with time-varying delays will be investigated by use
of the new integral inequality and Lyapunov method. In the
paper, some of symmetric matrices in Lyapunov-Krasovskii
functional are not necessarily required to be positive definite.

Denote

𝐿1 = diag {𝑙−
1
𝑙+
1
, . . . , 𝑙−
𝑛
𝑙+
𝑛
} ,

𝐿2 = diag{
𝑙−
1
+ 𝑙+
1

2
, . . . ,

𝑙−
𝑛
+ 𝑙+
𝑛

2
} ,

𝜏𝑀𝑚 = 𝜏𝑀 − 𝜏𝑚,

𝜂 (𝑘) = 𝑥 (𝑘 + 1) − 𝑥 (𝑘) .

(14)

Main results are given in the following theorems.

Theorem 10. Under Assumptions 1 and 3, the discrete-time
stochastic neural network (1) is passive, if there exist matrices𝑃,
𝑅1,𝑅2,𝑄 = [

𝑄
11
𝑄
12

∗ 𝑄
22

] > 0,𝑇1 > 0,𝑇2 > 0,𝑋 = [
𝑋
11
𝑋
12
𝑋
13

∗ 𝑋
22
𝑋
23

∗ ∗ 𝑋
33

] ≥

0, 𝑌 = [
𝑌
11
𝑌
12
𝑌
13

∗ 𝑌
22
𝑌
23

∗ ∗ 𝑌
33

] ≥ 0, 𝑍 = [
𝑍
11
𝑍
12
𝑍
13

∗ 𝑍
22
𝑍
23

∗ ∗ 𝑍
33

] ≥ 0, the positive
diagonal matrices 𝑆𝑘 = diag{𝑠1𝑘, 𝑠2𝑘, . . . , 𝑠𝑛𝑘} (𝑘 = 1, 2), and
scalars 𝜆 > 0, 𝛾 > 0, such that the following matrix inequalities
hold:

[

[

𝑇1 +
𝜏𝑚
𝜏𝑀

𝑃 −𝑇1

∗ 𝑇1 + 𝜏𝑚𝑅1

]

]

> 0,

[
𝑇2 + 𝑃 −𝑇2
∗ 𝑇2 + 𝜏𝑀𝑅2

] > 0,

(15)

𝑇1 − 𝑋33 ≥ 0,

𝑇2 − 𝑌33 ≥ 0,

𝑇2 − 𝑍33 ≥ 0,

Θ ≤ 𝜆𝐼,

(16)

Ω + Υ1 < 0,

Ω + Υ2 < 0,
(17)
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where

Θ = 𝑃 + 𝜏𝑚𝑇1 + 𝜏𝑀𝑚𝑇2,

Ω =
[
[

[

Ω11 ⋅ ⋅ ⋅ Ω17

∗ d
...

∗ ∗ Ω77

]
]

]

,

Υ1 =
[
[

[

𝑑11 ⋅ ⋅ ⋅ 𝑑17

∗ d
...

∗ ∗ 𝑑77

]
]

]

,

Υ2 =
[
[

[

𝑒11 ⋅ ⋅ ⋅ 𝑒17

∗ d
...

∗ ∗ 𝑒77

]
]

]

,

Ω11 = (𝜏𝑀𝑚 + 1)𝑄11 + 𝑅1 + 𝜏𝑚𝑋11 + 𝑋13 + 𝑋
𝑇

13

+ 𝜏𝑚 (𝐴 − 𝐼) 𝑇1 (𝐴 − 𝐼) + 𝜏𝑀𝑚 (𝐴 − 𝐼) 𝑇2 (𝐴 − 𝐼)

+ 𝜌1𝜆𝐼 + 𝐴𝑃𝐴 − 𝑃 − 𝑆1𝐿1,

Ω12 = 𝜏𝑚𝑋12 − 𝑋13 + 𝑋
𝑇

23
,

Ω15 = (𝜏𝑀𝑚 + 1)𝑄12 + 𝐿2𝑆1 + 𝜏𝑚 (𝐴 − 𝐼) 𝑇1𝐵1

+ 𝜏𝑀𝑚 (𝐴 − 𝐼) 𝑇2𝐵1 + 𝐴
𝑇𝑃𝐵1,

Ω16 = 𝜏𝑚 (𝐴 − 𝐼) 𝑇1𝐵1 + 𝜏𝑀𝑚 (𝐴 − 𝐼) 𝑇2𝐵1 + 𝐴𝑃𝐵1,

Ω17 = 𝜏𝑚 (𝐴 − 𝐼) 𝑇1 + 𝜏𝑀𝑚 (𝐴 − 𝐼) 𝑇2 + 𝐴𝑃,

Ω22 = −𝑅1 + 𝑅2 + 𝜏𝑚𝑋22 − 𝑋23 − 𝑋
𝑇

23
+ 𝑌13 + 𝑌

𝑇

13
,

Ω23 = −𝑌13 + 𝑌
𝑇

23
,

Ω33 = −𝑄11 − 𝑆2𝐿1 + 𝜌2𝜆𝐼 − 𝑌23 − 𝑌
𝑇

23
+ 𝑍13 + 𝑍

𝑇

13
,

Ω34 = −𝑍13 + 𝑍
𝑇

23
,

Ω36 = −𝑄12 + 𝐿2𝑆2,

Ω44 = −𝑅2 − 𝑍23 − 𝑍
𝑇

23
,

Ω55 = 𝐵
𝑇

1
𝑃𝐵1 + 𝜏𝑚𝐵

𝑇

1
𝑇1𝐵1 + 𝜏𝑀𝑚𝐵

𝑇

1
𝑇2𝐵1

+ (𝜏𝑀𝑚 + 1)𝑄22 − 𝑆1,

Ω56 = 𝐵
𝑇

1
𝑃𝐵2 + 𝜏𝑚𝐵

𝑇

1
𝑇1𝐵2 + 𝜏𝑀𝑚𝐵

𝑇

1
𝑇2𝐵2,

Ω57 = 𝐵
𝑇

1
𝑃 + 𝜏𝑚𝐵

𝑇

1
𝑇1 + 𝜏𝑀𝑚𝐵

𝑇

1
𝑇2 − 𝐼,

Ω66 = 𝐵
𝑇

2
𝑃𝐵2 + 𝜏𝑚𝐵

𝑇

2
𝑇1𝐵2 + 𝜏𝑀𝑚𝐵

𝑇

2
𝑇2𝐵2

− 𝑄22 − 𝑆2,

Ω67 = 𝐵
𝑇

2
𝑃 + 𝜏𝑚𝐵

𝑇

2
𝑇1 + 𝜏𝑀𝑚𝐵

𝑇

2
𝑇2,

Ω77 = 𝑃 + 𝜏𝑚𝑇1 + 𝜏𝑀𝑚𝑇2 − 𝛾𝐼,

𝑑22 = 𝑌11,

𝑑23 = 𝑌12,

𝑑33 = 𝑌22,

𝑒33 = 𝑍11,

𝑒34 = 𝑌12,

𝑑44 = 𝑍22, elsewhere,

Ω𝑖𝑗 = 0,

𝑑𝑖𝑗 = 0,

𝑒𝑖𝑗 = 0,

𝑖, 𝑗 = 1, 2, . . . , 8.

(18)

Proof. Define a new augmented of Lyapunov-Krasovskii
functional as follows:

𝑉 (𝑘) = 𝑉1 (𝑘) + 𝑉2 (𝑘) + 𝑉3 (𝑘) + 𝑉4 (𝑘) , (19)

where

𝑉1 (𝑘) = 𝑥
𝑇
(𝑘) 𝑃𝑥 (𝑘) ,

𝑉2 (𝑘) =
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

𝑥𝑇 (𝑖) 𝑅1𝑥 (𝑖) +
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏

𝑀

𝑥𝑇 (𝑖) 𝑅2𝑥 (𝑖) ,

𝑉3 (𝑘) =
𝑘−1

∑
𝑖=𝑘−𝜏(𝑘)

[
𝑥 (𝑖)

𝑔 (𝑥 (𝑖))
]
𝑇

[
𝑄11 𝑄12
∗ 𝑄22

] [
𝑥 (𝑖)

𝑔 (𝑥 (𝑖))
]

+
−𝜏
𝑚
−1

∑
𝑗=−𝜏
𝑀

𝑘−1

∑
𝑖=𝑘+𝑗

[
𝑥 (𝑖)

𝑔 (𝑥 (𝑖))
]
𝑇

[
𝑄11 𝑄12
∗ 𝑄22

] [
𝑥 (𝑖)

𝑔 (𝑥 (𝑖))
] ,

𝑉4 (𝑘) =
−1

∑
𝑗=−𝜏
𝑚

𝑘−1

∑
𝑖=𝑘+𝑗

𝜂𝑇 (𝑖) 𝑇1𝜂 (𝑖)

+
−𝜏
𝑚
−1

∑
𝑗=−𝜏
𝑀

𝑘−1

∑
𝑖=𝑘+𝑗

𝜂𝑇 (𝑖) 𝑇2𝜂 (𝑖) .

(20)

Firstly, we show that the Lyapunov-Krasovskii functional
𝑉(𝑘) is positive definite. By using Lemma 6, one can obtain

−1

∑
𝑗=−𝜏
𝑚

𝑘−1

∑
𝑖=𝑘+𝑗

𝜂𝑇 (𝑖) 𝑇1𝜂 (𝑖)

≥
−1

∑
𝑗=−𝜏
𝑚

−1

𝑗
(
𝑘−1

∑
𝑖=𝑘+𝑗

𝜂 (𝑖))

𝑇

𝑇1(
𝑘−1

∑
𝑖=𝑘+𝑗

𝜂 (𝑖))

=
−1

∑
𝑗=−𝜏
𝑚

−1

𝑗
[

𝑥 (𝑘)
𝑥 (𝑘 + 𝑗)

]
𝑇

[
𝑇1 −𝑇1
∗ 𝑇1

] [
𝑥 (𝑘)

𝑥 (𝑘 + 𝑗)
]

≥
1

𝜏𝑚

𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

[
𝑥 (𝑘)
𝑥 (𝑖)

]
𝑇

[
𝑇1 −𝑇1
∗ 𝑇1

] [
𝑥 (𝑘)
𝑥 (𝑖)

] ,
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−𝜏
𝑚
−1

∑
𝑗=−𝜏
𝑀

𝑘−1

∑
𝑖=𝑘+𝑗

𝜂𝑇 (𝑖) 𝑇2𝜂 (𝑖)

≥
−𝜏
𝑚
−1

∑
𝑗=−𝜏
𝑀

−1

𝑗
(
𝑘−1

∑
𝑖=𝑘+𝑗

𝜂 (𝑖))

𝑇

𝑍2(
𝑘−1

∑
𝑖=𝑘+𝑗

𝜂 (𝑖))

=
−𝜏
𝑚
−1

∑
𝑗=−𝜏
𝑀

−1

𝑗
[

𝑥 (𝑘)
𝑥 (𝑘 + 𝑗)

]
𝑇

[
𝑇1 −𝑇1
∗ 𝑇1

] [
𝑥 (𝑘)

𝑥 (𝑘 + 𝑗)
]

≥
1

𝜏𝑀

𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏

𝑀

[
𝑥 (𝑘)
𝑥 (𝑖)

]
𝑇

[
𝑇2 −𝑇2
∗ 𝑇2

] [
𝑥 (𝑘)
𝑥 (𝑖)

] ,

(21)

𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘)

=
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

1

𝜏𝑀
𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘)

+
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏

𝑀

1

𝜏𝑀
𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘) .

(22)

Then, it follows from (19)–(21) that

𝑉 (𝑘) ≥
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

1

𝜏𝑀
𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘) +

𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏

𝑀

1

𝜏𝑀
𝑥𝑇 (𝑘) 𝑃𝑥 (𝑘)

+
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

𝑥𝑇 (𝑖) 𝑅1𝑥 (𝑖) +
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏

𝑀

𝑥𝑇 (𝑖) 𝑅2𝑥 (𝑖)

+
1

𝜏𝑚

𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

[
𝑥 (𝑘)
𝑥 (𝑖)

]
𝑇

[
𝑇1 −𝑇1
∗ 𝑇1

] [
𝑥 (𝑘)
𝑥 (𝑖)

]

+
1

𝜏𝑀

𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏

𝑀

[
𝑥 (𝑘)
𝑥 (𝑖)

]
𝑇

[
𝑇2 −𝑇2
∗ 𝑇2

] [
𝑥 (𝑘)
𝑥 (𝑖)

]

≥
1

𝜏𝑚

𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

[
𝑥 (𝑘)
𝑥 (𝑖)

]
𝑇

[

[

𝑇1 +
𝜏𝑚
𝜏𝑀

𝑃 −𝑇1

−𝑇1 𝑇1 + 𝜏𝑚𝑅1

]

]

[
𝑥 (𝑘)
𝑥 (𝑖)

]

+
1

𝜏𝑀

𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏

𝑀

[
𝑥 (𝑘)
𝑥 (𝑖)

]
𝑇

[
𝑇2 + 𝑃 −𝑇2
−𝑇2 𝑇2 + 𝜏𝑚𝑅2

] [
𝑥 (𝑘)
𝑥 (𝑖)

] .

(23)

From condition (15), there exists a scalar 𝛿1 > 0, for any
𝑥(𝑘) ̸= 0, such that

𝑉 (𝑘) ≥ 𝛿1 ‖𝑥 (𝑘)‖
2 > 0. (24)

Now, taking the forward difference of 𝑉(𝑘) along the trajec-
tories of system (1), it yields that

𝐸 {Δ𝑉1 (𝑘)}

= 𝐸 {(𝜂 (𝑘) + 𝑥 (𝑘))
𝑇
𝑃 (𝜂 (𝑘) + 𝑥 (𝑘)) − 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘)}

= 𝐸 {𝜂𝑇 (𝑘) 𝑃𝜂 (𝑘) + 2𝑥
𝑇
(𝑘) 𝑃𝜂 (𝑘)} ,

𝐸 {Δ𝑉2 (𝑘)}

= 𝐸 {𝑥𝑇 (𝑘) 𝑅1𝑥 (𝑘) − 𝑥
𝑇 (𝑘 − 𝜏𝑚) (𝑅1 − 𝑅2) 𝑥 (𝑘 − 𝜏𝑚)

− 𝑥𝑇 (𝑘 − 𝜏𝑀) 𝑅2𝑥 (𝑘 − 𝜏𝑀)} ,

𝐸 {Δ𝑉3 (𝑘)}

≤ 𝐸{(𝜏𝑀𝑚 + 1) [
𝑥 (𝑘)

𝑔 (𝑥 (𝑘))
]
𝑇

[
𝑄11 𝑄12
∗ 𝑄22

] [
𝑥 (𝑘)

𝑔 (𝑥 (𝑘))
]

− [
𝑥 (𝑘 − 𝜏 (𝑘))

𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))
]
𝑇

[
𝑄11 𝑄12
∗ 𝑄22

]

⋅ [
𝑥 (𝑘 − 𝜏 (𝑘))

𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))
]}

= 𝐸 {(𝜏𝑀𝑚 + 1) 𝑥
𝑇
(𝑘) 𝑄11𝑥 (𝑘) + 2𝑥

𝑇
(𝑘) 𝑄12𝑔 (𝑥 (𝑘))

+ 𝑔𝑇 (𝑥 (𝑘)) 𝑄22𝑔 (𝑥 (𝑘))

− 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝑄11𝑥 (𝑘 − 𝜏 (𝑘))

− 2𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝑄12𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))

−𝑔𝑇 (𝑥 (𝑘 − 𝜏 (𝑘))) 𝑄22𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))} ,

𝐸 {Δ𝑉4 (𝑘)}

= 𝐸
{
{
{

𝜂𝑇 (𝑘) (𝜏𝑚𝑇1 + 𝜏𝑀𝑚𝑇2) 𝜂 (𝑘) −
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

𝜂𝑇 (𝑖) 𝑇1𝜂 (𝑖)

−
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) 𝑇2𝜂 (𝑖) −
𝑘−𝜏(𝑘)−1

∑
𝑖=𝑘−𝜏

𝑀

𝜂𝑇 (𝑖) 𝑇2𝜂 (𝑖)
}
}
}

,

𝐸
{
{
{

−
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

𝜂𝑇 (𝑖) 𝑇1𝜂 (𝑖) −
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) 𝑇2𝜂 (𝑖)

−
𝑘−𝜏(𝑘)−1

∑
𝑖=𝑘−𝜏

𝑀

𝜂𝑇 (𝑖) 𝑇2𝜂 (𝑖)
}
}
}

= 𝐸
{
{
{

−
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

𝜂𝑇 (𝑖) (𝑇1 − 𝑋33) 𝜂 (𝑖)

−
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) (𝑇2 − 𝑌33) 𝜂 (𝑖)
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−
𝑘−𝜏(𝑘)−1

∑
𝑖=𝑘−𝜏

𝑀

𝜂𝑇 (𝑖) (𝑇2 − 𝑍33) 𝜂 (𝑖) −
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

𝜂𝑇 (𝑖) 𝑋33𝜂 (𝑖)

−
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) 𝑌33𝜂 (𝑖) −
𝑘−𝜏(𝑘)−1

∑
𝑖=𝑘−𝜏

𝑀

𝜂𝑇 (𝑖) 𝑍33𝜂 (𝑖)
}
}
}

.

(25)

Form the new inequality of Lemma 4, one can get

−
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

𝜂𝑇 (𝑖) 𝑋33𝜂 (𝑖)

≤
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

[𝑥𝑇 (𝑘) 𝑥𝑇 (𝑘 − 𝜏𝑚) 𝜂𝑇 (𝑖)]

⋅ [

[

𝑋11 𝑋12 𝑋13
𝑋𝑇
12

𝑋22 𝑋23
𝑋𝑇
13

𝑋𝑇
23

0

]

]

[

[

𝑥 (𝑘)
𝑥 (𝑘 − 𝜏𝑚)

𝜂 (𝑖)

]

]

= 𝑥𝑇 (𝑘) (𝜏𝑚𝑋11 + 𝑋
𝑇

13
+ 𝑋13) 𝑥 (𝑘)

+ 𝑥𝑇 (𝑘) (𝜏𝑚𝑋12 − 𝑋13 + 𝑋
𝑇

23
) 𝑥 (𝑘 − 𝜏𝑚)

+ 𝑥𝑇 (𝑘 − 𝜏𝑚) (𝜏𝑚𝑋
𝑇

12
− 𝑋𝑇
13
+ 𝑋23) 𝑥 (𝑘)

+ 𝑥𝑇 (𝑘 − 𝜏𝑚) (𝜏𝑚𝑋22 − 𝑋
𝑇

23
− 𝑋23) 𝑥 (𝑘 − 𝜏𝑚) ,

−
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) 𝑌33𝜂 (𝑖)

≤
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏(𝑘)

[𝑥𝑇 (𝑘 − 𝜏𝑚) 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝜂𝑇 (𝑖)]

⋅ [

[

𝑋11 𝑋12 𝑋13
𝑋𝑇
12

𝑋22 𝑋23
𝑋𝑇
13

𝑋𝑇
23

0

]

]

[

[

𝑥 (𝑘 − 𝜏𝑚)
𝑥 (𝑘 − 𝜏 (𝑘))

𝜂 (𝑖)

]

]

= 𝑥𝑇 (𝑘 − 𝜏𝑚) ((𝜏 (𝑘) − 𝜏𝑚) 𝑌11 + 𝑌
𝑇

13
+ 𝑌13) 𝑥 (𝑘 − 𝜏𝑚)

+ 𝑥𝑇 (𝑘 − 𝜏𝑚) ((𝜏 (𝑘) − 𝜏𝑚) 𝑌12 − 𝑌13 + 𝑌
𝑇

23
) 𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) ((𝜏 (𝑘) − 𝜏𝑚) 𝑌
𝑇

12
− 𝑌𝑇
13
+ 𝑌23) 𝑥 (𝑘 − 𝜏𝑚)

+ 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) ((𝜏 (𝑘) − 𝜏𝑚) 𝑌22 − 𝑌
𝑇

23
− 𝑌23) 𝑥 (𝑘 − 𝜏 (𝑘)) ,

−
𝑘−𝜏(𝑘)−1

∑
𝑖=𝑘−𝜏

𝑀

𝜂𝑇 (𝑖) 𝑍33𝜂 (𝑖)

≤
𝑘−𝜏(𝑘)−1

∑
𝑖=𝑘−𝜏

𝑀

[𝑥𝑇 (𝑘 − 𝜏 (𝑘)) 𝑥𝑇 (𝑘 − 𝜏𝑀) 𝜂𝑇 (𝑖)]

⋅ [

[

𝑋11 𝑋12 𝑋13
𝑋𝑇
12

𝑋22 𝑋23
𝑋𝑇
13

𝑋𝑇
23

0

]

]

[

[

𝑥 (𝑘 − 𝜏 (𝑘))
𝑥 (𝑘 − 𝜏𝑀)

𝜂 (𝑖)

]

]

= 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) ((𝜏𝑀 − 𝜏 (𝑘)) 𝑍11 + 𝑍
𝑇

13
+ 𝑍13) 𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝑥𝑇 (𝑘 − 𝜏 (𝑘)) ((𝜏𝑀 − 𝜏 (𝑘)) 𝑍12 − 𝑍13 + 𝑍
𝑇

23
) 𝑥 (𝑘 − 𝜏𝑀)

+ 𝑥𝑇 (𝑘 − 𝜏𝑀) ((𝜏𝑀 − 𝜏 (𝑘)) 𝑍
𝑇

12
− 𝑍𝑇
13
+ 𝑍23) 𝑥 (𝑘 − 𝜏 (𝑘))

+ 𝑥𝑇 (𝑘 − 𝜏𝑀) ((𝜏𝑀 − 𝜏 (𝑘)) 𝑍22 − 𝑍
𝑇

23
− 𝑍23) 𝑥 (𝑘 − 𝜏𝑀) .

(26)

It is easy to get

𝐸 {𝜂𝑇 (𝑘)Θ𝜂 (𝑘)}

= 𝐸 {[(𝐴 − 𝐼) 𝑥 (𝑘) + 𝐵1𝑔 (𝑥 (𝑘)) + 𝐵2𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))

+ 𝑢 (𝑘) + 𝛿 (𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) 𝜔 (𝑘)]
𝑇

⋅ Θ [(𝐴 − 𝐼) 𝑥 (𝑘) + 𝐵1𝑔 (𝑥 (𝑘))

+ 𝐵2𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))

+ 𝑢 (𝑘) + 𝛿 (𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) 𝜔 (𝑘)]} .

(27)

From Assumption 3 and inequality (16), we have

𝛿 (𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) Θ𝛿 (𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘)))

≤ 𝜆 [𝜌1𝑥
𝑇
(𝑘) 𝑥 (𝑘) + 𝜌2𝑥

𝑇
(𝑘 − 𝜏 (𝑘)) 𝑥 (𝑘 − 𝜏 (𝑘))] .

(28)

From Assumption 1, it follows that

(𝑔𝑖 (𝑥𝑖 (𝑘)) − 𝑙
+

𝑖
𝑥𝑖 (𝑘)) (𝑔𝑖 (𝑥𝑖 (𝑘)) − 𝑙

−

𝑖
𝑥𝑖 (𝑘)) ≤ 0,

(𝑔𝑖 (𝑥𝑖 (𝑘 − 𝜏 (𝑘))) − 𝑙
+

𝑖
𝑥𝑖 (𝑘 − 𝜏 (𝑘)))

⋅ (𝑔𝑖 (𝑥𝑖 (𝑘 − 𝜏 (𝑘))) − 𝑙
−

𝑖
𝑥𝑖 (𝑘 − 𝜏 (𝑘))) ≤ 0.

(29)

Thus, for the diagonal matrices 𝑆𝑘 = diag{𝑠1𝑘, 𝑠2𝑘, . . . , 𝑠𝑛𝑘}
(𝑘 = 1, 2), one can receive the following inequalities:

− [
𝑥 (𝑘)

𝑔 (𝑥 (𝑘))
]
𝑇

[
𝑆1𝐿1 −𝑆1𝐿2
∗ 𝑆1

] [
𝑥 (𝑘)

𝑔 (𝑥 (𝑘))
] ≥ 0,

− [
𝑥 (𝑘 − 𝜏 (𝑘))

𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))
]
𝑇

⋅ [
𝑆2𝐿1 −𝑆2𝐿2
∗ 𝑆2

] [
𝑥 (𝑘 − 𝜏 (𝑘))

𝑔 (𝑥 (𝑘 − 𝜏 (𝑘)))
] ≥ 0.

(30)
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Combining (25)–(30), it yields

𝐸 {Δ𝑉 (𝑘) − 2𝑦
𝑇
(𝑘) 𝑢 (𝑘) − 𝛾𝑢

𝑇
(𝑘) 𝑢 (𝑘)}

≤ 𝐸
{
{
{

𝛼𝑇 (𝑘) (Ω + (𝜏 (𝑘) − 𝜏𝑚) Υ1 + (𝜏𝑀 − 𝜏 (𝑘)) Υ2) 𝛼 (𝑘)

−
𝑘−1

∑
𝑖=𝑘−𝜏

𝑚

𝜂𝑇 (𝑖) (𝑇1 − 𝑋33) 𝜂 (𝑖)

−
𝑘−𝜏
𝑚
−1

∑
𝑖=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑖) (𝑇2 − 𝑌33) 𝜂 (𝑖)

−
𝑘−𝜏(𝑘)−1

∑
𝑖=𝑘−𝜏

𝑀

𝜂𝑇 (𝑖) (𝑇2 − 𝑍33) 𝜂 (𝑖)
}
}
}

,

(31)

where

𝛼𝑇 (𝑘) = [𝑥
𝑇
(𝑘) , 𝑥

𝑇 (𝑘 − 𝜏𝑚) , 𝑥
𝑇
(𝑘 − 𝜏 (𝑘)) , 𝑥

𝑇 (𝑘 − 𝜏𝑀) ,

𝑔𝑇 (𝑥 (𝑘)) , 𝑔
𝑇
(𝑥 (𝑘 − 𝜏 (𝑘))) , 𝑢

𝑇
(𝑘)] .

(32)

From (15)–(17), observing that𝑇1−𝑋33 ≥ 0, 𝑇2−𝑌33 ≥ 0, and
𝑇2 − 𝑍33 ≥ 0, one can conclude that

𝐸 {Δ𝑉 (𝑘) − 2𝑦
𝑇
(𝑘) 𝑢 (𝑘) − 𝛾𝑢

𝑇
(𝑘) 𝑢 (𝑘)} ≤ 0. (33)

Then,

2
𝑘
0

∑
𝑖=0

𝐸 {𝑦𝑇 (𝑖) 𝑢 (𝑖)} ≥
𝑘
0

∑
𝑖=0

𝐸 {Δ𝑉 (𝑖)}

− 𝛾
𝑘
0

∑
𝑖=0

𝐸 {𝑢𝑇 (𝑖) 𝑢 (𝑖)} .

(34)

By the definition of𝑉(𝑘) and inequality (23), one can find that

𝑘
0

∑
𝑖=0

𝐸 {Δ𝑉 (𝑖)} = 𝐸 {𝑉 (𝑘0 + 1) − 𝑉 (0)} ≥ 0. (35)

So, one can have

2
𝑘
0

∑
𝑖=0

𝐸 {𝑦𝑇 (𝑖) 𝑢 (𝑖)} ≥ −𝛾
𝑘
0

∑
𝑖=0

𝐸 {𝑢𝑇 (𝑖) 𝑢 (𝑖)} , (36)

for all 𝑘0 ∈ 𝑁. This completes the proof.

Remark 11. It should be pointed out that the new inequal-
ity is introduced to deal with ∑

𝑘−1

𝑖=𝑘−𝜏
𝑚

𝜂𝑇(𝑖)𝑇1𝜂(𝑖) and
∑
𝑘−𝜏
𝑚
−1

𝑖=𝑘−𝜏
𝑀

𝜂𝑇(𝑖)𝑇1𝜂(𝑖), which is immensely different from tra-
ditional ways. This method can effectively reduce the conser-
vatism of the results.

Remark 12. In this paper, not all thematrices in the Lyapunov
functional need to be positive definite. In fact, the conditions
in (15) assure the positive definiteness of the Lyapunov
functional; this is greatly different from traditional ways for
passivity researches of discrete-time neural network, because
the traditional methods always need Lyapunovmatrices to be
positive definite.

Remark 13. It can be seen that the term ∑
𝑘−𝜏
𝑚
−1

𝑖=𝑘−𝜏
𝑀

𝜂𝑇(𝑖)𝑇1𝜂(𝑖)

is divided into two parts; the aim is to make full use of
the relationship of 𝜏𝑀 − 𝜏(𝑘) and 𝜏(𝑘) − 𝜏𝑚, and then,
taking advantage of the integral inequality and Lemma 8, new
passivity conditions are obtained in terms of LMIs.

Corollary 14. Under Assumptions 1 and 3, the discrete-time
stochastic neural network (1) is passive, if there exist scalars 𝜆 >
0, 𝛾 > 0, matrices 𝑃 > 0, 𝑅1 > 0, 𝑅2 > 0, 𝑄 = [

𝑄
11
𝑄
12

∗ 𝑄
22

] > 0,

𝑇1 > 0, 𝑇2 > 0, 𝑋 = [
𝑋
11
𝑋
12
𝑋
13

∗ 𝑋
22
𝑋
23

∗ ∗ 𝑋
33

] ≥ 0, 𝑌 = [
𝑌
11
𝑌
12
𝑌
13

∗ 𝑌
22
𝑌
23

∗ ∗ 𝑌
33

] ≥

0, 𝑍 = [
𝑍
11
𝑍
12
𝑍
13

∗ 𝑍
22
𝑍
23

∗ ∗ 𝑍
33

] ≥ 0, and the positive diagonal matrices
𝑆𝑘 = diag{𝑠1𝑘, 𝑠2𝑘, . . . , 𝑠𝑛𝑘} (𝑘 = 1, 2), such that linear matrix
inequalities (16) and (17) hold.

Now, we will consider the stochastic discrete-time neural
networks with time-varying delay and parameter uncertainties
as follows:

𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴 (𝑘)) 𝑥 (𝑘)

+ (𝐵1 + Δ𝐵1 (𝑘)) 𝑔 (𝑥 (𝑘))

+ (𝐵2 + Δ𝐵2 (𝑘)) 𝑔 (𝑥 (𝑘 − 𝜏 (𝑘))) + 𝑢 (𝑘)

+ 𝛿 (𝑥 (𝑘) , 𝑥 (𝑘 − 𝜏 (𝑘))) 𝜔 (𝑘) ,

(37)

where Δ𝐴(𝑘), Δ𝐵1(𝑘), and Δ𝐵2(𝑘) denote the parameter
uncertainties that are assumed to be of the form

[Δ𝐴 (𝑘) Δ𝐵1 (𝑘) Δ𝐵2 (𝑘)] = 𝑀𝐹 (𝑘) [𝐸1 𝐸2 𝐸3] , (38)

where 𝑀, 𝐸𝑖 (𝑖 = 1, 2, 3) are known constant matrices, and
𝐹(𝑘) is the unknown matrix valued function subject to

𝐹 (𝑘)
𝑇 𝐹 (𝑘) ≤ 𝐼. (39)

Theorem 15. Under Assumptions 1 and 3, the discrete-time
stochastic uncertain neural network (37) is robustly passive, if
there exist scalars 𝜆 > 0, 𝛾 > 0, 𝜀 > 0, matrices 𝑃, 𝑅1, 𝑅2,
𝑄 = [

𝑄
11
𝑄
12

∗ 𝑄
22

] > 0, 𝑇1 > 0, 𝑇2 > 0, 𝑋 = [
𝑋
11
𝑋
12
𝑋
13

∗ 𝑋
22
𝑋
23

∗ ∗ 𝑋
33

] ≥ 0,

𝑌 = [
𝑌
11
𝑌
12
𝑌
13

∗ 𝑌
22
𝑌
23

∗ ∗ 𝑌
33

] ≥ 0, 𝑍 = [
𝑍
11
𝑍
12
𝑍
13

∗ 𝑍
22
𝑍
23

∗ ∗ 𝑍
33

] ≥ 0, and the positive
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diagonal matrices 𝑆𝑘 = diag{𝑠1𝑘, 𝑠2𝑘, . . . , 𝑠𝑛𝑘} (𝑘 = 1, 2), such
that the following matrix inequalities hold:

[

[

𝑇1 +
𝜏𝑚
𝜏𝑀

𝑃 −𝑇1

∗ 𝑇1 + 𝜏𝑚𝑅1

]

]

> 0,

[
𝑇2 + 𝑃 −𝑇2
∗ 𝑇2 + 𝜏𝑀𝑅2

] > 0,

𝑇1 − 𝑋33 ≥ 0,

𝑇2 − 𝑌33 ≥ 0,

𝑇2 − 𝑍33 ≥ 0,

Θ ≤ 𝜆𝐼,

[
[
[
[
[
[
[

[

Σ + Υ𝑖 Ξ1 √𝜏𝑚Ξ2 √𝜏𝑀𝑚Ξ3 0 𝜀Ξ4
∗ −𝑃 0 0 𝑃𝑀 0
∗ ∗ −𝑇1 0 √𝜏𝑚𝑇1𝑀 0
∗ ∗ ∗ −𝑇2 √𝜏𝑀𝑚𝑇2𝑀 0
∗ ∗ ∗ ∗ −𝜀𝐼 0
∗ ∗ ∗ ∗ ∗ −𝜀𝐼

]
]
]
]
]
]
]

]

< 0,

(𝑖 = 1, 2) ,

(40)

where

Ξ1 = [𝑃𝐴 0 0 0 𝑃𝐵1 𝑃𝐵2 𝑃]
𝑇
,

Ξ2 = [𝑇1 (𝐴 − 𝐼) 0 0 0 𝑇1𝐵1 𝑇1𝐵2 𝑇1]
𝑇
,

Ξ3 = [𝑇2 (𝐴 − 𝐼) 0 0 0 𝑇2𝐵1 𝑇2𝐵2 𝑇2]
𝑇
,

Ξ4 = [𝐸1 0 0 0 𝐸2 𝐸3 0]
𝑇
,

Θ = 𝑃 + 𝜏𝑚𝑇1 + 𝜏𝑀𝑚𝑇2,

Σ =

[
[
[
[
[
[
[
[
[

[

Σ11 Σ12 0 0 (𝜏𝑀𝑚 + 1)𝑄12 + 𝐿2𝑆1 0 0

∗ Σ22 −𝑌13 + 𝑌
𝑇

23
0 0 0 0

∗ ∗ Σ33 −𝑍13 + 𝑍
𝑇

23
0 −𝑄12 + 𝐿2𝑆2 0

∗ ∗ ∗ −𝑍23 − 𝑍
𝑇

23
− 𝑅2 0 0 0

∗ ∗ ∗ ∗ (𝜏𝑀𝑚 + 1)𝑄22 − 𝑆1 0 −𝐼
∗ ∗ ∗ ∗ ∗ −𝑄22 − 𝑆2 0
∗ ∗ ∗ ∗ ∗ ∗ Σ77

]
]
]
]
]
]
]
]
]

]

,

Σ11 = (𝜏𝑀𝑚 + 1)𝑄11 + 𝑅1 + 𝜏𝑚𝑋11 + 𝑋13 + 𝑋
𝑇

13
+ 𝜌1𝜆𝐼 − 𝑃 − 𝑆1𝐿1,

Σ12 = 𝜏𝑚𝑋12 − 𝑋13 + 𝑋
𝑇

23
,

Σ22 = −𝑅1 + 𝑅2 + 𝜏𝑚𝑋22 − 𝑋23 − 𝑋
𝑇

23
+ 𝑌13 + 𝑌

𝑇

13
,

Σ33 = −𝑄11 − 𝑆2𝐿1 + 𝜌2𝜆𝐼 − 𝑌23 − 𝑌
𝑇

23
+ 𝑍13 + 𝑍

𝑇

13
,

Σ77 = 𝑃 + 𝜏𝑚𝑇1 + 𝜏𝑀𝑚𝑇2 − 𝛾𝐼.

(41)

Υ1,Υ2 are the same as defined in Theorem 10.

Proof. By replacing 𝐴, 𝐵1, 𝐵2 in (17) with 𝐴 + Δ𝐴(𝑘), 𝐵1 +
Δ𝐵1(𝑘), 𝐵2 + Δ𝐵2(𝑘), respectively, then using Lemma 7, the
desired results can be obtained immediately. The proof is
completed.

4. Numerical Examples

In this section, some numerical examples are proposed to
show the effectiveness of the results obtained in this paper.

Example 1. Consider the system (1) with the following
parameters:

𝐴 = [
0.8 0
0 0.9

] ,

𝐵1 = [
0.001 0
0 0.005

] ,

𝐵2 = [
−0.1 0.01
−0.2 −0.1

] ,
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𝜌1 = 0.003,

𝜌2 = 0.002.

(42)

The activation functions are taken as

𝑓1 (𝑥) = 𝑓2 (𝑥) = tanh (0.5𝑥) . (43)

It can be verified that

𝐿1 = [
0 0
0 0

] ,

𝐿2 = [
0.25 0
0 0.25

] .

(44)

In this example, if 𝜏𝑚 = 3 and 𝜏𝑀 = 12, the optimal passivity
performance obtained is 𝛾 = 12.2439 by the method in [25]
and 𝛾 = 5.4007 by the method in [26], while by Theorem 10
in this paper, the optimal passivity performance 𝛾 = 3.9546.
The comparisons of 𝛾 are listed in Table 1, when 𝜏𝑚 = 3, 𝜏𝑀 =
8, 9, 10, 11, 12. Then, when we assume 𝜏𝑀 = 13, the optimal
passivity performance 𝛾 obtained byTheorem 10 for different
𝜏𝑚 can be found in Table 2. It can be seen that our results are
less conservative than the ones in [25, 26].

Example 2. Consider the system (1) with the following
parameters:

𝐴 = [
0.4 0
0 0.5

] ,

𝐵1 = [
0.001 0
0 0.005

] ,

𝐵2 = [
−0.1 0.01
−0.2 −0.1

] ,

𝜌1 = 𝜌2 = 0.003.

(45)

The activation functions are taken as

𝑓1 (𝑥) = 𝑓2 (𝑥) = tanh (𝑥) . (46)

It can be verified that

𝐿1 = [
0 0
0 0

] ,

𝐿2 = [
0.5 0
0 0.5

] .

(47)

For this example, when 𝛾 = 3 and 𝜏𝑚 = 1, by Theorem 10,
we can get that the upper bound of the time-varying delay is
𝜏𝑀 = 8. When 𝛾 = 4 and 𝜏𝑚 = 1, by Theorem 10, we can get
𝜏𝑀 = 10; we can obtain upper bound of 𝜏𝑀 for different 𝛾 and
𝜏𝑚, which are summarized in Table 3. It can be found from
Table 3 that, for the same 𝜏𝑚, a larger passivity performance
𝛾 corresponds to a larger 𝜏𝑀; with the same 𝜏𝑀, a smaller
passivity performance 𝛾 corresponds to a larger 𝜏𝑚.

Table 1: Optimal passivity performance 𝛾 for different 𝜏𝑀.

Methods 8 9 10 11 12
Theorem 1 [25] 3.9708 4.8691 6.2501 8.3991 12.2439
Corollary 2
[26] 2.9660 3.3483 3.8428 4.4968 5.4007

Theorem 10 2.8481 3.2154 3.5172 3.7438 3.9546

Table 2: Optimal passivity performance 𝛾 for different 𝜏𝑚.

Methods 4 5 6 7 8
Theorem 1 [25] 16.1853 13.2125 11.0130 9.2978 7.9134
Corollary 2
[26] 6.1649 5.6743 5.2451 4.8664 4.5300

Theorem 10 4.4126 4.3752 4.2563 4.1871 4.0802

Table 3: Allowable upper bounds of 𝜏
𝑀
for different 𝛾 and 𝜏

𝑚
.

𝜏𝑚 1 3 5 7 9
𝛾 = 3 8 10 12 14 16
𝛾 = 4 10 12 14 16 18
𝛾 = 6 12 13 15 17 19

5. Conclusions

In this paper, the problem of passivity analysis for discrete-
time stochastic neural networks with time-varying delays
has been investigated.The presented sufficient conditions are
based on the Lyapunov-Krasovskii functional, a new inequal-
ity and linear matrix inequality approach. Numerical exam-
ples are given to demonstrate the usefulness and effectiveness
of the proposed results. Finally, it should be worth noticing
that the proposed method in this paper may be extensively
applicable in many other areas, such as Markov jump neural
networks, Markov jump neural networks with incomplete
transition descriptions, and switched neural networks, which
deserves further investigation.
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