Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2015, Article ID 731031, 11 pages
http://dx.doi.org/10.1155/2015/731031

Research Article

Hindawi

Organizational Gameplay: The Player as Designer of

Character Organizations

Luciano R. Coutinho, Victor M. Galvao, Antdonio de Abreu Batista Jr.,
Bruno Roberto S. Moraes, and Marcio Regis M. Fraga

Departamento de Informdtica (DEINF), Universidade Federal do Maranhédo (UFMA), Avenida dos Portugueses 1966, Bacanga,

65080-805 Sao Luis, MA, Brazil

Correspondence should be addressed to Luciano R. Coutinho; luciano.rc@ufma.br

Received 6 February 2015; Accepted 26 April 2015

Academic Editor: Ali Arya

Copyright © 2015 Luciano R. Coutinho et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Looking at the ways in which players interact with computer games (the gameplays), we perceive predominance of character-
centered and/or microcontrolled modes of interaction. Despite being well established, these gameplays tend to structure the games
in terms of challenges to be fulfilled on an individual basis, or by thinking collectively but having to microcontrol several characters
at the same time. From this observation, the paper presents a complementary gameplay in which the player is urged to face
collective challenges by designing character organizations. The basic idea is to make the player structure and control group of
characters by defining organizational specifications (i.e., definitions of roles, collective strategies, and social norms). During the
game, commanded by the player, artificial agents are then instantiated to play the roles and to follow the strategies and norms as
defined in the organizational specification. To turn the idea into practice, the paper proposes an abstract architecture comprising
three components or layers. This architecture is materialized in a proof of concept prototype that combines the Minecraft game
server, JADE agent platform, and MOISE+ organizational model. Variations and possibilities are discussed and the proposal is

compared to related work in the literature.

1. Introduction

Much of the fun involved in modern computer games is due
to their extraordinary capacity of simulating aspects of our
reality and/or imagination. In the diverse genres, such as first
person shooters games (e.g., Halo and Call of Duty), third
person action/adventure games (e.g., God of War and Tomb
Raider), platformers (e.g., Super Mario Bros. and Sonic), two-
player fighting/sports games (e.g., Fight Night Round and
FIFA Soccer), racing games (e.g., Midnight Club and Need
for Speed), real-time strategy games (e.g., Age of Empires
and Command & Conquer), open world/sandbox games (e.g.,
Minecraft and The Sims), and massively multiplayer online
game (e.g., World of Warcraft and Star Wars Galaxies), we
can cite games in which the player gets the illusion of
being immersed in a detailed and verisimilar virtual world.
Commonly, in these simulated worlds the player assumes
the control of a character (his/hers avatar) and interacts

with diverse nonplayer characters (NPCs) or other player-
controlled characters (other players avatars in multiplayer
games). Then, he/she is confronted to a series of challenging
situations comprising missions to fulfill, rules to follow,
decisions to make, territories to explore or to conquer, and
so forth. According to [1], the fun emerges from this when
the player succeeds to comprehend and to master the general
patterns of action and interaction underlying the challenges
faced in the virtual world. In this sense, the more a game
is capable of portraying aspects of the player’s experience
as gradually learnable patterns, the greater the chance of it
pleasing its users.

Notwithstanding the achievements of the modern game
technology, especially concerning 3D animated graphics and
sound effects that have produced games featuring high-
quality enjoyable virtual worlds, we observe that the aspects
of control and interactivity between players’ avatars and
NPCs (the gameplay) occur mainly on an individual and

nonscriptable basis. By this we mean that, in general, the
player actively controls one avatar and interacts with the
NPCs issuing proper commands. For example, in first person
shooter games, the player assumes the identity of a soldier.
The mission can be to assault an enemy base leading a
special troop. During the mission, the player does his best
in controlling his avatar while the other soldiers of the
troop, which are NPCs, follow the movements by performing
preprogrammed attack routines. The player neither sees nor
directly commands the attack strategies used by his fellows;
he/she simply assumes that the routines codified on the
NPCs by the game designer are effective in making the troop
to accomplish the mission. Another example can be given
in real-time strategy games. In this genre, the player also
commands troops in combat against enemies. The difference
is that now the player constantly has to issue commands to
make the NPCs to behave in this or that way. The attack
strategy is enacted by the player which has to have great
dexterity and multitask abilities to microcontrol all of them
at the same time.

What we miss in these and related examples from the
diverse genres of games is a gameplay more focused on
the collective rather than the individual character, more
focused on explicitly stated rather than microcontrolled
collective strategies, and more focused on player-defined
or player-editable rather than preprogrammed nonaccessible
collective strategies. By these we mean a mode of control
and interaction in which the player can be aware of the
collective and social aspects of the game by creating, seeing,
or modifying the role hierarchy and team behavior of a
collection of characters at run-time. Take, for instance, the
troop command scenario. The game could feature one or
more basic strategies composed by a given number of soldiers
in the troop, each soldier in a position, performing some role.
Our idea is that the player can modify this troop organization
if desired. He could create new roles, designate a different
number of soldiers to the roles, establish the group coordinate
behavior for assaulting the enemy’s base, and so forth. Having
done this organizational setup the player can concentrate
on performing the role of his choosing while indirectly
controlling the others characters (NPCs) in his group. As
another example consider an open world/sandbox game, a
game in which the player is supposed to explore a territory,
find food, gather raw materials, build houses, villages, and so
forth, all of this in collaboration with other avatars and/or
NPCs. At first, the players could try all alone to explore the
world and do the needed tasks. As they meet one another,
they discover common needs and try intuitive ways of doing
joint activity. After a while of experimentation, the players
pass to a phase in which they could try to structure the work
by coming up with collective plans or organized ways of doing
things. In the process, inevitably, they are led to reflect in
challenges such as: How do we organize ourselves to do the
job? What roles should be played? How do we divide labor?
How do we coordinate? How many of us are necessary for a
task?

We believe that offering a gameplay experience where the
players are encouraged to think about and practice with these
issues is a valuable effort. We note that some genres, mainly

International Journal of Computer Games Technology

collective sports games (e.g., soccer and basket), naturally
lead to a group structuring/planning mindset like the one we
have described. Actually, some games in this genre feature
controls for the user to play the coach of the team, being able
to choose from a list or to define his own team organization.
However, by the genre’s own nature, the user is driven to well-
known predefined team configurations, consecrated by the
practice. Sports games aside, the major opportunity we see
is to turn the gameplay into a more encompassing learning
experience, something that can teach the player more than
just individual skill patterns, something with the potential to
offer other kinds of challenges to the players, challenges of
coordination, cooperation, and organization.

Motivated by these observations, we have set a research
project in which the final aim is to develop what we call an
organizational interface for computer games, or organizational
gameplay for short. Our scope is computers games in which
the player gets immersed in a virtual world where the chal-
lenges involve the interaction with other characters to realize
joint activities. The organizational gameplay we envision is
intended to complement, not to replace, the existing game-
play. The idea is to provide to the player visual representations
and editor facilities for character organizations. What we
call “character organizations” comprises two complementary
aspects: on the one hand, the specification of role hierarchies
and joint activities plans for dividing and coordinating tasks
among characters of a group, on the other, the instantiation
of roles and plans at run-time for controlling NPCs on behalf
of the player. With these we expect to offer to the players a
gameplay experience similar to the ones previously described.

Our approach takes advantage of recent developments
in autonomous agents and multiagent systems technology
[2, 3]. We note that the notion of an agent as a software
component exhibiting autonomy, social ability, reactivity, and
proactiveness [4] is a suitable conceptualization for characters
of computer games [5]. Accordingly, the whole virtual worlds
rendered in computer games can be seen as multiagent
systems (MAS). Concerning the organizational gameplay, a
key feature of agent technology is the existence of modeling
languages and run-time infrastructures for designing and
implementing organization centered MAS (OC-MAS) [6-8].
OC-MAS is a class of MAS where the agents’ autonomy
is regulated/controlled by means of explicit organizational
structures (e.g., role hierarchies, standard procedures, inter-
actions protocols, norms, etc.) imposed to the agents at run-
time to ensure coherent collective behavior towards common
goals. Ultimately, the idea is to import and adapt some of
the concepts, notations, and infrastructures from OC-MAS
to bring about our view of character organizations.

In this paper, our aim is to present the core idea of
the organizational interface for computer games together
with the implementation of a proof of concept prototype.
In Section 2, we first introduce the basic concepts and
developments we are using from autonomous agents and
MAS technology. Then, in Section 3, we describe our general
proposal for the organizational gameplay, contrasting it with
the existing gameplay. After, in Section 4, we present and dis-
cuss a first prototype implementation of the whole proposal
which was done in the context of Minecraft, a popular open

International Journal of Computer Games Technology

world/sandbox multiplayer game. In Section 5, we compare
our work with similar work found in the literature. In
Section 6, we present our final considerations and future
work.

2. Background

Autonomous agents and multiagent systems have emerged
in the broad area of Distributed Artificial Intelligence [9].
In the last years, with the growing perception that agents
and MAS “offer a new and often more appropriate route
to the development of complex systems, especially in open
and dynamic environments” [3, page 204], these concepts
were incorporated by other research communities, notedly
Software Engineering [10, 11].

2.1. Autonomous Agents. The general idea of agent is per-
ceived in virtually all areas of human knowledge where
the notions of individual, environment, and community do
exist. From a Software Engineering viewpoint, agent can be
defined as a computer program (or software component)
that is design to perceive and act autonomously on a given
environment. Here the distinguishing property is autonomy.
Among the possible meanings [12], we consider autonomy
as the ability of deciding by itself when and how to act.
Thus, in principle, an autonomous agent should be capable
of choosing by itself what to look at and what to do in its
environment or of refusing to perform some action when
asked, in order to accomplish some goals it was designed for.

Furthermore, if an agent exerts its autonomy balancing
goal-directed and reactive behavior in an effective way it
can be called an intelligent agent [4]. Goal-directedness or
proactiveness occurs when the agent takes the initiative of
perceiving, deciding, and acting to fulfill predefined goals.
Reactivity, on the other hand, means deciding and acting
solely in response to perceived events in the environment.
This distinction has led to the development of two main
architectural styles known as deliberative agents (e.g., belief-
desire-intention architectures) and reactive agents (e.g., sub-
sumption architecture). In practice, autonomous intelligent
agents usually are designed and implemented by mixing
elements of these two architectural styles.

2.2. Multiagent Systems. A fourth desirable characteristic is
social ability. Agents with social ability can get together and
perform tasks beyond the reach of any of them individually.
A collection of socially able agents gives rise to a multiagent
system (MAS).

As long as agents are autonomous and designed to
pursue particular goals, social ability implies more than
interaction by message exchange within the MAS. Agents
with conflicting agendas are expected to compete. Agents
with reconcilable agendas are supposed to negotiate and/or
cooperate. In this way, a crucial point in the development
of MAS is how to reconcile the autonomy of the agents
with interactions that lead to some desired global behavior,
or, more broadly, “how to obtain from local design and
programming, and from local actions, interests, and views,

some desirable and relatively predictable/stable emergent
result” [13].

Given this issue, some researchers have proposed to
divide the MAS approaches into two major classes: agent
centered MAS (AC-MAS) and organization centered MAS
(OC-MAS) [14]. In AC-MAS, as the name suggests, the
development efforts are focused on the design of the agents
(bottom-up development). The aim is to come up with an
agent architecture that enables not only a right balance
between proactiveness and reactivity, but also between local
agent goals and global MAS purpose. This kind of approach
was common in the early years of the agent and MAS
technology and has its roots in attempts to mimic swarm
behavior observed in species like insects, birds, and so forth.
In the last decade, with the growing interest in the develop-
ment of complex systems, especially in open and dynamical
environments [3, 11], AC-MAS have been superseded by OC-
MAS.

In OC-MAS, human organizations are used as a proper
metaphor for engineering complex open MAS. Human orga-
nizations, whose typical examples are corporations, clubs,
armed forces, and so forth, are collectivities pursuing specific
goals and exhibiting formalized social structures [15, page
26]. Goals are specific to the extent that they are explicit
and clearly defined. Social structures are formalized in such
a way that patterns of structuring and behaving (such as
roles, role relations, procedures, protocols, norms, etc.) are
precisely specified regardless of personal traits and relations
of any individual person part of the organization. Thus, by
conceiving an MAS as an organization, or more generally, asa
bigger system formed by several agent organizations, the basic
idea is to promote “social order” in a top-down fashion. The
idea is to have the agents” actions and interactions governed
by formalized “social structures,” defined and enforced by
mechanisms outside the agents, in order to enable the MAS
as a whole to fulfill its purpose.

In the context of complex open systems, AC-MAS are not
a good approach because they rely solely on the agent being
specially created to interact with the others in an orderly
fashion. But this can not be assumed on an open system
where the components can be heterogeneous and possibly
created at different times by different stakeholders. On its
turn, OC-MAS are a better fit in this case because the system
is designed to have some components, apart from the agents,
which instantiate the expected social order. At run-time any
agent that enters the organization is supposed to abide by the
formal rules, procedures, and structures underlying the agent
organization. If not, they can be penalized or even expelled
from the organization.

2.3. Organizational Design. The design and implementation
of OC-MAS rely on two technological developments. The first
one is modeling languages for specifying agent organizations.
The other is feasible ways of translating the specifications into
separate components for controlling and coordinating the
agents at run-time.

Regarding modeling languages, there are various pro-
posals in the literature [7, 14, 16, 17]. Commonly, they

provide the designer with some modeling constructs and
notation for expressing patterns of structuring and behaving
that characterize an agent organization. Four basic kinds of
modeling constructs can be identified [18]. Firstly, there are
concepts to represent statical aspects of the internal structure
of the agent organization. In almost all proposals this is
the primary modeling concern expressed in terms of roles,
relationships, and groups. An agent, to be part of the organi-
zation, should play some available role (position) in a group.
Roles define expectations with regard to the agent’s abilities
and responsibilities. Relationships (like has-authority-over,
can-communicate-with, or depends-on) further refine general
expectations and define new constraints the role-playing
agents should observe. Groups are clusters of roles or of role-
playing agents that serve to partition the organization into
related areas.

Secondly, there are modeling constructs to specify the
functional behavior of agent organizations. Generally, the
functional behavior is expressed in terms of goals, missions,
tasks, and hierarchical plans. Goals are declarative represen-
tations of the units of work comprising the purpose of the
organization. In some proposals, the goals are partitioned
into coherent subsets called missions; a posteriori, missions
are assigned to roles. Tasks are operational descriptions of
how to achieve goals. Tasks can be individual, when in the
reach of one agent playing a role, or collective, when their per-
formance needs the coordinated effort of several role-playing
agents. Collective tasks are commonly scripted as collective
procedures in the form of hierarchical plans, that is, task
decompositions trees where the leaves represent individuals
tasks, the internal nodes represent the composition of finer-
grained tasks to realize coarser-grained tasks, and the root
represents a global task for achieving some major goal of the
organization.

A third basic category of modeling constructs is formed
by concepts to depict the structural behavior of agent orga-
nizations. The structural behavior concerns an orthogonal
view of the realization of tasks and goals. Rather than
hierarchically decomposing tasks into subtasks, the idea is
to define interaction protocols and phase transition graphs to
specify how goals can be achieved over time. An interaction
protocol is a prescription of sequences of message exchange
among roles to perform some task or achieve some goal.
State transition graphs are state machines that break whole
functioning of the organization into major phases (or scenes)
and valid transitions between phases triggered by events.

Lastly, there are modeling constructs to further restrict,
regulate, and interrelate internal structure (roles), structural
behavior (interactions), and functional behavior (proce-
dures). Here, the basic notions are the concepts of norms and
sanctions. Norms are the definition of permissions, obligations,
prohibitions, and so forth. For instance, a norm statement
could be as follows: an agent playing a given role is obliged
to fulfill an specific mission; to fulfill the mission, the agent is
allowed to use a given hierarchical plan when in a given phase
but is prohibited to use it when in another phase. Sanctions
are penalties imposed to the agents after the infringement of
norms.

International Journal of Computer Games Technology

2.4. Platforms and Infrastructures. Regarding the implemen-
tation of agents and agent organizations, it can be done by
means of agent platforms supplemented with organizational
infrastructures.

Broadly, an agent platform is a computational environ-
ment offering several facilities for developing and running
software agents. It can provide the developer with skeletons
for programming reactive and deliberative agents, special
programming languages for expressing the action-decision
strategy (means-ends analysis and practical reasoning) of the
agents, and services for dynamical identification, localization,
and transport of messages within an MAS. Presently, many
of the platforms follow some of the standards proposed
by the Foundation for Intelligent Physical Agents (FIPA
(http://www.fipa.org/)), an IEEE Computer Society organi-
zation that promotes interoperability standards for agent-
based technology. As examples of agent platforms we cite
JADE (Java Agent DEvelopment Framework [19]), Jason (Java-
based AgentSpeak interpreter used with SACI for multiagent
distribution Over the Net [20]), and Madkit (MultiAgent
Development KIT [14]).

Primarily, agents platforms are supposed to provide tools
for developing plain agent-based applications. In the case of
OC-MAS, the practice has been to combine them with orga-
nizational infrastructures. An organizational infrastructure is
a software framework and/or run-time facilities for produc-
ing fully functional agent organizations from organizational
specifications. First the MAS designer specifies the desired
organization by using an organizational modeling language
supported by the infrastructure. Then he submits the specifi-
cation to the infrastructure which generates/instantiates spe-
cial components for coordinating and controlling the agents
at run-time; the subsystem formed by these components can
be called organization run-time environment. To become a
member of the organization, the agents will have to ask the
organization run-time environment for a role to play and
commit themselves to the realization of the corresponding
missions, rights, and duties. As example of organizational
infrastructure we cite MOISE+ (Model of Organization for
multl-agent SystEms [17]), which can be used in combination
with Jason. Another example is Madkit, which is not only an
agent platform but also an OC-MAS development kit based
on the concepts of Agents, Groups, and Roles (AGR model

(14]).

3. Organizational Gameplay

Autonomous agents and MAS are convenient notions for
conceptualizing characters and virtual worlds of computer
games. Player controlled characters are in essence avatars,
agents whose autonomy and social ability are provided
by human players. Nonplayer controlled characters (NPCs)
are artificial agents; their autonomy and social ability are
provided by the artificial intelligence subsystem of the game
engines. In this sense, the virtual world of a computer
game is a heterogeneous MAS. It comprises software agents
(NPCs) and is open for human agents by means of avatars
(Figure 1(a)).

International Journal of Computer Games Technology

Player
w (human)
Controls

Abbreviations
PC: player character
NPC: nonplayer character

Player
w (human)
C,on/tl/‘ols
//
v
o PC

(a) Traditional gameplay

Org. Spec. Player
" E_d_lt_s (human)
)¢
Org. MOD| User interface] \\
: Controls

I \
\

Coordinates
I

| - X
- .)

Ag cnts
5 ' B Apcs

@@®@® . |

/,‘Control_\.,--

Abbreviations

PC: player character

NPC: nonplayer character
APC: agent-player character

-
- L/;. ~ —_— .-
Agent platform "%,
R

Player
'@' (human)

Controls

= s K
o S User interface
’

o <_> Orgamzatlon

v
.P

@)

g ¥ &we -
o .
Q .

(b) Proposed gameplay

FIGURE 1: Organizational interface for computer games.

In this section, we describe how to exploit this conception
in the definition of an abstract architecture from which to
develop the organizational gameplay discussed in Section 1.

3.1. Traditional Gameplay. Similarly to MAS, a major chal-
lenge in developing virtual worlds for computer games is
how to design coherent joint activity. We refer to games
where characters are supposed to form groups with common

interests. A basic configuration is one avatar as leader and
several NPCs as companions, as illustrated in Figure 1(a).
Usually, the challenges the groups face are beyond the abilities
of each character separately. Thus, to act as verisimilar groups,
the characters should coordinate their joint efforts.
Traditionally, coordination is preprogrammed or micro-
controlled. As pointed out in Section 1, either the NPCs fol-
low routines defined by the designer, or the player continually
sends them commands to act in this or that way. In both

cases, the player is not encouraged to think about the group
as an explicitly organized collective. The player knows that
the NPCs should help him to achieve the missions but is
unable to act as a real team leader in the sense of devising an
explicit collective plan to structure and coordinate the actions
of the group. With this, the player misses the opportunity
of focusing on the learning social, collective patterns, rather
than just individual skills.

Here, we can make a parallel to AC-MAS and OC-MAS.
Normally, the design and control in computer games occur
in an agent centered basis. Avatars and NPCs, as agents, are
programmed to locally react to events or conditions in the
game in such a way that a globally coherent behavior does
emerge. Mostly, the design and control are not organization
centered. Avatars and NPCs are not designed to perceive,
reason, and proactively act according to organization spec-
ifications outside the agents. As long as the computer game is
supposed to be open only to avatars, not to external artificial
agents, and the player is not asked to reason about and control
the group of characters as explicitly organized collectivities,
the AC-MAS design is a reasonable choice. Otherwise, the
OC-MAS approach presents itself as a more appropriate
alternative.

3.2. Proposed Gameplay. To complement the traditional
gameplay, we argue for an organization centered mode of
coordination and control. The basic idea is to stimulate the
player to think about the game as a series of challenges
that demand not only individual skills but also organized
collective work. The player is then asked to assume the leader-
ship by devising formal social structures (i.e., role structures,
collective plans, etc.) for achieving definite objectives, what
could be done from scratch or by modifying and combining
preexistent social structures. The intent is to enable the
coordination and control of NPCs by means of these player-
defined social structures. Clearly, our proposal is in essence
the very idea of OC-MAS design recasted as a gameplay
experience.

In Figure 1(b) we illustrate the proposed gameplay. Com-
pared to Figure 1(a), the first significant enhancement is the
possibility of the player to edit organizational specifications.
These are written in an special purpose visual language that
comprises some of the modeling constructs used in the
organizational design of MAS. A second major enhancement
consists in turning the NPCs into agent-player characters
(APCs). APCs are artificial agents instantiated by the players,
as needed, to assume the control of characters on their behalf.
APCs should coordinate their joint efforts according to the
organization specification defined by the player. Together,
avatars and APCs will form what we call character organiza-
tions, which replace the groups formed by avatars and NPCs
in the traditional gameplay.

Note that, by means of avatars, the player still can par-
ticipate in the action on an individual basis. And, at the same
time, by means of character organizations, the player now has
the chance of reasoning and acting collectively without the
need of constant microcontrol. Lastly, also note that character
organizations do not eliminate NPCs altogether. Some of the

International Journal of Computer Games Technology

challenges to be faced by characters organizations could be
to defeat enemies programmed as NPCs, or even to compete
with other groups formed by avatars and NPCs.

3.3. Main Building Blocks. The scheme of Figure 1(b) also
conveys the general architectural pattern we put forward
for actually developing the proposed organization centered
gameplay. It comprises three major modules or layers: a front-
end module for specifying and managing character organiza-
tions, a middle layer in which agents and organizations are
instantiated, and a back-end game server in which the virtual
world and characters are simulated.

The front-end module is part of the graphical player
interface. It is the module with which the player can view
and edit the social structure of character organizations. As
mentioned, this is supposed to occur by using a special visual
language. Depending on the game and desired level of detail,
the visual language can cover different ranges of modeling
concerns. At minimum, it can offer graphical notations for
representing role structures and hierarchical plans. With
this, the player can define how character groups should be
composed, in terms of roles to be played, and how the groups
should proceed to face the challenges, in terms of collective
plans involving the roles. A more comprehensive language
could go beyond roles and plans and provide additional
notations to express interaction protocols, transition graphs,
norms, and sanctions, virtually covering all the modeling
concerns discussed in Section 2.3. Obviously, the more rich
the language is, the more difficult it becomes to the player to
properly use it, and the more difficult it is to implement agents
and agent organizations able to interpret it. Therefore, con-
cerning the visual language used in the front-end, a balance
among expressiveness, usability, and implementability should
be struck. Moreover, to promote usability, we stress that
the game designer ought to provide the player with default
social structures. By seeing, copying, and modifying these
predefined specifications, the player is guided and invited to
build his/her own specifications of character organizations.

After specifying the social structure of a character orga-
nization, the player should command the instantiation of
agents to play the defined roles. Agents, and the necessary
organization run-time environment, form an intermediate
layer between the player’s front-end and the actual simulation
of the virtual world and characters. Here we identify the main
technical challenges. Firstly, a platform for the development
of agent-based games will be needed. Some game engines
already provide modules for agents; an alternative could be to
adapt existing agent platforms to interact with the back-end
game server. Secondly, the available agent module or platform
should be augmented with an organizational infrastructure.
As discussed in Section 2.4, the organizational infrastructure
is the element responsible for interpreting organizational
specifications and implementing the run-time environment
for coordinating and controlling agent organizations. Lastly,
appropriate agents should be developed; agents that can
access the organization run-time environment, assume roles
indicated by the player, and properly command characters on
the virtual world simulation.

International Journal of Computer Games Technology

The back-end game server represents the components
responsible for simulating the virtual world and characters
of the game. According to the standard practice, these can
be implemented by means of game engines. Game engines
are high-level platforms for game development [21]. They
consist of a collection of modules for easing the process of
creating 2D or 3D scenarios, simulating physical interactions,
animating characters, and even doting NPCs with some level
of learning and intelligent behavior. For our purposes, we
assume that some of the characters simulated on the game
server are controlled by external commands. These characters
are not autonomous agents per se but surrogates (avatars) for
the game players. As long as we have stated that the human
players will instantiate artificial agents outside the virtual
world to control characters within the virtual world, we can
see these agents also as game players. For this reason we have
named their characters as agent-player characters (APCs).

4. Proof of Concept

Front-end, middle layer, and back-end can be instantiated in
various ways. For game developers, an ideal scenario would
be to have an integrated game engine with which one could
develop not only the virtual world but also agents, agent
organizations, and the organizational front-end. As a proof
of concept, we have implemented a prototype by combining
three separate pieces of software: Minecraft game server,
JADE agent platform, and MOISE+ organizational model
(Figure 2).

4.1. Minecraft Game. Minecraft (https://minecraft.net/) is
an open world/sandbox game. It features a 3D cube-based
virtual world divided into biomes such as deserts, jungles,
and snowfields. Primarily, there is no specific goals for the
players to accomplish, who are free to choose how to play.
Players, controlling an avatar, may wander around the various
terrains, break, and gather blocks of materials such as stones,
ores, water, and wood. Using these material blocks, they can
build diverse structures like houses, buildings, roads, villages,
and so forth. During the game, players encounter different
NPCs called mobs. Mobs include animals (cows, pigs, and
chickens, for instance), villagers (person-like characters), and
hostile creatures (such as spiders, skeletons, and zombies).
The player may hunt the animals for food, negotiate materials
and goods with villagers, and combat the creatures. In sum,
there are three basic game modes: survival, creative, and
adventure. In survival mode, the player must look for natural
resources in the environment to stay alive. These include
materials to craft tools, weapons and shelters for protecting
against creatures, and food to satiate hunger. In creative
mode, the players are provided with plenty of resources to
build anything they want. They can fly freely around the
virtual world, do not suffer damage, or feel hungry. The player
is stimulated to pursue large building projects. In adventure
mode, the players are supposed to explore custom worlds
created by other players. The gameplay is similar to survival
mode, with restrictions and adventures introduced by the
players.

We have chosen Minecraft as the virtual world of our
proof of concept prototype for three main reasons. First
and foremost, it is an open world where the players are
naturally encouraged to propose challenges and build things
of their own. This is in accordance with our view that the
gameplay experience should actively help the player to reason
about useful behavioral patterns. Implementing the proposed
organizational gameplay, we intend to expand this reasoning
towards collective endeavours. Second, Minecraft has mul-
tiplayer support by means of game servers. Players can run
their own servers on a local area network configuration or use
remote servers. In this way, the players join a virtual world via
a client interface, by which they issue commands to control
their avatars. And this complies with our assumption that the
some characters on the game server should be controllable by
external commands, the hook for attaching agents as external
players of characters.

Lastly, Minecraft allows the creation of game modifi-
cations (mods). These can range from simple additions of
textures to large reformulations on the gameplay. By using
this feature, we have implemented a basic organizational
interface for Minecraft (Figure 2(b)). This interface enables
the player to view and edit specification of character orga-
nizations following the MOISE+ organizational model. The
interface also allows the player to instantiate agents, running
on a container of the JADE platform, that are able to connect
to a given Minecraft game server, join the virtual world of
the game, and play specific roles of the specified character
organization (Figure 2(a)).

4.2. JADE Agents. JADE (Java Agent DEvelopment framework
[19]) is an open source agent platform that complies with
FIPA specifications. It provides a run-time environment
where agents can be executed, extensible class libraries for
developing agents, and run-time tools for monitoring and
managing the platform. The run-time environment is divided
into containers. The containers may be instantiated in several
hosts thus forming a distributed agent platform.

JADE was chosen for matters of convenience. It is based
on Java, the same language in which Minecraft and MOISE+
are implemented, and offers a rich and mature environment
for creating and running MAS applications. Using JADE, we
have developed an agent architecture based on a particular
perceive-decide-act life cycle. On the one hand, each agent
must control an avatar on the Minecraft game server; on
the other, it ought to consult the organization run-time
environment to coordinate with the other agents. With this in
mind, we structured the agent architecture around two types
of behavior, one responsible for maintaining the connection
to the game server; this behavior, called w-behavior, enables
the agent to perceive, decide, and act on the virtual world.
The other, called o-behavior, enables the agent to query and
update the organization state. By alternating o-behaviors
and w-behaviors, the agents become organization controlled
artificial collaborators.

4.3. MOISE+ Organizations. O-behaviors take into account
the primitives of an organizational model. By organizational

(a) Minecraft virtual world: human player and four
JADE agents following MOISE+ specification

International Journal of Computer Games Technology

(b) MOISE+: organizational specification editor

FIGURE 2: Proof of concept prototype based on Minecraft, JADE, and MOISE+.

model we mean both the modeling language and the orga-
nizational infrastructure used to specify and operational-
ize agent/character organizations. As mentioned, we adopt
MOISE+ in our proof of concept prototype.

In MOISE+ (Model of Organization for multl-agent Sys-
tEms [17]), organizational specifications are divided into three
parts called structural, functional, and deontic specifications.
The structural specification covers the statical aspects of the
internal structure of agent organization in terms of roles
and groups definitions, and role-role, group-group, and role-
group relationships. The functional specification describes
how to achieve global goals related to the main purpose
of an organization. This description is done by means of
social schemes and missions. In essence, a social scheme is
a tree where the root is a global goal, the internal nodes
represent subgoals, and the leaves stand for atomic goals
that are supposed to be done by individual agents. A node
together with its children means a plan. The plan consists in
achieving the goal related to the parent node by combining
the fulfillment of the goals related to the children. There are
three operators for combining goals into plans: the sequence
(i.e., fulfilling all the children goals, one after another, in a
given order), the choice (i.e., fulfilling one of the children
goals, chosen by the agents), and parallel (i.e., performing all
the children goals at the same time). Missions are coherent
sets of goals that can be assigned to the same agent by
means of one of its roles. This assignment is done in the
deontic specification. The deontic specification covers the
normative aspects of the organizational design. It consists
in the definition of permissions and obligations connecting
roles to missions. In this way, an agent that joins a MOISE+
organization by assuming a given role must (or is permitted
to) carry out all the goals forming the missions related to the
role by means of an obligation (or permission) relationship.
And the achievement of missions by role playing agents is
to be synchronized by instantiating and following the plans
embedded in a given social scheme.

In Figure 2(b), a fragment of a social scheme for
building a house is shown. The global goal, or purpose
of the organization, is then namedBuild House. For
fulfilling this goal, the major plan is to divide the work
into three consecutive steps. First, do the groundwork
(the subgoal Prep_Ground); second, build the walls

(subgoal Build_Walls); and third, install the ceiling, door,
and windows (subgoal Ceiling Door _Windows). These
subgoals are further divided into atomic goals: Prep_Ground
is split in breaking the ground (BG-0) and putting the
floor (BG-0), done in sequence;Build Walls is broken
down in building four walls (BW-0, Bw-1, BW-2, BW-3),
in paralle;, andCeiling Door _Windows consists in
building the ceiling (PC-0), putting a door (PD-0), and
four windows (PW-0, PW-1, PW-2, PW-3), all done
in parallel. (In the editor, a goal enclosed by {} or ||
represents the application of the sequence or parallel
operator, resp.). These goals are gathered into missions,
like resource collection, stonework, and woodwork,
and assigned to roles such as assistant,mason,
and woodworker by means of obligations and permissions
(not shown in Figure 2(b)).

Lastly, the complete specification is used to organize the
joint work of the human player with four artificial agents in
building a house, as illustrated in Figure 2(a). The agents are
instantiated by the player and run on the JADE platform.
After creation, by activating o-behaviors, they connect to the
MOISE+ run-time environment, assume roles, and commit
to missions in coordination with each other. Furthermore,
by means of w-behaviors, they actualize their decisions as
character actions and interactions in the Minecraft virtual
world.

4.4. Discussion. Far from a full-fledged system, we stress
that the present implementation is meant as a prototype
for showing the feasibility of the organizational gameplay
proposed in this paper. In this sense, MOISE+ should be seen
as a first approximation for a visual organizational language
that can be used by game players. We note that MOISE+ was
originally created as a general organizational language and
infrastructure to be used by OC-MAS designers. It was not
intended to be used by nontechnical people. Therefore, it is
a rich language for organizational design that needs to be
simplified and dressed up with an appealing visual notation
to promote usability.

Besides MOISE+, other models [14, 22] can also be
explored. Specifically, we have chosen MOISE+ due to its cov-
ering of structural and functional modeling concerns and the

International Journal of Computer Games Technology

availability of a well developed organizational infrastructure
for implementing agent organizations. Both [14, 22] support
the modeling of structural concerns in the form of groups
and roles. But, different from MOISE+, they emphasize inter-
action protocols and/or interaction structures for describing
the dynamics of organizations. In a first moment, taking into
account usability, we have regarded the hierarchical plans of
MOISE+ in the form of social schemes more appealing to the
nontechnical user than interaction protocols based on scenes,
states, states transitions, or interactions sequences.

Initially it was said that front-end, middle layer, and back-
end can be instantiated in various ways. In the prototype,
the front-end is based on MOISE+ language, the middle
layer consists in JADE plus MOISE+ infrastructure, and the
back-end is Minecraft game server. In this case, we have a
multiplayer distributed configuration where all the compo-
nents could run on different machines. This configuration
also poses a clear distinction between the game engine (i.e.,
software for developing the virtual world and characters)
and the agent organization infrastructure (i.e., software for
developing agent players and agent organizations for the
game). We stress that having this multiplayer distributed con-
figuration with game engine distinct from the organizational
infrastructure is not essential to our proposal. We think, and
expect, that game engines could be extended to integrate the
development of games based on agents organizations and that
single person games can also be approached organizationally.

Regarding the agent players, we have designed fully
organizational agents, or agents that guide their actions and
interactions solely by organizational specifications. We also
think that smarter agents could be created to balance not
only reactivity and proactiveness, but also individual and
organizational goals.

5. Related Work

A major challenge faced by game designers is how to
incorporate high-level concerns such as flexible and/or social
behaviors into the gaming experience. Usually, NPCs are
programmed to react to environmental or other character
conditions, instead of proactively pursuing explicit goals, be
it alone or in collaboration with other characters. Hence, in
most cases, their actions do not look natural from the human
player perception.

In an attempt to overcome this limitation some research
work have proposed the use of agent centered approaches
to control characters. One of the first attempts to connect
intelligent agents to games was Gamebots [23]. It provided an
infrastructure to allow the connection of any agent platform
and the Unreal Tournament game. Gamebots was later used
as the base for Pogamut [24], a Java middleware that enables
controlling virtual agents (NPCs) in multiple environments
provided by game engines. Another noteworthy agent cen-
tered work is the GOAP architecture [25]. GOAP is a STRIPS-
like planning architecture specifically designed for real-time
control of autonomous character behavior in games. It is used
in several commercial games such as FE.A.R and Deus Ex:
Human Revolution.

Regarding the use of organization centered MAS in game
design, two relevant works are [26] and cOncienS [27]. In
[26], the authors propose the use of agent organizations to
control the coordination and adaptation in the context of
serious games. Their aim is to adapt the learning experience
to the skill level of each trainee, while maintaining the game
believable and immersive. cOncienS [27] is a research work
based on a larger project called ALIVE which defines an
organizational framework to build service-oriented systems.
It presents a set of tools for game developers to model
scenarios using social structures. Specifically, it provides a
programming interface for coupling agents to game engines,
a tool for creating organization ontologies (specifications
of agent organizations), and elements to describe character
behaviors based on norms, roles, and their enactment.

In comparison, our proposal differs from these earlier
works in a main aspect. Our research focuses on the use of
organization technology as gaming interface or gameplay. That
is, we propose the use of agent organizations not only as
a design and implementation technology for more realistic
and challenging NPCs, but also as a form of interaction
between human players and the virtual world, a form of
interaction that enables the user to explicitly perceive and
reason about social/collective challenges rather than focusing
only on individual skills. In this sense, we see the above agent
centered and the organization approaches as complementary
to ours (similarly to what happens with the traditional
gameplay). In particular, we note that [26, 27] have explored
the OperA [22] model which focus on dialogical structures
and interactions protocols for scripting the dynamical aspects
of agent organizations. Here, we have proposed the use of
MOISE+ [17] which offers an alternative view based on goal
decomposition tree for expressing collective behavior.

6. Conclusions

In this paper we have argued for an organizational interface
for playing computer games as a enhancement to the existing
gameplay. This organizational gameplay, as we call it, is
built upon agent technology, more specifically borrowing
elements from organization centered multiagent systems.
The central idea is to enable game players to command
more than one character by defining specifications for the
structure and behavior of character organizations. At run-
time, artificial agents are instantiated to control characters
within such organizations on behalf of the player. To turn the
idea into practice, we have proposed an abstract architecture
comprising three components or layers and implemented a
proof of concept prototype around Minecraft, JADE, and
MOISE+.

The major benefit of the proposed organizational game-
play is to offer the player a novel perspective of the collective
challenges faced while playing a game. In first person shooter
games, for example, instead of controlling one character and
implicitly assuming collaboration from the NPCs forming
a group, the player actually could see and modify how the
NPCs are supposed to behave as a group. Or, in real-time
strategy games, instead of commanding a group of characters

10

by sending them frequent microinstructions, the player could
plan ahead several strategies for different scenarios. Then,
these strategies would be followed autonomously by the
characters without the need of constant intervention by the
player. In case of things going wrong, the user could switch to
the traditional reactive mode of collective action. In sum, we
believe that the importance of our proposal lies in providing
a framework with which game designers can delve into a little
explored area in computer games.

More than showing the technical feasibility of the pro-
posal by using current technology, the implemented proto-
type has pointed us to further research work. First and fore-
most, we are investigating aspects of expressiveness versus
usability of visual languages for organizational specification.
On the one side, it is important to know what kinds of
game challenges can be approached by explicit organizations;
on the other, we want to know the complexity, from the
point of view of the player, of dealing with organizational
specifications. Regarding implementability, we noted that
there should be an individual actions repertoire from which
to compose collective goal decomposition trees. Presently,
behavior trees (BT) are widely used to script the actions and
interaction of game characters [28]. Based on these, we are
investigating an agent architecture that could interpret BT,
and if BT can also be used to express social schemes in the
context of agent organizations.

Finally, as future work we plan to devise more effective
ways to integrate our ideas with existing game engines.
As we have pointed out in Section 1, we perceive a major
opportunity to turn the gameplay into a more encompassing
learning experience. In this regard, we also plan to conduct
controlled experiments to assess the effectiveness of our
proposal in teaching the players lessons of coordination,
cooperation, and/or organization.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank UFMA and FAPEMA
(Grants PPP-01368/11, BM-00457/12, BIC-03153/13, and BM-
01245/14) for supporting this work.

References

(1] R.Koster, A Theory of Fun for Game Design, O'Reilly Media, 2nd
edition, 2013.

[2] G. Weiss, Ed., Multiagent Systems, The MIT Press, Cambridge,
Mass, USA, 2nd edition, 2013.

[3] M. Luck, P. McBurney, and C. Preist, “A manifesto for agent
technology: towards next generation computing,” Autonomous
Agents and Multi-Agent Systems, vol. 9, no. 3, pp. 203-252, 2004.

»

[4] M. Wooldridge, “Intelligent agents,” in Multiagent Systems, G.
Weiss, Ed., chapter 1, pp. 3-50, The MIT Press, 2013.

>

[5] E Dignum, “Agents for games and simulations,” Autonomous
Agents and Multi-Agent Systems, vol. 24, no. 2, pp. 217-220, 2012.

International Journal of Computer Games Technology

[6] O. Boissier, R. H. Bordini, J. E Hiibner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with JaCaMo,” Science of
Computer Programming, vol. 78, no. 6, pp. 747-761, 2013.

[7] V.Dignum and J. Padget, “Multiagent organizations,” in Multia-
gent Systems, G. Weiss, Ed., chapter 2, pp. 51-98, The MIT Press,
Boston, Mass, USA, 2013.

[8] V. Dignum, Ed., Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, Information
Science Reference, Hershey, 2009.

[9] B.Chaib-Draa, R. Mandiau, and P. Millot, “Distributed artificial
intelligence, an annotated bibliography,” SIGART Bulletin, vol.
3, no. 3, pp. 20-37,1992.

[10] E. Zambonelli and A. Omicini, “Challenges and research direc-
tions in agent-oriented software engineering,” Autonomous
Agents and Multi-Agent Systems, vol. 9, no. 3, pp. 253-283, 2004.

[11] E Zambonelli and H. V. D. Parunak, “Towards a paradigm
change in computer science and software engineering: a synthe-
sis,” The Knowledge Engineering Review, vol. 18, no. 4, pp. 329-
342,2004.

[12] H.Hexmoor, C. Castelfranchi, and R. Falcone, Agent Autonomy,
Springer, Boston, Mass, USA, 2003.

[13] C. Castelfranchi, “Engineering social order,; in Engineering
Societies in the Agents World: First International Workshop,
ESAW 2000, Berlin, Germany, A. Omicini, R. Tolksdorf, and F.
Zambonelli, Eds., vol. 1972 of Lecture Notes in Computer Science,
pp. 1-18, Springer, Berlin, Germany, 2000, Revised Papers.

[14] J. Ferber, O. Gutknecht, and E Michel, “From agents to
organizations: an organizational view of multi-agent systems,”
in Agent-Oriented Software Engineering IV: 4th International
Workshop, AOSE 2003, Melbourne, Australia, July 15, 2003,
Revised Papers, P. Giorgini, J. P. Miiller, and J. Odell, Eds.,
vol. 2935 of Lecture Notes in Computer Science, pp. 214-230,
Springer, Berlin, Germany, 2004.

[15] W.R. Scott, Organizations: Rational, Natural and Open Systems,
Prentice Hall, Upper Saddle River, NJ, USA, 4th edition, 1998.

[16] E. Argente, O. Boissier, S. Esparcia, J. Grmer, K. Kirikal, and K.
Taveter, “Describing agent organisations,” in Agreement Tech-
nologies, S. Ossowski, Ed., pp. 253-275, Springer, Dordrecht,
The Netherlands, 2013.

(17] J. E Hubner, J. S. Sichman, and O. Boissier, “Developing
organized multiagent systems using the MOISE+ model: pro-
gramming issues at the system and agent levels,” International
Journal of Agent-Oriented Software Engineering, vol. 1, no. 3-4,
p- 370, 2007.

[18] L. Coutinho, J. Sichman, and O. Boissier, “Modelling dimen-
sions for agent organizations,” in Handbook of Research on
Multi-Agent Systems: Semantics and Dynamics of Organizational
Models, V. Dignum, Ed., chapter 2, pp. 18-50, IGI Global,
Hershey, Pa, USA, 2009.

[19] E Bellifemine, G. Caire, and D. Greenwood, Developing Multi-
agent Systems with JADE, John Wiley & Sons, Chichester, UK,
2007.

[20] R. H. Bordini, J. E Hbner, and M. Wooldridge, Programming
Multi-Agent Systems in Agent Speak Using Jason, John Wiley &
Sons, 2007.

[21] J. Gregory, Game Engine Architecture, A K Peters, Wellesley,
Mass, USA, 20009.

[22] V. Dignum, A model for organizational interaction: based on
agents, founded in logic [Ph.D. thesis], Utrecht University, 2004.

[23] G. A. Kaminka, M. M. Veloso, S. Schaffer et al., “GameBots: a
flexible test bed for multiagent team research,” Communications
of the ACM, vol. 45, no. 1, pp. 43-45, 2002.

International Journal of Computer Games Technology

[24] J. Gemrot, R. Kadlec, M. Bida et al., “Pogamut 3 can assist
developers in building ai (not only) for their videogame agents,”
in Agents for Games and Simulations, E Dignum, J. Bradshaw,
B. Silverman, and W. van Doesburg, Eds., vol. 5920 of Lecture
Notes in Computer Science, pp. 1-15, Springer, Berlin, Germany;,
20009.

[25] J. Orkin, “Agent architecture considerations for real-time plan-
ning in games,” in Proceedings of the Ist Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE '05), R. M.
Young and J. E. Laird, Eds., pp. 105-110, AAAI Press, 2005.

[26] J. Westra, F. Dignum, and V. Dignum, “Scalable adaptive serious
games using agent organizations,” in Proceedings of the 10th
International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS ’11), vol. 3, pp. 1291-1292, International
Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, USA, May 2011.

[27] S. Alvarez-Napagao, I. Gémez-Sebastia, J. Vazquez-Salceda,
and E Koch, “cOncienS: organizational awareness in real-time
strategy games,” in Proceedings of the Conference on Artificial
Intelligence Research and Development: 13th International Con-
ference of the Catalan Association for Artificial Intelligence (CCIA
'10), vol. 210 of Frontiers in Artificial Intelligence and Applica-
tions, pp. 69-78, 10S Press, Amsterdam, The Netherlands, 2010.

(28] 1. Millington and J. Funge, Artificial Intelligence for Games,
Morgan Kaufmann, San Francisco, Calif, USA, 2nd edition,
20009.

1

International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

o

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components

