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Hopf bifurcation analysis for compound stochastic van der Pol system with a bound random parameter and Gaussian white
noise is investigated in this paper. By the Karhunen-Loeve (K-L) expansion and the orthogonal polynomial approximation, the
equivalent deterministic van der Pol system can be deduced. Based on the bifurcation theory of nonlinear deterministic system,
the critical value of bifurcation parameter is obtained and the influence of random strength § and noise intensity o on stochastic
Hopf bifurcation in compound stochastic system is discussed. At last we found that increased § can relocate the critical value of
bifurcation parameter forward while increased o makes it backward and the influence of § is more sensitive than o. The results are

verified by numerical simulations.

1. Introduction

In recent years, the research of dynamics behaviors have been
extensively concentrated on the stochastic nonlinear dynam-
ical systems, whose internal uncertainty of system forming
random parameter and external actions of system forming
random excitation are modeled as different noise processes.

There are some results about these different kinds of
stochastic systems. The first kind of stochastic dynamical
systems are the systems driven by stochastic parameter exci-
tation or external noise excitation idealized as Gaussian white
noise processes. Dynamics behaviors for stochastic van der
Pol system and its coupled systems with parametric and exter-
nal forces have been investigated by the stochastic averaging
method [1-6], such as response analysis, Hopf bifurcation,
and chaos. The existence of Hopf bifurcation about stochastic
van der Pol system treating driving term as a randomly fluc-
tuating quantity is obtained [7, 8]. For the nonlinear system
with external Gaussian white noise, various properties of the
response are presented [9-11]. With the cumulant-neglect
closure method, the statistical moments in a Duffing system
responding to random excitation are established [12]. The
possibility for onset of chaotic motion in the Duffing oscil-
lator under parameter excitation of bound noise is studied
by the stochastic Melnikov method [13]. The second kind of

stochastic systems are the systems with only internal random
parameter considered as time-invariant and that served as
random fields or as random variables. The orthogonal series
expansion using a vector of random variables to represent the
random field is widely exploited and applied in the stochastic
structural systems [14-17]. Li and Fang et al. [18-21] have
developed the orthogonal polynomial method to approxi-
mate the dynamics response of linear random structure by a
series of orthogonal basis functions. Owing to the representa-
tion of random parameters as random fields greatly increases
the size and complexity of the analysis, Ma et al. [22-25] have
applied the method of orthogonal polynomial approximation
to study various dynamics behaviors of nonlinear systems
with random parameter idealized as random variables and
have verified this method as feasible and effective.

However, there also exist other stochastic systems with
both random fields and external noise processes. By trans-
forming from stochastic Duffing system to the deterministic
structural Duffing system with external noise excitation,
[26] has obtained the statistical moments and the proba-
bility density function of response to study the reliability
analysis of structure. The hybrid polynomial chaos and
pseudoexcitation method have been proposed to evaluate the
random vibration response in the linear structure system with
uncertain parameters under external random excitation [27].



With the combination of the orthogonal polynomial approx-
imation and the K-L expansion, the sequential orthogonal
decomposition is developed to discuss the response analysis
of ground motion by Li [28, 29]. The precise integration
method is used to obtain the K-L decomposition of the
nonstationary filtered white noise random excitation; then
based on the linear superposition principle, each element of
the K-L vector is added to each equation of the extended
order system by the form of one to one and a small amount of
K-L vector used to compute response of the extended order
system can obtain a good result [30].

In this paper, we name the stochastic system with both
random parameter treating as random variables and external
noise processes as compound (or double) stochastic dynam-
ical system. For random variables conforming to arch-like
probability density function, a bound random parameter
van der Pol system with external Gaussian white noise is
considered, and the response of the system is presented
by two sets of orthogonal polynomial bases in random
function space under the condition of convergence in mean
square. Compared with [26, 27, 30], the random response of
this paper for the stochastic van der Pol system is directly
expressed as the double series form of deterministic response
using the known orthogonal polynomial functions by means
of the sequential orthogonal decomposition. So this paper
can be viewed as an extensive and supplementary version
of the related literature. On the other hand, there are a few
results to explore the stochastic bifurcation in this kind of
stochastic system. So the stochastic Hopf bifurcation of van
der Pol system with a bound random parameter and Gaussian
white noise is explored in detail in this paper.

This paper is organized as follows. In Section 2, a new van
der Pol system with a bound random parameter and Gaussian
white noise is simplified into its equivalent deterministic one.
The critical value of Hopf bifurcation parameter is given by
the bifurcation theory of deterministic system and the effect
of random strength and noise intensity on the critical value
of bifurcation parameter is analyzed in Section 3. In the
same section the results are verified by numerical simulations.
Section 4 concludes the influence of random parameter and
Gaussian white noise on Hopf bifurcation in stochastic van
der Pol system.

2. The Equivalent Deterministic One for
Compound Stochastic van der Pol System

Excited by internal random parameter and Gaussian white
noise, compound stochastic van der Pol system is established
in this paper:

i+ (ax’ = B)x+x=0F (1), 1)

where « and f3 are deterministic parameter and random
parameter, respectively. F(t) is Gaussian white noise with zero
mean and its intensity is 0.
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Random parameter f3 can be defined as

B =B+ du, )

where u is random variable obeying arch-like probability
density function defined on [-1,1] and 3 and § are all the
statistical parameters of 3.

Using eigenfunctions as the orthogonal bases, stochastic
noise process F(t) can be expressed as the denumerable series

form called the K-L expansion [31-33], so the K-L expansion
of F(t) is

N
F(t)=Y EnAf, (1), 3)
n=0

where A, and f,(t) are the eigenvalues and eigenfunctions
of the covariance function of F(t), and eigenfunctions f,,(t)
form a set of complete orthogonal bases in complete Hilbert
space and satisfy JOOO f.® f,(Hdt = 6, in which J,,,
is the Kronecker function. §, are independent orthogonal
random variables obeying normal distribution and have the
properties of E(¢,) = 0, E(ffl) =1.

Eigenvalues and eigenfunctions of the K-L expansion for
Gaussian white noise with zero mean are given [34], namely,
A, =1/[(n+ 1/2)*7%] and f.() = V2((n + 1/2)mt).

The only fixed point of system (1) is A(cF(t),0) when
o # 0 and can be further transformed into the original point
0O(0, 0). Through the coordinate transformation, system (1) is
rewritten as coupled first-order system (here is still noted by
X):

x=y,
_ (4)
y=-x+ (/3 —ad’F? (t)) y—a(x+20F (t)) xy.

By the sequential orthogonal decomposition, the
response of system (4) can be expressed in the following
double series form:

N M
xEut) =) Y H (E)T; ) x; (1),
i=0 j=0

o (5)
yEut) =Y Y H & T;w)y; ),

i=0 j=0
where x;;(t) = jﬂg jﬂu x(&, u, ) Hy()T () (§)0(u)dE du and
y;i(t) = jnz [, ¥& w OH{OT;(w)w(§)0(w)dE du, in which

w(&) and O(u) are normal probability density function and
arch-like probability density function, respectively. Corre-
sponding to these probability density functions, Hermite
orthogonal polynomial H;(§) and Chebyshev orthogonal
polynomial of the second kind T';(u) can be taken as orthog-
onal bases. N and M are the truncation order of the series we
have taken. In addition, it is assumed that random variables
& and u are mutually independent.
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Substituting (2), (3), and (5) into (4), equivalent deter-
ministic van der Pol system can be given when N — oo and
M — co. So as to make the following numerical simulations
effective and convenient, we take N = M = 1 and
approximately obtain the equivalent deterministic system of
compound stochastic van der Pol system:

Koo (£) = Yoo (1)
1)
Voo (£) = =g (t) + Byoo () + z)’m (t) — aMy, (t)

—ao® (Mg +1y) yoo )

Xo1 () = yo1 (£),
1)
Voo (£) = =xg1 (£) + Byoy () + 5)’00 (t) — aMy, (t)

—ao’ (A + A1) Yo ()
(6)
X190 () = 10 (1),

1)
V10 (#) = =x10 (8) + By1o (8) + 5 u (t) — aM, (1)

- ao’ (Ao + A1) y10 (8),

5511 (t) =)u (t))
1)
I ) = —xp; () + By () + 5)’10 () — oMy (t)

- ao” (Ao +A) yn ),

where Mij(t) (i = 0,1, j = 0,1) notes the coeflicient of
Hi(g)Tj(u) in the linear combination.

The deterministic parameter for system (6) can be taken
as o = 1.0 and initial values are

X0 (0) = 0.3,
Yoo (0) = 02> (7)

x; () =y;®)=0 (i=0,1, j=0,1).

3. Bifurcation Parameter and
Numerical Simulations

According to the Hopf bifurcation theory of deterministic
nonlinear system [35, 36], the critical value of bifurcation
parameter for the equivalent deterministic system (6) is
obtained as follows:

800 - 97°0

8
1872 ®)

Ee

By the following numerical simulations, the influence

of random strength & and noise intensity o on bifurcation
parameter f3. is discussed in this section. Figure 1 clearly

shows the theoretical relationship among J, o, and f3,. f3,
decreases as § increases while 8, increases as o increases. In
other words, & can induce the generation of Hopf bifurcation
but o delays it.

System (4) is the deterministic van der Pol system when
we take § = 0 = 0. Meanwhile, the bifurcation parameter
P equals to B, = 0 and the system shows limit cycles
at the fixed point O(0, 0). Hopf bifurcation phase diagrams
and time history diagrams are plotted in Figure 2 when we,
respectively, take f3 less than and greater than ..

The stochastic van der Pol system with a bound random
parameter is the case of § # 0 and o0 = 0. Random variable
u continually changes for the random response; we can take
its ensemble mean response to replace it. Taking § = 0.1, we
obtain 3. = -0.05. When 5, > = -0.11, it takes more
time to gradually converge at the fixed point for the trajectory
of ensemble mean response than the deterministic system
shown in Figures 3(a) and 3(c). The trajectory of ensemble
mean response is gradually convergent closed curve when
B. < B = —0.045 and time used for converging is shorter
than the deterministic one shown in Figures 3(b) and 3(d).
Compared with the deterministic van der Pol system, the
critical value of bifurcation parameter is smaller and Hopf
bifurcation occurred in advance.

It is also stochastic van der Pol system with § = 0 and
o # 0. We take the ensemble mean response about random
variable £ to substitute the random response. Taking o = 0.1,
we obtain . = 0.0045. When f3. > f3 = —0.085, the trajectory
is gradually convergent at the fixed point described in Figures
4(a) and 4(c). The trajectory is gradually convergent closed
curve when 3, < 8 = 0.005 also described in Figures 4(b) and
4(d). Compared with the deterministic van der Pol system,
the noise intensity o of stochastic van der Pol system makes
the critical value of bifurcation parameter larger and Hopf
bifurcation occurred later.

The compound stochastic van der Pol system is § # 0
and o # 0. We still take the ensemble mean response about
random variables u and & to stand for the random response
(5) and give the bifurcation phase diagram and time history
diagram when 6 = ¢ = 0.1 and 8 < f, (see Figure 5).
Comparing Figure 5(b) with Figure 2(c), it is found that
increased & postpones time of convergence and promotes
the generation of Hopf bifurcation at the fixed point, and
increased o shortens time of convergence and postpones the
generation of Hopf bifurcation. Meanwhile, it is obvious that
the range for the larger value of the ensemble mean response
shown in Figure 5(b) is the same as the result shown in Fig-
ure 3(c) and is larger than the result described in Figure 4(c).

From the above numerical simulations, it is discovered
that § and o have the different influence on the critical value
of Hopf bifurcation parameter in the compound stochastic
van der Pol system. As we increase the random parameter
strength §, the critical value of bifurcation parameter is
smaller than the deterministic system. While we increase the
noise intensity o, the critical value of bifurcation parameter
is larger than the deterministic system. Simultaneously, the
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FIGURE 2: The Hopf bifurcation phase diagrams and time history diagrams of deterministic van der Pol system.
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FIGURE 3: The bifurcation phase diagrams and time history diagrams of a bound random parameter van der Pol system.

influence of § on the critical value of bifurcation parameter is
more sensitive than o taking the same value.

4. Conclusion

In this paper, we deal with Hopf bifurcation of compound
stochastic van der Pol system with random parameter and
Gaussian white noise. It shows that the method of sequential
orthogonal decomposition combining the orthogonal poly-
nomial approximation with the K-L expansion is effective to
deduce the stochastic van der Pol system into its equivalent
deterministic system; then the theory of Hopf bifurcation in
nonlinear deterministic system is applied to the equivalent
one and thereby Hopf bifurcation of stochastic van der Pol
system under random parameter and Gaussian white noise
is analyzed. In addition, it is found that these two kinds of
random intensity have the different effects on the critical

value of Hopf bifurcation parameter for compound stochastic
van der Pol system and the influence of § is more outstanding
than o in the same value. Finally, we verify the results by
numerical simulations.

The compound stochastic van der Pol system established
in this paper is also available for other nonlinear stochastic
dynamical systems. And various dynamics behaviors in such
systems as an extensive and supplementary version of the
related literature should have been studied deeply, such as dif-
ferent bifurcations, stability, chaotic motion, and numerical
analysis of response. It is especially worth taking into account
the convergence study of response prediction because of a
series with finite terms.
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(b) 5=0=01andf < B,

FIGURE 5: The bifurcation phase diagrams and time history diagrams of compound stochastic van der Pol system.
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