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Abstract. Enabling the full life cycle of scientific and engineering workflows requires robust middleware and services that
support effective data management, near-realtime data movement and custom data processing. Many existing solutions exploit
the database as a passive metadata catalog. In this paper, we present an approach that makes use of federation of databases to
host data-centric wind tunnel application workflows. The user is able to compose customized application workflows based on
database services. We provide a reference implementation that leverages typical business tools and technologies: Microsoft SQL
Server for database services and Windows Workflow Foundation for workflow services. The application data and user’s code
are both hosted in federated databases. With the growing interest in XML Web Services in scientific Grids, and with databases
beginning to support native XML types and XML Web services, we can expect the role of databases in scientific computation to
grow in importance.
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1. Introduction

Scientific and engineering experiments often involve
people and facilities that are distributed within and
across organizations. The large volumes of data ac-
quired during many of these experiments are often
transferred to different network locations for storage
and processing. In the last few years, Grid computing
has generated much interest among scientists and is in-
creasingly being adopted in many scientific projects.
The majority of scientific applications in the Grid rely
on file systems for data management, with very lim-
ited use of Relational Database Management Systems
(RDBMS). Where used, the RDBMS is often exploited
as a query engine to retrieve metadata and/or results.

In any data-centric application the important func-
tionality is to provide effective storage of and ac-
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cess to data. The file systems may provide better
raw read/write performance than database systems,
but there are additional benefits database systems can
bring in transaction support to guarantee data integrity,
query language capability, secured access to data and
other features that include support for procedural lan-
guage stored procedures and functions, native XML
types and web services, transactional messaging, pub-
lish/subscribe replication, data mining extensions and
so on. The development of such new capabilities is
driven by the business market and it has the potential to
enable new approaches to scientific data management
in the Grid environment. An RDBMS with these rich
new capabilities may be viewed as database operating
systems [15] into which one can plug subsystems and
applications.

Database federation can help heterogenous data pro-
duced at different geographical locations to be man-
aged, and provide the user with a single logical view.
The individual database instances in the federation are
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autonomous and any of them temporarily being un-
available does not affect their interactions. Although
database federation as an approach to data integra-
tion [16] can support functions such as query optimiza-
tion, the issue we address in this paper is geographi-
cal separation of data sources, be it within campus or
across organizations.

Different scientific applications in fields such as High
Energy Physics [30], Earth Sciences [19] and Geo-
sciences [21] have already utilized database-centric ap-
proaches in a Grid environment. In the Grid context,
there is also a valuable review of database integration
in [35]. The work described in this paper differs in that
we provide an end-to-end experiment workflow solu-
tion exclusively using the database capabilities. We
present an architecture based on federation of database
instances managing both data and the processing code.
We also show how the user is able to compose their
customized workflow by leveraging database-centric
activities. The data movement operations to transfer
data from experimental sites are enabled by database
replication. The user is able to register their custom
processing codes for a particular application and main-
tain different versions of them. The registered code
runs under the user’s security credentials, as we are
able to leverage the database security features, such
as certificate based, domain based or password based
authentication schemes.

The rest of the paper is organized as follows. Sec-
tion 2 covers some of the recent developments in
databases and how they can be exploited in scien-
tific applications. In Section 3, we present the feder-
ated database architecture for wind tunnel experimen-
tal workflow. Section 4 covers the implementation de-
tails of the database activities that enable workflow in-
tegration. In Section 5, we discuss wind tunnel experi-
ment workflow based on database activities. Section 6
presents discussions on how some of the existing sci-
entific projects exploit database technologies. Finally,
conclusions and future work are presented in Section 7.

2. Recent database trends – Leveraging for
scientific applications

The capabilities of database systems are increas-
ing and their architectures are undergoing continuous
change. Some of the features that provide new possi-
bilities for scientific application development are dis-
cussed below.

2.1. Language runtime

Many popular database systems now host language
runtimes supporting high-level language stored proce-
dures, functions, triggers, and user-defined data types.
For example, SQL Server 2005 hosts the Microsoft
.NET Common Language Runtime (CLR) [11]; the
Java Virtual Machine (JVM) and .NET CLR are sup-
ported in Oracle [36] and IBM DB2 [3]. This en-
ables scientific applications to manage both data and
the processing code in databases. The implementa-
tion approach discussed in Section 4 leverages SQL
Server CLR integration feature enabling user to regis-
ter compute-intensive code written in any of the CLR
languages (C++, Java, C#, and so on).

2.2. Native XML support

With XML becoming a data type, storing XML doc-
uments, validating them against a schema, and query-
ing based on XQuery expressions are all part of the
core XML functionalities built into popular database
systems [18,20,26]. This feature is useful in processing
XML message exchanges between Grid services and to
store semi-structured scientific data in XML format.

2.3. XML Web Services

With the increasing interest in XML Web Services,
database systems [2,8,9] are beginning to support web
services hosting inside the databases, eliminating the
need for external hosting containers or web servers.
This would enable Web Services Resource Framework
(WSRF) [10] based, or similar, Grid services to be
exposed directly from the databases.

2.4. Transactional messaging

Asynchronous and reliable messaging between
database instances are possible in present day database
systems (SQL Service Broker [34] or Oracle
streams [7]). We have utilized Microsoft SQL Server
2005 Service Broker for service level interactions
which is discussed in Section 4. Service Broker ob-
jects include queues, dialogs, message types, contracts
and services. These objects can be created using regu-
lar CREATE, ALTER and DROP Data Definition Lan-
guage (DDL) commands. The messages from the trans-
mit queue of the local database instance to the receive
queue of the remote database instance can be trans-
ferred inside a transaction making the message trans-
fer reliable. This database feature can be exploited for
developing reliable Grid services.
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2.5. Replication

The publish/subscribe model in replication allows
tables, stored procedures or any other database objects
to be published. Different replication styles determine
when and how the data reaches the subscriber. For ex-
ample, transactional push-style replication moves data
to the subscriber in near-realtime. Database replication
can be utilized when scientific applications have to deal
with distributed data and the availability of data is to
be ensured in more than one location.

3. Architecture

Figure 1 shows a federated database architecture for
a typical multi-site wind tunnel facility which is similar
to other applications. Wind tunnels are widely used to
design, test and verify aerodynamics of aircraft, cars,
yachts, and buildings, amongst others. The University
of Southampton has three main wind tunnel facilities
(11’× 8’, 7’ × 5’ and 3’ × 2’) spread over the campus,
housing heterogenous, specialized experimental hard-
ware and software for academic and industrial research.
The high volume of data generated from multiple ex-
periments are transferred from the data acquisition sys-
tem to a suitable network location where user can carry
out further processing and analysis.

There are three logical database instances partici-
pating in the federation – (1) Site databases (SiteDB):
Considering the importance of timely data movement
and near-realtime requirements, the SiteDB publishes
the experiment data tables to the MasterDB using trans-
actional and push-style replication. This ensures im-
mediate transfer of experimental data to the master as
soon as the data imported into SiteDB from the data
acquisition system. (2) Master database (MasterDB):
This maintains user and application tables, and pub-
lishes them to sites and worker databases. It subscribes
to experimental data from all the sites. The master node
also runs workflow services for users to register, run
and monitor their application workflow. (3) Worker
databases (WorkerDB): This set of database instances
is managed as a cluster of nodes. It carries out the pro-
cessing work assigned by the master. It also manages
different versions of custom user code for processing.

The database instances in the federation enable a
complete end-to-end wind tunnel experimental work-
flow to be created and executed by hosting a set of
database services (activities) with master node provid-
ing additional workflow services. The master schedules

the processing activities from multiple user workflows
onto worker nodes for load balancing. Access to other
Grid resources, such as compute clusters, enabled us-
ing Grid and/or Web Services, is also supported based
on our earlier work [22].

Figure 2 shows the sequence of messages and data
exchanges between different database instances and the
user’s wind tunnel grid client. The actions labeled with
letters A, B, C and D are independent of a particular
workflow instance and they can happen at any stage.
The users can compose workflows based on database
activities, compile into a workflow assembly and sub-
mit to MasterDB using workflow services for schedul-
ing (step A). They can also monitor the status of their
currently running workflows (step B). They can com-
pile a customized assembly and register it through the
assembly management services running in MasterDB
(step C1). The master in turn makes the assembly
available to WorkerDB for registration and subsequent
load balancing of users jobs (step C2). Each assem-
bly is registered with a unique name derived from the
username, application type and user specified version
number. This unique name registration enables a user
to maintain different versions of algorithms to process
the experimental data.

The actual workflow execution starts when the user
initiates data acquisition during an experimental run
(step 1). When the data acquisition is over, the service
waiting for acquisition to complete (step 2) changes
the state of the current experimental run from “Waiting
for DAQ” to “DAQ over”. As the workflow is based
on a state machine model, this state change transitions
the workflow to the next stage, triggering an import
data activity (step 3). Since the application data tables
are subscribed at MasterDB and published by means of
transactional push publication in sites, the newly im-
ported data is transferred to MasterDB in near-realtime
(step 4). Now, with data available at MasterDB and
the user’s application code registered with master and
workers, the data can be distributed for processing (step
5). The processing requests to workers comprise user-
name, application code and version to uniquely identify
the assembly for processing (step 6). On receiving the
processing request, the worker either invokes the de-
fault processing or a customized method registered by
the user (step 7). The worker node sends the computed
results and the status of the processing to the master
(step 8). The master receives, consolidates and records
the results (step 9). The final step involves a call to the
Matlab interface to generate a plot and save it into the
results table (step 10).
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Fig. 1. Federated database architecture for wind tunnel application.
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Fig. 2. Data and message flow for microphone array application.

4. Implementation

The implementation details we discuss in this section
are based on Microsoft SQL Server 2005, leveraging
SQL Service Broker [34] and .NET integration [11]
features. These two features are typical of a modern
RDBMS as discussed in Section 2, and we believe

the generic approach is applicable to other database
systems.

4.1. Motivating example – Microphone arrays

The microphone array technique (Fig. 3) is used to
measure noise of aircraft components (slats, landing-



A. Paventhan et al. / Federated database services for wind tunnel experiment workflows 177
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Fig. 3. Microphone phased array experiment [29].

gears, flaps etc) to help aerospace engineers improve
aircraft design and to reduce the overall airframe
noise [32]. Microphone arrays consist of multiple,
around 100, microphones that must be simultaneously
sampled. The phase shift between channels is then
used to derive acoustic source information [29,32]. The
microphone array processing happens in two stages:
cross spectral matrix computation and beamforming.
The cross-spectral matrix (CSM) is an M ×M matrix,
where M is the number of microphones. The CSM
computing steps involve data calibration of the raw
samples, Frequency Fourier Transform (FFT) compu-
tation, block averaging of cross spectral components
and background noise removal [29,33]. By dividing the
microphone samples, the CSM steps can be run in par-
allel as can be seen in Section 4.3. In the beamforming
step, the beamforming expression is formed using pre-
computed CSM and grid coordinates are generated for
plotting. The generation of beamforming plots for mul-
tiple frequencies can be run in parallel. Even though
we consider microphone arrays as an example in this
paper, the approach and the discussions are valid for
other wind tunnel experiments as well [23].

4.2. Wind tunnel database

Figure 4 shows the database schema used for the
wind tunnel experimental data management. The user
table holds the username, user’s role, user’s X.509 cer-
tificate subject and other user-specific details. When
the new application is created, the applications table is
added with dedicated data, results and run table names.
Both user table and applications table are published by
the master and subscribed by sites and worker nodes.
The run and results tables are maintained in the master.
The data tables store both the raw data and the con-

figuration information from an experiment. For exam-
ple, LDAData and MicArrayData hold data for Laser
Doppler Anemometry (LDA) experiment and micro-
phone arrays experiment respectively. The data tables
are maintained at wind tunnel sites and published to
master by transactional replication. The raw data im-
port and update happen at sites independent of the mas-
ter and at the same time the data gets propagated from
sites to the master in near-realtime. Every experimen-
tal run in the run table has an associated dataset in a
data table. The relationship between runs and data is
many-to-one. This allows multiple runs with different
processing parameters to be associated with a single
dataset. Similarly, the results table holds multiple re-
sult records for each experimental run. The user as-
semblies table is maintained at the master and worker
nodes. It has one entry for each assembly registered by
the user as will be discussed further in Section 4.3.

4.2.1. Stored procedures
The service code for the database activities are

written as CLR stored procedures in three differ-
ent assemblies, namely, site assembly, master as-
sembly and worker assembly and they are regis-
tered in SiteDB, MasterDB and WorkerDB respec-
tively. The main stored procedure in SiteDB is Im-
portMicData. The stored procedures that run at Mas-
terDB are Register/Remove/ReinstallAssembly, AddMi-
cArrayRun, MasterCSMScheduler, CSMCompute and
Beamforming. At the worker the main stored pro-
cedures are WorkerCSMScheduler, CSMCompute and
Beamforming.

4.2.2. Service broker objects
Table 1 shows how different service broker objects

(messages, contracts, queues and services) are cre-
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Published by master

Published by sites

Fig. 4. Database schema for wind tunnel application data management.

ated using regular SQL DDL commands in the worker
database. The message types can be binary or XML
with a validation schema. A contract specifies the types
of messages that can flow between a sender and re-
ceiver. Queues are placeholders for messages and cen-
tral to transactional messaging; on new message arrival
the activation stored procedure (for example, Work-
erServiceProc in the Queue declaration) is invoked. A
service is an endpoint that participates in a conversa-
tion. The master and worker communicate with the
help of broker objects. Table 2 shows how the mas-
ter would send a CSMComputeRequest message to
worker.

4.3. Database activities

The following are the database activities that form the
basis for the development of customized wind tunnel
experiment workflows.

4.3.1. Assembly activities
Assemblies are libraries containing a user’s applica-

tion-specific processing code, which can be registered
with the master and worker databases. The user can
choose the default processing functions available or
write a custom one, register with the master, and in turn,
with the worker. Once the assembly is registered, the
public interfaces (public class, static functions, data)
are available for access from service stored procedures.
The assembly activities RegisterAssembly, Reinstal-
lAssembly and RemoveAssembly will internally trans-
late into SQL DDL statements CREATE ASSEMBLY,
ALTER ASSEMBLY and DROP ASSEMBLY respec-
tively. On receiving register assembly message, the
service procedure catalogs the assembly with a unique
name derived from username, application code and
version. The user’s custom processing functions are
identified and a lookup table (HandlerTable column)
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Table 1
Service Broker objects creation using SQL DDL commands

Message types:
CREATE MESSAGE TYPE RegisterAssemblyRequest VALIDATION = WELL FORMED XML;
CREATE MESSAGE TYPE ReinstallAssemblyRequest VALIDATION = WELL FORMED XML;
CREATE MESSAGE TYPE RemoveAssemblyRequest VALIDATION = WELL FORMED XML;
CREATE MESSAGE TYPE AssemblyReply VALIDATION = WELL FORMED XML;
CREATE MESSAGE TYPE CSMComputeRequest VALIDATION = NONE;
CREATE MESSAGE TYPE CSMComputeReply VALIDATION = NONE;
CREATE MESSAGE TYPE BeamformingRequest VALIDATION = NONE;
CREATE MESSAGE TYPE BeamformingReply VALIDATION = NONE;

Contract:
CREATE CONTRACT WorkerContract(

RegisterAssemblyRequest SENT BY INITIATOR,
ReinstallAssemblyRequest SENT BY INITIATOR,
RemoveAssemblyRequest SENT BY INITIATOR,
AssemblyReply SENT BY TARGET,
CSMComputeRequest SENT BY INITIATOR,
CSMComputeReply SENT BY TARGET,
BeamformingRequest SENT BY INITIATOR,
BeamformingReply SENT BY TARGET );

Service Procedure:
CREATE ASSEMBLY WorkerAssembly FROM ’path/to/assembly’ WITH PERMISSION SET = SAFE;
CREATE PROC WorkerServiceProc

EXTERNAL NAME WorkerAssembly.[WTG.DBLibrary.WorkerDBService].ServiceProc

Queue:
CREATE QUEUE WorkerQueue

WITH STATUS = ON, RETENTION = OFF,
ACTIVATION( STATUS = ON, PROCEDURE NAME = WorkerServiceProc,

MAX QUEUE READERS = 4, EXECUTE AS SELF );

Service:
CREATE SERVICE WorkerService ON QUEUE WorkerQueue (WorkerContract);

Table 2
An illustration of a transactional message exchange

Master database Worker database

BEGIN TRANSACTION BEGIN TRANSACTION
SET @Message = <CSMComputeRequest>... WAIT FOR(
BEGIN DIALOG @conversationHandle RECEIVE TOP(1)

FROM SERVICE [MasterService] @mesg type = message type name,
TO SERVICE [WorkerService] @Message = message body
ON CONTRACT [WorkerContract] FROM [WorkerQueue]

SEND ON CONVERSATION @conversationHandle WHERE conversation handle =
MESSAGE TYPE [CSMComputeRequest] @ConversationHandle
(@Message) );

COMMIT COMMIT

with metadata for function invocation is stored into the
UserAssemblies table.

4.3.2. Process activities
The process activities execute application-specific

code either from the default assembly or from a user
registered one. When a processing message is sent
from the master, corresponding lookup table is retrieved
to invoke the user’s custom processing function. For
example, the microphone array processing involves a
cross spectral matrix (CSM) computation and beam-

forming step. The CSM computation can be executed
in parallel by splitting the raw microphone array sam-
ples equally among processing threads to improve the
performance. The threads running on worker nodes
compute the cross spectral matrix in parallel on portion
of the data. The master receives the part results from
workers, performs an averaging operation to form the
cross spectral matrix and stores this in the MicResults
table. The beamforming step is executed once for each
frequency to generate the beamforming plot. In the case
of multiple frequencies, different frequency values can
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be sent to worker nodes to generate the beamforming
plot in parallel. The output of individual beamforming
steps are three square matrices X, Y and Z with grid
point values for plotting.

4.3.3. Plot activity
Matlab has been chosen in order to generate

publication-quality scientific plots. The plot function
is written in Matlab which takes various arguments
for plotting. The invoking of Matlab code from .NET
was achieved using the Matlab .NET builder tool [5]
which wraps the Matlab function into a .NET class.
The plot activity uses the wrapper class to generate
the plot and stores the image into the results table for
download/visualization.

4.4. Microphone processing: Performance

Table 3 shows the cross spectral matrix processing
timings for a C# command line application and for the
same code hosted inside SQL Server as a Common
Language Runtime (CLR) stored procedure. The two
nodes utilized for this test are Dual Pentium III 1 GHz
with 1 GB RAM running Windows Server 2003 and
SQL Server 2005, and connected over a 100 Mbps
LAN. The SQL Server hosts the .NET 2.0 runtime. The
raw data samples used for the test were acquired from
56 microphones consisting of 100 blocks with a block
size of 2048 (total samples = 204800) [29]. The load
time is the time taken to read the microphone samples
into memory for processing. In the command line case,
the samples are read from a delimited text file and in
the SQL CLR case, they are read from the RawData
BLOB (Binary Large Object) column in the MicArray-
Data table. As can be seen from the table, parsing
of samples from text file takes more than double the
time of deserializing the raw data BLOB into memory.
The SQL CLR cross spectral matrix processing tim-
ing is comparable and the overhead due to processing
inside the database is marginal, as can be seen from
the Fig. 5. The split time is the time taken to parti-
tion the samples among the threads and the merge time
is the time taken to combine the cross spectral matrix
received from threads by an averaging operation. The
split and merge time for 2 threads of SQL CLR case on
a single node is again comparable with the command
line timings.

The computing of the beamforming expression in-
volves multiplying the cross spectral matrix with a
weight vector for each grid point of the plot. This
matrix-vector multiplication can be optimized with spe-

cialized Intel’s Streaming SIMD (Single Instruction
Multiple Data) Extension [17] instructions. The opti-
mized command line beamforming timing is obtained
using the NMath Core [6] C# library (which in turn
uses Intel’s Math Kernel Library). This optimization
library could not be registered into the database due to
the SQL CLR strict versioning policies (we expect this
to be resolved in the future). In order to provide a fair
comparison, we measured the beamforming timings
without optimizations (marked with � in Table 3); the
SQL CLR timings is comparable to the same command
line version.

The overhead due to queueing of the raw data is no-
ticeable in the four thread case. But, this particular test
is more to illustrate the advantage of reliably partition-
ing and load balancing a service using database mes-
saging, than to show any speedup. With multiple users
running different experiments producing a high volume
of data, a reliable service to the wind tunnel experimen-
tal environment is more important. This is discussed
further in Section 6. Also, for cases, where the exper-
imental processing is long running due to data volume
or the nature of the processing, the queueing overhead
can be amortized. Further, the database messages can
be routed through a low latency and high bandwidth
network technologies, such as, InfiniBand and other
high speed interconnects, to improve the performance.

5. Workflow integration

The workflow integration is achieved using Mi-
crosoft Windows Workflow Foundation that is part of
the upcoming Microsoft .NET development framework
3.0 [4].

5.1. Windows Workflow Foundation

The workflow in Windows Workflow Foundation
can be composed using a visual workflow designer
or declaratively written in XML Applications Markup
Language (XAML) or coded completely in CLR lan-
guages. The workflow must be compiled with a
workflow compiler before it can be run. There are
two workflow models supported [12]: (1) Sequen-
tial workflow model – comprising activities that ex-
ecute in a predictable sequential path, and (2) State
machine model – a flow driven by events trigger-
ing state transitions. In both these models the ba-
sic element of the workflow is called an activity.
Some of the Windows Workflow Foundation’s activ-
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Table 3
Microphone array processing (CSM timings)

Dual P-III Load data Split Merge CSM step CSM Total Beamforming step
1 GHz CPU; 1GB RAM (single frequency)

Sequential (Command line) 30.231 – – 89.400 89.400 99.043 (288.149�)
2 threads (Command line) 28.587 0.996 1.499 51.287 53.782 99.043 (288.149�)

Sequential (SQL CLR) 12.253 – – 89.635 89.635 292.553�

2 threads (SQL CLR) 12.529 1.321 1.604 54.423 57.348 292.553�

4 threads (SQL CLR) 11.850 13.971† 84.496‡ 30.899 129.366‡ 292.553�

on two nodes
�Without using matrix-vector multiplication optimizations. All timings in seconds.
†Time to split, serialize & send.
‡Time due to queuing delay & merge.
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Fig. 5. Microphone cross spectral matrix performance.

ity types include control-flow (While, IfElse, Delay),
exception (throw, exception-handler and BPEL com-
pensations), data handling (Update, Select), transac-
tions (and compensations for long-lived “transactions”
that cannot be directly unwound) and communica-
tion (InvokeWebService, InvokeMethod). The Sys-
tem.Workflow.ComponentModel.Acitivity is the base
class for all the activities. This extensible development
model enables creation of domain-specific activities
which can then be used to compose workflows that are
useful and understandable by domain scientists. The
workflow hosting layer part of the Windows Workflow
Foundation is responsible for communication, persis-
tence, tracking, transaction, timing, dynamic updates
and threading. A long running workflow instance can
be persisted, when it is faced with resource constraints,

with all its state in a database so that it can be restarted
again. With this flexible approach to workflow hosting
and an extensible framework for workflow activities,
most of the functionality of typical state-of-the-art sci-
entific workflow systems [37] can be hosted on top of
Windows Workflow Foundation.

5.2. Wind tunnel experiment workflow

The database activities discussed in Section 4 are
wrapped into an experiment-specific workflow activity
library for users to compose workflow and submit to
the master node for hosting. Figure 6 shows the com-
position of custom microphone workflow based on a
state machine workflow model.



182 A. Paventhan et al. / Federated database services for wind tunnel experiment workflows

Fig. 6. Microphone experiment workflow based on database activities.

The initial state of the microphone workflow is Wait-
ForDAQ and the final state on success is Plot or Work-
flowError in case of any error during workflow exe-
cution. The experiment-specific activities are derived
from the State activity. The State activity consists of
one more event driven activities. For example, the Im-
portMicData state has DataImported event transition-
ing to MoveData state and ImportError event transi-
tioning to WorkflowError state. On completion of an
event, the SetState as part of the event-driven activity
sequence transitions the workflow to the next state. The
CSMCompute and Beamforming are workflow states
representing processing.

The user composes the workflow, compiles it into an
assembly and submits it to the master node for host-
ing. The workflow is scheduled and run at the master
node. The workflow activities connect to the master
database to execute the corresponding database activi-
ties described in Section 4. The state transitions of the
workflow are recorded into the run tables of the master
database. Users can monitor the status of the submitted
workflow instance, to find out whether it is still running,
completed successfully, or terminated with an error.

A similar, customized workflow approach to Laser
Doppler Anemometry (LDA) experiment based on se-
quential workflow model is presented in [23].

6. Discussions

The nature and degree of use of Relational Database
Management Systems (RDBMS) in scientific data man-
agement has been variable. Some of the usage has been
to stream data near-realtime, to host scientific services
by means of static stored procedures, to partition data
to improve query performance, to store results, to store
metadata and so on. In this section, we discuss related
scientific projects, highlighting the degree of database
systems usage and offer our arguments in favor of keep-
ing databases central to the entire experimental work-
flow.

The NEESgrid framework [24], part of the Net-
work for Earthquake Engineering Simulation project,
supports instrument integration and exposes domain-
specific Grid services for conducting and monitoring
distributed earthquake engineering experiments. In
terms of the experimental facilities, NEESgrid has
some close similarities with wind tunnel experiments,
but the emphasis is more on remote access to in-
struments in a multi-site environment. NEESgrid
uses databases for metadata management only. The
myLEAD [25] tool, part of the Linked Environment for
Atmospheric Discovery (LEAD) project, provides spe-
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cialized services for atmospheric scientists to search,
store and catalog data objects generated during their
investigations. The metadata catalog is managed in
an RDBMS along with a set of database-stored proce-
dures to expose persistent Grid services. It uses OGSA-
DAI as a middleware for client interactions. OGSA-
DAI [13] provides Grid service interfaces to different
data sources (relational, XML, flat files). The advan-
tages of database management systems in real-world
scientific application have been demonstrated in Sloan
Digital Sky Survey (SDSS) [31] project. With effi-
cient indexing, join and parallel query operations, a
twenty times speedup was achieved as compared to a
file-based implementation. MySQL’s streaming sup-
port has been utilized while hosting archival and real-
time Geographical Information Systems (GIS) Grid ser-
vices in [14]. The BioSimGrid project [1] manages
large-scale biomolecular simulation data in flat files
and associated metadata in RDBMS (Oracle). It sup-
ports simulation data to be deposited into a repository
which is then replicated to different sites for retrieval
and analysis.

As can be seen from the above applications, the major
factors that influence how database systems are utilized
in a scientific environment include data characteristics,
nature of acquisition, processing requirements and per-
formance. In the case of multi-user facilities such as
wind tunnels where different experiments, multiple lo-
cations, multiple runs, changing parameters, high vol-
ume data and customized processing are the order of
the day, it requires an approach that meets this set of
demanding requirements.

The emphasis in the federated database approach [28]
is on the ability of the local database instances to con-
tinue to support local operations autonomously, while
they are part of the federation, to provide a set of global
operations. Our architecture takes this approach while
integrating the geographically distributed sites. The
site databases operate independently in the federation,
sharing information through publish/subscribe replica-
tion with the master. Also, the communication between
the master and the worker nodes are by means of reli-
able transactional messaging. Any site node or worker
node or even the master not being available temporarily
will not affect the global operations. This is of partic-
ular importance in wind tunnel operations, which are
deemed mission critical. A typical industrial scenario
would be for a Formula One racing team. Sites would
include the factory, multiple wind tunnel sites, testing
and race tracks in different countries, where the net-
work bandwidth and quality of service cannot always

be guaranteed. Any of these sites could be offline for
a number of reasons, and many are required to operate
around the clock. Hence, local autonomy and reliabil-
ity are important for such an application.

In general, scientific projects keep their raw data in
flat files. In our approach, the wind tunnel raw data
is imported as a Binary Large Object (BLOB) into the
database at experiment sites and these are replicated
to the master node for processing. As can be seen
from [27], the load performance of read-only BLOB
objects are comparable to the file systems, whereas
write/update operations that result in fragmentation of
the BLOB affect the load time. In our microphone ex-
periment example, the raw data is a read-only object,
the BLOB structure is accessed before CSMCompute
and never gets updated. Similarly the CSM matrix
BLOB, once stored, is always read before the Beam-
forming step. In this usage scenario, deserializing the
BLOB is more advantageous as can be verified by the
load time in Table 3 when compared to loading the
raw data from text file stored in the file system. There
is an additional overhead in parsing the floating-point
samples from a text file.

In typical wind tunnel processing, an aerodynamicist
would be interested in changing and customizing the
processing algorithms. User customization of the pro-
cessing algorithm, together with an ability to use the
default processing steps, is an essential requirement.
By taking advantage of the language runtime support
inside databases, managing the user customized algo-
rithm is possible in our approach. The Microsoft .NET
development environment has an extensive support for
languages such as Java, C++ and C#, with other lan-
guage compilers such as Python and FORTRAN also
being available, users can program in their language of
choice. The user code is registered to run under the
user’s security credentials to gain authorized access to
the dataset and results.

7. Conclusions

In this paper, we presented an approach to supporting
an end-to-end engineering workflow based on federa-
tion of databases. The database instances host database
services which are invoked from a state machine model
workflow. We have demonstrated this approach with
a reference implementation leveraging the features of
SQL Server and Windows Workflow Foundation. The
architecture is generic and can be implemented using
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database systems other than SQL Server, such as OR-
ACLE or IBM DB2.

The advantages in this approach include reduction
in the overall turnaround time by providing an easy-
to-use, extensible workflow framework, relieving the
user of data management issues, and providing a robust
and reliable system by using the features typical of
commercial database systems, such as replication and
transactional messaging. Even though the approach
and the implementation discussed in this paper is with
reference to wind tunnel experiments, it can be easily
extended to other scientific and engineering application
with similar characteristics.
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