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Abstract. A suite of scalable atomistic simulation programs has been developed for materials research based on space-time
multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD) simulations and
quantum-mechanical (QM) calculations based on the density functional theory. Performance tests have been carried out on 1,088-
processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom
MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. The production-quality
programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based
adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive
and interactive visualization of massive simulation data.
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1. Introduction

Modern design of high-performance materials and
devices focuses on controlling structures at diverse
length scales from atomic to macroscopic [28]. Rich
variety of atomistic simulation methods -ranging from
empirical molecular-dynamics (MD) simulations to ab
initio quantum-mechanical (QM) calculations- are ex-
pected to play an important role in scaling down engi-
neering concepts to nanometer scales. Recent advances

in computational methodologies and massively parallel
computers have made it possible to carry out 10–100
million atom simulations of real materials and devices
typically on 10–100 processors [1,10,38].

This paper describes our efforts to enable very
large-scale atomistic simulations involving multibillion
atoms by designing scalable and portable simulation
algorithms [16]. In the next section, we describe linear-
scaling parallel algorithms for MD and QM calcula-
tions. Section 3 discusses software tools to support

ISSN 1058-9244/02/$8.00  2002, ACM. Reprinted with permission from Proceedings of ACM Supercomputing 2001, 10–16 November,
Denver, CO, USA. ACM portal: www.acm.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192727875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


264 A. Nakano et al. / Scalable atomistic simulation algorithms for materials research

billion-atom simulations. Results of benchmark tests
are given in Section 4, and Section 5 contains conclu-
sions.

2. Parallel atomistic simulation algorithms

We have developed a suite of scalable MD and
QM algorithms for materials simulations. The linear-
scaling algorithms encompass a wide spectrum of phys-
ical reality: i) classical MD based on a many-body in-
teratomic potential model; ii) environment-dependent,
variable-charge MD; and iii) self-consistent QM cal-
culation based on the density functional theory (DFT).
These algorithms deal with the following three prob-
lems that are common in many scientific and engi-
neering applications: i) all-pairs function evaluation in
the N -body problem; ii) dense linear system of equa-
tions in the variable N -charge problem; and iii) ex-
haustive combinatorial enumeration in the quantumN -
body problem. This section describes general algorith-
mic techniques to obtain approximate solutions to these
problems inO(N) time, including i) clustering, ii) hier-
archical abstraction, and iii) the analysis of asymptotic
solution properties.

2.1. Multiresolution molecular dynamics algorithm

In the MD approach, one obtains the phase-space
trajectories of the system (positions and velocities of
all atoms at all time) [31]. Atomic force laws for de-
scribing how atoms interact with each other is mathe-
matically encoded in the interatomic potential energy,
EMD(rN ), which is a function of the positions of allN
atoms, rN = {r1, r2, . . . , rN}, in the system. In our
many-body interatomic potential scheme,EMD(rN ) is
expressed as an analytic function that depends on rel-
ative positions of atomic pairs and triples [38]. Time
evolution of rN is governed by a set of coupled ordi-
nary differential equations. For interatomic potentials
with finite ranges, the computational cost can be made
O(N) using a linked-cell-list approach [31].

Our multiresolution molecular dynamics (MRMD)
algorithm [25] also uses an approach called the mul-
tiple time-scale (MTS) method [21,23,37]. The MTS
method uses different force-update schedules for dif-
ferent force components, i.e., forces from the nearest-
neighbor atoms are computed at every MD step, and
forces from farther atoms are computed with less fre-
quency. This not only reduces the computational cost
but also enhances the data locality, and accordingly the

parallel efficiency is increased. These different force
components are combined using a reversible symplec-
tic integrator [37], and the resulting algorithm consists
of nested loops to use forces from different spatial re-
gions. It has been proven that the phase-space vol-
ume occupied by atoms is a simulation-loop invariant
in this algorithm [37], and this loop invariant results in
excellent long-time stability of the solutions.

For parallelization of MD simulations, we use spatial
decomposition [25,31]. The total volume of the system
is divided intoP subsystems of equal volume, and each
subsystem is assigned to a processor in an array of P
processors. To calculate the force on an atom in a sub-
system, the coordinates of the atoms in the boundaries
of neighbor subsystems are “cached” from the corre-
sponding processors. After updating the atomic po-
sitions due to a time-stepping procedure, some atoms
may have moved out of its subsystem. These atoms are
“migrated” to the proper neighbor processors. With the
spatial decomposition, the computation scales as N/P
while communication scales in proportion to (N/P )2/3

for an N -atom system.

2.2. Variable-charge molecular dynamics

Physical realism of MD simulations is greatly en-
hanced by incorporating variable atomic charges that
dynamically adapt to the local environment [4,35].
However, the increased realism of this variable-charge
molecular dynamics (VCMD) is accompanied by in-
creased computational complexity, O(N 3), for solv-
ing a dense linear system to determine atomic charges
at every MD step. We have reduced this complexi-
ty to O(N) [20] by combining: i) the fast multipole
method (FMM) [12,25] to perform matrix-vector mul-
tiplications with O(N) operations; and ii) an iterative
minimization approach to initialize the solution using
the previous MD step’s charges. These algorithms re-
duce the amortized computational cost averaged over
simulation steps to O(N).

In the FMM, the first essential idea is clustering, i.e.,
instead of computing interactions between all atomic
pairs, atoms are clustered and cluster-cluster interac-
tions are computed. At the source of interaction, cluster
information is encapsulated in terms of the multipoles
of the charge distribution, and this multipole expansion
provides a well-defined error bound. At the destina-
tion, on the other hand, the electrostatic potential is ex-
panded in terms of local terms, which is similar to the
Taylor expansion. The second essential idea is to use
larger clusters for longer distances, in order to reduce
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the computation and keep the error constant. This is
achieved by recursively subdividing the simulation box
into smaller cells to form an octree data structure. The
O(N) algorithm traverses this tree twice. In the upward
pass, multipoles are computed for all cells at all levels.
First the multipoles of the leaf cells are computed using
atomic charges and coordinates, and the multipoles of
these children cells are shifted and combined to obtain
the multipoles of the parent cells. This procedure is
repeated until the root of the octree is reached. In the
downward pass, these multipoles are translated to local
terms for all cells at all levels, starting from the root.
For a given cell at each level, only the multipoles of
a constant number of interactive cells contribute to the
local terms. Contributions from farther cells have al-
ready been computed at the previous coarse level, and
they are inherited from the parent cell. On the other
hand, the contributions from the nearest-neighbor cells
will be computed at the next fine level. This procedure
is repeated until we reach the leaf level. Finally, the
nearest-neighbor-cell contributions at the leaf level are
computed by direct summation over atoms. Since con-
stant computation is performed at each of the O(N)
octree nodes, the complexity of the FMM algorithm is
O(N).

On parallel computers, upper-level octree cells are
handled globally on all P processors if the number of
cells is less than P , and this introduces an O(logP )
overhead. At the lower octree levels, on the other hand,
spatial decomposition is employed, so that the compu-
tation on each processor is O(N/P ). The spatial de-
composition necessitates the caching of surface-cell in-
formation from the nearest-neighbor processors, which
involves O((N/P )2/3) communication. For typical
coarse-grained applications (N/P ∼ 105 − 106 and
P < 103), both the global (logP ) and the nearest-
neighbor ((N/P )2/3) communications are negligible
compared with the O(N/P ) computation.

To further accelerate the convergence of the itera-
tive solution mentioned above, we have developed a
multilevel preconditioned conjugate-gradient (MPCG)
method [20] by splitting the Coulomb-interaction ma-
trix into short- and long-range components and using
the sparse short-range matrix as a preconditioner. The
extensive use of the sparse preconditioner enhances the
data locality, and accordingly the parallel efficiency is
increased.

Tree-based algorithms such as the FMM have been
used extensively to perform massively parallel com-
puter simulations of gravitational systems in astro-
physics [39]. The FMM has also been used in conjunc-

tion with the MTS in parallel MD simulations of mate-
rials [25] and biomolecular systems [15,32]. Although
these space-time multiresolution algorithms deal with
O(N2) problems, their basic algorithmic structures can
be reused for the O(N 3) VCMD. For example, the
computational cost of our VCMD code is further amor-
tized by taking advantage of the algorithmic similarity
between the MTS and the multilevel-preconditioning
algorithms, i.e., by reusing a doubly nested loop with
associated neighbor-list construction for both the MTS
method for time-stepping and multilevel precondition-
ing for determining charges [20].

2.3. Linear-scaling quantum-mechanical calculation
based on the density functional theory

Empirical interatomic potentials used in MD sim-
ulations fail to describe chemical processes. Instead,
interatomic interaction in reactive regions needs to be
calculated by a QM method that can describe breaking
and formation of bonds. An atom consists of a nucle-
us and surrounding electrons, and quantum mechan-
ics explicitly treats the electronic degrees-of-freedom.
Since each electron’s wave function is a linear combi-
nation of many states, the combinatorial solution space
for the many-electron problem is exponentially large.
The density functional theory (DFT) avoids the ex-
haustive enumeration of many-electron correlations by
solving M single-electron problems in a common av-
erage environment (M is the number of independent
wave functions and is on the order of N ).1 As a re-
sult, the problem is reduced to a self-consistent ma-
trix eigenvalue problem, which can be solved with
O(M3) operations [13,18,27]. The DFT problem can
also be formulated as a minimization of the energy,
EQM (rN , ψM ), with respect to electron wave func-
tions, ψM (r) = {ψ1(r), ψ2(r), . . . , ψM (r)}, subject
to orthonormalization constraints between the wave
functions,∫

drψ∗
m(r)ψn(r) =

{
1 (m = n)
0 (m �= n) . (1)

Efficient parallel implementation of DFT is possible
with real-space approaches based on higher-order finite
differencing [6] and multigrid acceleration [3,9]. We
include electron-ion interaction using norm-conserving
pseudopotentials [36] and the exchange-correlation en-
ergy associated with electron-electron interaction in a

1Walter Kohn received a 1998 Nobel chemistry prize for the de-
velopment of the DFT.
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generalized gradient approximation [29]. For larger
systems (M > 1, 000), however, the O(M 3) orthonor-
malization becomes the bottleneck.

For scalable DFT calculations, linear-scaling al-
gorithms are essential [11]. We have implement-
ed [34] an O(M) algorithm [19] based on uncon-
strained minimization of a modified energy functional
and a localized-basis approximation. This algorithm
is based on the observation that, for most materials
at most temperatures, the off-diagonal elements of the
density matrix,

ρ(r, r′) =
M∑

n=1

ψ∗
n(r)ψn(r′), (2)

decays exponentially [11], i.e., ρ(r, r ′) ∝ exp(−C|r−
r′|) for |r − r′| → ∞ (C is a constant). Such
a diagonally-dominant matrix can be represented by
maximally localizing each wave function, ψn(r), by
a unitary transformation and then truncating it with a
finite cut-off radius. A Lagrange-multiplier-like tech-
nique is also used to perform unconstrained minimiza-
tion, avoiding the O(M 3) orthonormalization proce-
dure. In the parallel linear-scaling density functional
theory (LSDFT) algorithm, the computation time scales
asO(M/P ) onP processors, whereas the communica-
tion scales as O((M/P )2/3). This is in contrast to the
O(M(M/P )2/3) communication in the conventional
parallel real-space DFT algorithm. Global commu-
nication for calculating overlap integrals of the wave
functions (which scales asM 2 logP in the convention-
al DFT algorithm) is unnecessary in the linear-scaling
algorithm.

3. Software tools

Practical simulations involving multibillion atoms
are associated with a number of computational chal-
lenges, which have been addressed by a number of
software tools.

3.1. Wavelet-based adaptive computational-space
decomposition for load balancing

Many MD simulations are characterized by irregu-
lar atomic distribution and associated load imbalance.
For irregular data structures, the number of atoms as-
signed to each processor varies significantly, and this
load imbalance degrades the parallel efficiency. The
load-balancing problem can be stated as an optimiza-
tion problem, i.e., one minimizes the load-imbalance

cost as well as the size and the number of messages:

E = tcomp(max
p

|{i|ri ∈ p}|)

+tcomm(max
p

|{i|‖ri − ∂p‖ < rc}|), (3)

+tlatency(max
p

[Nmessage(p)])

where the three terms are the load-imbalance cost, the
size of messages, and the number of messages, re-
spectively. In Eq. (3), ∂p and Nmessage(p) denote the
boundary surface of the physical volume assigned to
processor p, and the number of messages per MD step
for p, respectively. The expression, maxp f(p), de-
notes the maximum value of function f(p) over all the
processors, and rc is the range of the interatomic po-
tential. The prefactors, tcomp, tcomm and tlatency, are
constants related to the processor speed, communica-
tion bandwidth and latency, respectively, and they are
determined experimentally by test runs on the parallel
computer under consideration.

To minimize the number of messages, we preserve
the 3D mesh topology, so that message passing is per-
formed in a structured way in only 6 steps [25]. To
minimize the load imbalance cost as well as the mes-
sage size, we have developed a computational-space
decomposition scheme [22,24]. The main idea of this
scheme is that the computational space shrinks where
the workload density is high and expands where the
density is low, so that the workload is uniformly dis-
tributed in the computational space. To implement the
curved computational space, we introduce a curvilinear
coordinate transformation,

ξ = x + u(x). (4)

where x is a position in the physical Euclidean space
and u(x) is a deformation field. We then use regular
3D mesh topology in the computational space, ξ, to
map atom i to processor p in an array of Px ×Py ×Pz

processors:{
p(ξi) = px(ξix)PyPz + py(ξiy)Pz + pz(ξiz)
pα(ξiα) = ξiαPα/Lα� (α = x, y, z) , (5)

where ξi = (ξix, ξiy, ξiz) is the coordinate of atom i
and Lα is the simulation box size in the α direction in
the computational space. This regular 3D mesh parti-
tion in the computational space results in curved par-
tition boundaries in the physical space, x. The load-
imbalance and communication costs are minimized as a
functional of the coordinate transformation,ξ(x), using
simulated annealing. We have found that wavelet rep-
resentation leads to compact representation of curved
partition boundaries, and accordingly to fast conver-
gence of the minimization procedure [22].
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3.2. Spacefilling-curve-based adaptive data
compression for scalable I/O

A 1.5-billion-atom MD simulation we are currently
performing produces 150 GB of data per frame (or per
minute), including atomic species, positions, veloci-
ties, and stresses. For scalable input/output (I/O) of
such large datasets, we have designed a data compres-
sion algorithm [26]. It uses octree indexing and sorts
atoms accordingly on the resulting spacefilling curve.
By storing differences between successive atomic co-
ordinates, the I/O requirement for the same error tol-
erance level reduces from O(N logN) to O(N). An
adaptive, variable-length encoding scheme is used to
make the scheme tolerant to outliers and optimized dy-
namically. An order-of-magnitude improvement in the
I/O performance was achieved [26] for actual MD data
with user-controlled error bound [40].

Another important issue in data management is the
analysis of simulation results.2 For atomistic simula-
tions of materials, a challenge is to extract topolog-
ical defects such as dislocations from massive data
with large thermal noises. Graph data structures have
played an important role in analyzing atomistic data [2,
7,14], where vertices and edges represent atoms and
bonds, respectively. Recently, we have used a shortest-
path ring analysis to study intermediate-range orders in
amorphous materials [8] and an edge-based indexing
to detect grain boundaries in semiconductors nanocrys-
tals [17].

3.3. Octree-based fast visibility culling for immersive
and interactive visualization

Interactive exploration of large-scale atomistic simu-
lations is important for identifying and tracking atomic
features that are responsible for macroscopic phenom-
ena, and an immersive and interactive virtual environ-
ment is an ideal platform for such explorative visual-
ization, see Fig. 1.

We have developed a scalable visualization sys-
tem to allow the viewer to walk through multibillion
atoms [33]. The system uses fast visibility culling
based on the octree data structure to reduce the number
of atoms sent to the graphics pipeline. Multiresolu-
tion rendering is used to further speed up the rendering
process. The visibility-culling task is offloaded to a

2For an extensive list of analysis tools for MD simulations, see
http://www.ks.uiuc.edu/Research/MMTools.

Fig. 1. A researcher investigating a fracture in a 1.5-billion-atom
model of a ceramic fiber composite material rendered in an Immer-
saDesk virtual environment at our Concurrent Computing Laboratory
for Materials Simulations.

PC cluster so that the graphics server is dedicated to
rendering. The resulting visualization system renders a
billion-atom system at nearly interactive frame rates on
a dual processor SGI Onyx2 with an InfiniteReality2
graphics pipeline connected to four PCs running Linux
6.2 each with an 800 MHz Pentium III processor and
512 MB RAM.

4. Performance tests

Benchmark tests of the three parallel algorithms –
MRMD, VCMD, and LSDFT – have been performed
on the Cray T3E and the IBM SP3 computers at the U.S.
Naval Oceanographic Office (NAVO) Major Shared
Resource Center. All the three programs are written
using MPI (Message Passing Interface) for message
passing. The T3E at NAVO at the time of the bench-
mark tests consisted of 1,088 Digital Alpha processors
with clock speed 450 MHz and 256 GB memory. The
IBM SP3 at NAVO is configured with 375 MHz Pow-
er3 CPUs and has 334 nodes with 4 CPUs and 4 GB of
memory per node.

Figure 2 shows the execution time of the MRMD
algorithm for silica material as a function of the num-
ber of processors, P . In this algorithm, the interatomic
potential energy is split into the long-range and short-
range contributions, where the long-range contribution
is computed after 10 steps. We scale the system size
linearly with the number of processors, so that the num-
ber of atoms, N = 648, 000 P . On the T3E, execution
time increases only slightly as a function of P , and
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Fig. 2. Wall-clock (circles) and communication (squares) times per
time step of the MD algorithm with scaled workloads – 648,000 P
atom silica systems on P processors (P = 1, . . . , 1,024) of Cray
T3E (open symbols) and IBM SP3 (solid symbols).

Fig. 3. Wall-clock (circles) and communication (squares) times for
the VCMD algorithm with scaled workloads – 20,160 P atom alumi-
na systems on P processors (P = 1, . . . , 1,024) of Cray T3E (open
symbols) and IBM SP3 (solid symbols).

this signifies an excellent parallel efficiency. On 1,024
processors, the parallel efficiency is as high as 97%.
The computational time on the SP3 is significantly less
than that on the T3E, but with increased communication
time.

Figure 3 shows the performance of the VCMD algo-
rithm with scaled workloads – 20,160P-atom alumina
systems on P processors (P = 1, . . . , 1,024). Multi-
poles up to lp = 6 are taken and the largest number of
leaf octree cells is 86 (P = 1,024) in the FMM. The
wall-clock time increases only slightly as a function of

Fig. 4. Wall-clock (circles) and communication (squares) times per
CG step as a function of the number of atoms for the parallel LSDFT
algorithm on Cray T3E and IBM SP3 computers. The system is
gallium arsenide crystal in the zinc-blende structure. The number of
processors is 1,024.

P , and the memory-bound parallel efficiency is 0.96 on
1,024 processors on the T3E.

In the LSDFT calculations for gallium arsenide ma-
terial, the localization region for the wave functions is
defined as a spherical space with radius 4.4 Å. Figure 4
shows the wall-clock and communication times per CG
iteration on 1,024 T3E and SP3 processors. The wall-
clock time scales linearly with N above N ∼ 10,000
(the number of wave functions, M = 2N ). For the
largest system (N = 110, 592), the parallel efficiency
is estimated to be 93%. The interprocessor communi-
cation scales as O(N 0.6) for N > 10, 000.

Major design parameters for MD simulations of ma-
terials include the number of atoms in the simulated
system and the methodologies to compute interatom-
ic forces (classically in MRMD, semiempirically in
VCMD, or quantum-mechanically [5] in LSDFT). Fig-
ure 5 shows a design-space diagram for classical and
quantum-mechanical MD simulations on 1,024 T3E
and SP3 processors. (For the LSDFT, one MD step in-
volves 3 self-consistent DFT iterations each consisting
of 20 CG steps.) The figure demonstrates linear scal-
ing for all the three algorithms, with prefactors span-
ning seven-orders-of-magnitude. The largest bench-
mark tests in this study include 6.44-billion-atom MR-
MD and 111,000-atom LSDFT calculations on 1,024
SP3 processors.
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Fig. 5. Design-space diagram for MD and QM simulations on 1,024
Cray T3E processors (open symbols) and on 1,024 IBM SP3 pro-
cessors (solid symbols). The figure shows wall-clock time per MD
step as a function of the number of atoms for three linear-scaling al-
gorithms: Classical MD (MRMD, circles); environment-dependant
variable-charge MD (VCMD, triangles); and, quantum-mechanical
MD based on the DFT (LSDFT, squares). Lines show O(N) scaling.

5. Conclusions

Modern MD simulations of materials started in 1964
when Aneesur Rahman simulated 864 argon atoms on
a CDC 3600 computer [30]. Assuming a simple expo-
nential growth, the number of atoms that can be sim-
ulated in classical MD simulations has doubled every
19 months to reach 6.44 billion atoms in this study.
Similarly, the number of atoms in DFT-based ab initio
MD simulations (started by Roberto Car and Michelle
Parrinello in 1985 for 8 Si atoms [5]) has doubled ev-
ery 12 months to 111,000 atoms in this study. Petaflop
computers anticipated to be built in the next ten years
will maintain the growth rates in these “MD Moore’s
Laws”, and we will be able to perform 1012-atom clas-
sical and 107-atom quantum MD simulations on such
computers. Multiresolution approaches used in our al-
gorithms, combined with cache-conscious techniques,
will be essential to achieve scalability on petaflop ar-
chitectures.

Atomistic simulations have now reached a scale such
that they must be performed in a metacomputing envi-
ronment of geographically-distributed multiple super-
computers. Such efforts are underway on NASA’s In-
formation Power Grid (www.ipg.nasa.gov).
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