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A novel compressive sensing- (CS-) based direction-of-arrival (DOA) estimation algorithm is proposed to solve the performance
degradation of the CS-basedDOAestimation in the presence of sensingmatrixmismatching. Firstly, a DOA sparse sensingmodel is
set up in the presence of sensing matrix mismatching. Secondly, combining the Dantzig selector (DS) algorithm and least-absolute
shrinkage and selection operator (LASSO) algorithm, a CS-basedDOA estimation algorithmwhich performs iterative optimization
alternatively on target angle information vector and sensing matrix mismatching error vector is proposed. The simulation result
indicates that the proposed algorithm possesses higher angle resolution and estimation accuracy compared with conventional CS-
based DOA estimation algorithms.

1. Introduction

The strong scatter centers of targets in area of interest only
occupy finite angle resolution cells, and the echo signal
of targets is sparse, so compressive sensing (CS) theory is
widely studied in direction-of-arrival (DOA) estimation
applications [1–5]. In [1], a CS-based DOA estimation algo-
rithm of multiple input and multiple output (MIMO) radar
is proposed, which makes use of the sparsity of radar echo
signals to perform compressive sampling on array receipt sig-
nals in time-domain. In [2], an array with element randomly
distributed is adopted to perform compressive sampling on
space-domain signal, reducing the number of receiving front-
end channels of the array. However, both [1, 2] treat the
overcomplete based matrixes as the redundant dictionaries,
obtained from the angle interval of uniform quantization
area of interest, which cannot ensure that the correspond-
ing sensing matrix meets the restricted isometry property
(RIP) [3]. And then, [4] proves the RIP for MIMO radar
application. Reference [5] uses random Gauss matrix to
perform compressive sampling on space-domain signal and
adopts regularized multivectors focal undetermined system
solver (RMFOCUSS) algorithm to achieve high-resolution

estimation. However, the computation complexity of RMFO-
CUSS algorithm increases dramatically with the increase of
snapshots.

In addition, the estimation performance degrades seri-
ously in the presence of sensing matrix mismatching in the
above algorithms [6, 7]. The authors in [8] investigate the
CS-based DOA estimation in the presence of sensing model
mismatching errors, proving that the performance of CS-
based DOA estimation algorithm degrades dramatically in
that case. References [9–11] present a DOA estimation model
under sensing model mismatching and then use Bayesian
method to realize DOA estimation. Reference [12] pro-
poses a joint least-absolute shrinkage and selection operator
(LASSO) algorithm to achieve DOA estimation in the pres-
ence of mismatching.

In this paper, a new CS-based DOA estimation algorithm
is proposed to decrease the effect of sensingmatrixmismatch-
ing and achieve high resolution on DOA estimation. Firstly, a
DOA sparse sensing model is set up in the presence of sens-
ing matrix mismatching. Secondly, combining the Dantzig
selector (DS) algorithm [13] and least-absolute shrinkage and
selection operator (LASSO) algorithm [14], a CS-based DOA
estimation algorithm which performs iterative optimization
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alternatively on target angle information vector and sensing
matrixmismatching error vector is proposed to achieve high-
resolution DOA estimates.

2. The Signal Model

Consider that 𝐾 distant-field narrow-band signals enter the
uniform linear array (ULA), made up by 𝑀 array elements,
and then the output signal x(𝑡) of the array can be represented
as

x (𝑡) =
𝐾

∑

𝑘=1
𝑠
𝑘 (𝑡)𝛼 (𝜃𝑘) + e (𝑡) , (1)

where 𝛼(𝜃
𝑘
) = [1, 𝑒𝑗2𝜋𝑓𝜃𝑘 , . . . , 𝑒𝑗2𝜋(𝑀−1)𝑓𝜃𝑘 ]𝑇 is steering vector

of the 𝑘th receipt signal,𝑓
𝜃𝑘
= 𝑑 sin 𝜃

𝑘
/𝜆, and𝑑 is the distance

between the array elements. 𝜆 is the wavelength of carrier
wave, e(𝑡) = [𝑒1(𝑡), 𝑒2(𝑡), . . . , 𝑒𝐿(𝑡)]

𝑇 is the array noise vector,
and 𝑠
𝑘
(𝑡) is the signal plural envelope.

Assume that the angle resolution vector obtained from
the angle interval of area of interest through uniform quan-
tization is �̃� = [𝜃1, 𝜃2, . . . , 𝜃𝑁], 𝑁 is the number of angle
resolution vectors, and 𝜑 = 𝜃2 − 𝜃1 is the angle resolution
cell; then (1) can be rewritten as

x (𝑡) = A (�̃�) s (𝑡) + e (𝑡) , (2)

where s(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑁(𝑡)]
𝑇 is the target angle infor-

mation vector and A(�̃�) = [𝛼(𝜃1),𝛼(𝜃2), . . . ,𝛼(𝜃𝑁)] is the
steering vector matrix of angle resolution cell of the array.

In practice, targets in area of interest only occupy finite
angle resolution cells. So ‖s(𝑡)‖0 = 𝐾 ≪ 𝑁 and ‖ ⋅ ‖0 denotes
𝐿
0
norm. Thus the output signal of the array x(𝑡) is 𝐾 sparse

signal,A(�̃�) is the sparsity-basedmatrix, and𝐾 is the sparsity
of target angle information vector.

3. The Proposed Algorithm

3.1. DOA Estimation Model under Sensing Model Mismatch-
ing. Assume that 𝐾 targets’ angle information vector of the
array in area of interest 𝜃 = [𝜃1, 𝜃2, . . . , 𝜃𝑘], and 𝜃

𝑘
∉ �̃�.

That is to say, the 𝑘th target’s angle information mismatches
the angle resolution vector defined before, which is called
mismatching between sensing matrix and target angle infor-
mation. According to CS theory, sensing model mismatching
will lead to the angle information vector failing to represent
target angle precisely, decreasing the estimation accuracy of
target angles through conventional CS-based DOA estima-
tion method [8].

Assume that 𝜃
𝑛𝑘

∈ �̃� (𝑛
𝑘
∈ [1, 2, . . . , 𝑁]) is the angle res-

olution element nearest to target’s angle 𝜃
𝑘
in angle resolution

vectors; then the steering vector of 𝑘th target can be denoted
approximately as

a (𝜃
𝑘
) ≈ a (𝜃

𝑛𝑘
) + b (𝜃

𝑛𝑘
) (𝜃
𝑘
− 𝜃
𝑛𝑘
) , (3)

where b(𝜃
𝑛𝑘
) = 𝑑(a(𝜃

𝑛𝑘
))/𝑑𝜃
𝑛𝑘
.

Thus the steering vector matrix when sensing matrix
mismatches target angle information can be rewritten as

Φ (�̃�) = A (�̃�) +B (�̃�)Λ, (4)

whereB(�̃�) = [b(𝜃1), b(𝜃2), . . . , b(𝜃𝑁)],Λ = diag(𝛽),𝛽 = [𝛽1,

𝛽2, . . . , 𝛽𝑁]
𝑇, and

𝛽
𝑛

=

{

{

{

𝜃
𝑘
− 𝜃
𝑛𝑘
, 𝑛 = 𝑛

𝑘
, (𝑘 ∈ [1, 2, . . . , 𝐾]) , 𝛽𝑛 ∈ [−

1
2
𝜑,

1
2
𝜑] ,

0, else.

(5)

Therefore, taking no account of the approximation error
of measurement noise, (2) can be rewritten as

x (𝑡) = Φs (𝑡) + e (𝑡) . (6)

According to CS theory, we can recover the target angle
information vector s(𝑡) by sampling the receipt signal with
only finite array elements. So we extract 𝐿 elements from
𝑀 elements of the array, and let Ψ be the corresponding
line-extraction matrix; thus the output of the array after line
extraction could be represented as

y (𝑡) = Ψx (𝑡) = Ψ (Φs (𝑡) + e (𝑡)) = 𝜃s (𝑡) +n (𝑡) . (7)

By observing (7), we can conclude that sampling of space-
domain signals can be regarded as measurement matrix Ψ
performing random projectionmeasurements on echo signal
x(𝑡). In addition, sensing matrix 𝜃 is the product result
of matrix Ψ whose elements are randomly distributed and
sparsity-based matrix Φ which can be treated as Fourier
transform matrix of space-domain signal. Therefore, 𝜃meets
the RIP condition with great probability, thus ensuring the
effectiveness and robustness of using compressive sensing
reconstruction algorithm to perform DOA estimation.

3.2. Derivation of the Proposed Algorithm. By comparing (2)
and (6), we can find that the influences of measurement noise
and sensing matrix mismatching error on DOA estimation
can be summed up to “additive” disturbance and “productive”
disturbance. So far, conventional CS-based DOA estimation
algorithms only have constraints on “additive” disturbance
but fail to take the influence of “productive” disturbance
on the accuracy of target angle information estimation into
consideration. Therefore, conventional CS-based DOA esti-
mation algorithms cannot effectively reduce sensing matrix
mismatching error when angle resolution vector, previously
defined, fails to precisely represent target. That is to say,
conventional CS-based DOA algorithms are unable to ensure
DOAestimation’s effectiveness and robustnesswhen there are
sensing matrix mismatching errors.

To solve these problems, a novel CS-based DOA esti-
mation algorithm suitable for the situation when sensing
matrix mismatches target angle information is proposed
in this paper. The proposed algorithm combines DS algo-
rithm and LASSO algorithm to achieve a high-resolution
DOA estimation result by performing iterative optimization
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alternatively on target angle information vector and sensing
matrix mismatching error vector.

First assume the vector of sensing matrix mismatching
error 𝛽 = 0 in lack of prior information. According to CS
theory, the optimization problem expressed in (7) can be
solved by working out 𝐿

1
norm optimization under the

circumstance of noise, consequently obtaining target angle
information vector in space-domain:

ŝ (𝑡) =min ‖s (𝑡)‖1

subject to 
𝜃
𝐻
(y (𝑡) − 𝜃s (𝑡))∞ < 𝜇,

(8)

where constant 𝜇 is relevant to noise variance.This optimiza-
tion problem can be perfectly solved by DS algorithm.

Take the estimation value of target angle information
obtained by solving (8) to (7); we can get

y (𝑡) = Ψ ((A (�̃�) +B (�̃�)Λ) ⋅ ŝ (𝑡) + e (𝑡)) . (9)

According to the property of vector, compiling (9), it can
be achieved that

y (𝑡) = Ψ (A (�̃�) ⋅ ŝ (𝑡) +B (�̃�)Λŝ (𝑡) + e (𝑡))

= ΨA (�̃�) ŝ (𝑡) +ΨB (�̃�)Ω𝛽+n (𝑡) ,
(10)

whereΩ = diag(ŝ(𝑡)).
Because of 𝛽 being vector of sensing matrix mismatch

error, from (5) we know that 𝛽 shares the same sparsity with
target angle information s(𝑡). So (10) can be transformed to

y (𝑡) = ]𝛽+n (𝑡) , (11)

where y(𝑡) = y(𝑡) −ΨA(�̃�)ŝ(𝑡) and ] = ΨB(�̃�)Ω.
Hence, (11) can be retreated as a CS optimization problem

using sensing matrix mismatching error as the sparse signal,
and this CS optimization problem can be denoted as

𝛽= argmin
𝛽


y − ]𝛽



2
2

subject to 𝛽
1 ≤

1
2
𝐾𝜑.

(12)

The CS optimization problem in (12) can be perfectly
solved by LASSO algorithm.

Take the vector of sensing matrix mismatching error
𝛽 worked out from (12) to (8); estimation value of target
angle information ŝ(𝑡) can be resolved. Repeat the process
mentioned above until the difference of two target angle
information vector’s norm is less than the certain predefined
threshold. That is,


[ŝ (𝑡)](𝑝+1) − [ŝ (𝑡)](𝑝)

2
2


[ŝ (𝑡)](𝑝)

2
2

≤ Δ. (13)

Stop iteration at this moment; then [ŝ(𝑡)](𝑝+1) that we get is
the target angle estimation information,whereΔ is the certain
predefined threshold.
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Figure 1: Angle resolution of estimated spatial spectrum.

4. Simulation

In this part, numerical simulations are presented to examine
the performance of the proposed method. Consider 𝐿 = 10
array elements spaced randomly in [0, 30𝜆].

In the first examples, the angle resolution cell is set to be
𝜑 = 1∘, and the snapshots of the echo signal 𝑃 = 200. The
angles of input signals are assumed to be [31.3∘, 37.6∘, 45.2∘].
Figure 1 illustrates the spatial spectrum, when the signal-to-
noise ratio (SNR) is set to 0 dB. It can be seen that both
MUSIC algorithm and CAPON algorithm fail to achieve
high-resolution estimation on target angle information. The
CS-based DOA algorithm based on RMFOCUSS is endowed
with better angle resolution compared to conventional DOA
estimation algorithms while its estimation accuracy still
suffers from the impacts of mismatching between sensing
matrix and target angle information. In contrast, the pro-
posed algorithm remarkably increases the DOA estimation
accuracy by performing calibration on sensing matrix.

In the second examples, we consider the root-mean-
square error (RMSE) of different DOA estimation algorithms
versus different SNR. As shown in Figure 2, we can observe
that the proposed algorithm possesses better estimation per-
formance and achieves high resolution on DOA estimation,
for the reason that it successfully calibrates sensing matrix
mismatching error and impairs the effect from system sensing
matrix mismatching in low SNR.

In the third experiment, the simulations on randomly
generated DOAs are examined. Consider that the directions
of the three signals are uniformly generated within direction
intervals [20∘, 40∘], and the other parameters stay consistent.
The RMSE of different DOA estimation algorithms versus
different SNR is plotted in Figure 3. It is seen from the figure
that when the certain predefined threshold Δ = 0.1, the
estimation accuracy of the proposed algorithm is less than the
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Figure 2: RMSE of the DOA estimates versus input SNR.
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Figure 3: RMSE of the DOA estimates versus input SNR.

method in [11], butwhen the certain predefined thresholdΔ =

0.01, the proposed algorithm can achieve higher estimation
accuracy compared with other CS-DOAmethods which deal
with off-grid targets.

In the last experiment, the different angle resolution
cells are considered to examine the ability of the proposed
method to represent the true signals. The angle resolution
cells are selected as 𝜑 = [1∘, 3∘, 5∘]. The other parameters stay
consistent. The RMSE versus different angle resolution cells
is depicted in Figure 4, which demonstrate that the perfor-
mance of the proposed method increases with the decrease
of the angle resolution cell.
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Figure 4: RMSE of the DOA estimates versus input SNR with
different angle resolution cells.

5. Conclusion

In this paper, a novel CS-based DOA estimation algorithm
is proposed to solve the problem that the CS-based DOA
estimation performance deteriorates in the presence of sens-
ingmatrixmismatching.The proposed algorithm reduces the
estimation error of target angle information through calibrat-
ing sensing matrix. The algorithm proposed in this paper is
characterized by great value in practical applications, since
it improves the performance of CS-based DOA estimation
algorithm and achieves high resolution on DOA estimation.
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