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A robust fault detection scheme for a class of nonlinear systems with uncertainty is proposed. The proposed approach utilizes
robust control theory and parameter optimization algorithm to design the gainmatrix of fault tracking approximator (FTA) for fault
detection.The gainmatrix of FTA is designed tominimize the effects of systemuncertainty on residual signals whilemaximizing the
effects of system faults on residual signals.The design of the gainmatrix of FTA takes into account the robustness of residual signals
to systemuncertainty and sensitivity of residual signals to system faults simultaneously, which leads to amultiobjective optimization
problem. Then, the detectability of system faults is rigorously analyzed by investigating the threshold of residual signals. Finally,
simulation results are provided to show the validity and applicability of the proposed approach.

1. Introduction

In recent years, with the development of intelligent control
technology and processing ability of microchips, modern
dynamic systems are becoming more and more complex.
Fault detection and identification (FDI) can be deployed for
monitoring and reacting to the faults occurring in thesemod-
ern dynamic systems, which has a broad range of applications
including intelligent power grids, underwater robot, high
voltage direct current transmission lines, and long transmis-
sion lines in pneumatic, chemical processes. Effective FDI
schemes can ensure safety and reliability of complex dynamic
systems.Themost fundamental problem for FDI is to develop
a fault diagnosis observer or fault diagnosis filter. Due to the
development of various nonlinear or linear states observers,
the model-based analytical redundancy approaches received
more and more attention in the last two decades, including
observer based method, parity space based method, eigen-
structure assignment based method, and parameter identifi-
cation based method and 𝐻

∞
filter based method [1–8].

Early fault diagnosis approaches often assumed the avail-
ability of an accurate dynamic system model. In practice,
however, such an assumption can be invalid. The main
reason is that unstructuredmodeling uncertainties are always

unavoidable when modeling system mathematical struc-
tures. Therefore, there are a growing number of researchers
focusing their interests on FDI for nonlinear systems with
uncertainty. A novel integrated fault diagnosis and fault
tolerant control algorithm for non-Gaussian singular time-
delayed stochastic distribution control system was proposed
based on iterative learning observer. The iterative learning
observer was developed to obtain estimation of system
faults. Recently in [9], the authors introduced a novel fault
detection and diagnosis for nonlinear non-Gaussian dynamic
processes using kernel dynamic independent component
analysis method. Sensor fault diagnosis and identification
in nonlinear plants were discussed in [10]. The faults under
consideration in [10] were assumed to be abruptly occur-
ring calibration errors. Thus, an adaptive particle filter was
developed to diagnose sensor faults and compensate for
their effects. Chen and Saif in [11] proposed an iterative
learning observer (ILO) based fault diagnosis approach for
fault detection, identification, and accommodation.Themain
characteristic of the ILO was that its states were updated or
driven successively by the estimation errors of previous sys-
tem outputs and control inputs.The observer gainmatrix and
adaptive adjusting rule of the fault estimator are investigated
in detail.
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In our previous work [12], a robust fault tracking approx-
imator (RFTA) based fault detection and identification
scheme for a class of nonlinear systems was developed
and its stability properties were investigated as well. Due
to the existence of unstructured modeling uncertainties,
the convergence speed and fault tracking accuracy of the
FTA will be influenced dramatically. The objective of this
work is to extend the previous research results to a class of
nonlinear systems with uncertainty and optimize the gain
matrix of FTA. First of all, we decompose the fault diagnosis
problem into a parameter optimization problem and a fault
detection problem.The parameter optimization problem can
be described as follows: by using robust control technology
and parameter optimization algorithms, the gain matrix of
FTA is designed tominimize the effects of system uncertainty
on residual signals while maximizing the effects of system
faults on residual signals. The design of the gain matrix of
FTA takes into account the robustness to system uncertainty
and sensitivity to system faults simultaneously, which leads
to a multiobjective optimization problem.The fault detection
problem can be described as follows: we detect the system
faults according to the relationship between the calculated
threshold and residual signals. The detectability of system
faults is rigorously analyzed by investigating the threshold
of residual signals. In the end, an illustrative example is
proposed to demonstrate the validity and applicability of the
proposed approach.

An outline of this paper is organized as follows. In
Section 2, we define a class of uncertain nonlinear systems
and present a multiobjective optimization problem. The
design of gain matrix of FTA is investigated in Section 3.
The calculation of threshold for fault detection is designed
in Section 4. In Section 5, simulation results are reported
illustrating the effectiveness of the proposed robust fault
detection scheme. Some conclusion remarks are provided in
Section 6.

2. Problem Formulation

Consider a class of uncertain nonlinear systems described by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) + 𝐵
𝑓
𝑓 (𝑡) + 𝐵

𝑑
𝑑 (𝑡) ,

(1)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) + 𝐷
𝑓
𝑓 (𝑡) + 𝐷

𝑑
𝑑 (𝑡) , (2)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the system state vector, 𝑢(𝑡) ∈ 𝑅

𝑝

is the control input vector, 𝑦(𝑡) ∈ 𝑅
𝑞 is the measurement

output vector, 𝑑(𝑡) is the system uncertainty that belongs to
𝐿
𝑚

2
[0, +∞], 𝑓(𝑡) ∈ 𝑅

𝑚 is the system fault to be detected,
and 𝑔(⋅): is a known nonlinear function. 𝐴, 𝐵, 𝐵

𝑓
, 𝐵
𝑑
, 𝐶, 𝐷,

𝐷
𝑓
, and 𝐷

𝑑
are known parameter matrix with appropriate

dimensions. We take the following assumptions.

Assumption 1. The observability matrix associated with the
pair (𝐴, 𝐶) is full rank.

Assumption 2. The function 𝑑(𝑡) in (1), representing the
unstructured modeling uncertainty, is bounded by a known
constant; that is, ‖𝑑(𝑡)‖ ≤ 𝐿

𝑤
.

Assumption 3. The nonlinear function 𝑔(⋅) satisfies Lipschitz
condition; that is,

󵄩󵄩󵄩󵄩𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑦 (𝑡) , 𝑡)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝜌 (𝑥 (𝑡) − 𝑦 (𝑡))
󵄩󵄩󵄩󵄩

∀𝑥 (𝑡) , 𝑦 (𝑡) ∈ 𝐷,

(3)

where 𝜌 is a known real constant. Throughout the paper, the
notation ‖ ⋅ ‖ will be used to denote the Euclidean norm of a
vector.

To detect a fault, the FTA is constructed as follows [12]:

̇̂𝑥
𝑘
= 𝐴𝑥
𝑘
(𝑡) + 𝑔 (𝑥

𝑘
(𝑡) , 𝑡) + 𝐵𝑢

𝑘
(𝑡) + 𝐵

𝑓
𝑓
𝑘
(𝑡)

+ 𝐻 (𝑦 (𝑡) − 𝑦 (𝑡)) ,

(4)

𝑦
𝑘
(𝑡) = 𝐶𝑥

𝑘
(𝑡) + 𝐷𝑢

𝑘
(𝑡) , (5)

𝑒
𝑘
(𝑡) = 𝑥

𝑘
(𝑡) − 𝑥

𝑘
(𝑡) , (6)

𝑟
𝑘
(𝑡) = 𝐶𝑒

𝑘
(𝑡) , (7)

𝑓
𝑘+1

(𝑡) = 𝑓
𝑘
(𝑡) + Γ ̇𝑟

𝑘
(𝑡) , (8)

󵄩󵄩󵄩󵄩𝑦𝑘(𝑡) − 𝑦
𝑘
(𝑡)

󵄩󵄩󵄩󵄩∞
≤ 𝛾, 𝑡 ∈ [𝑡

𝑎
, 𝑡
𝑏
] , (9)

where 𝑥
𝑘
(𝑡) ∈ 𝑅

𝑛, 𝑦
𝑘
(𝑡) ∈ 𝑅

𝑞 are estimated system state and
output, respectively. 𝑘 is the iteration index and 𝛾 is the given
performance index. Γ is constant gainmatrix, and its elements
are within the scope (0, 1). 𝑓

𝑘
(𝑡) is virtual fault, which is an

estimate of𝑓(𝑡) and the value of𝑓(𝑡) is set to zero until a fault
is detected. 𝑒(𝑡) denotes the system state estimation error.
𝑒
𝑘
(𝑡) denotes the estimation error of 𝑒(𝑡) after 𝑘th iterative

operation. 𝑟
𝑘
(𝑡) denotes the estimation error of 𝑟(𝑡) after 𝑘th

iterative operation.𝐻 is the gain matrix to be optimized. 𝑟(𝑡)
is the so-called generated residual signal.

The basic idea behind the FTA is to adjust the virtual fault
𝑓
𝑘
(𝑡) within a specified time horizon by using iterative learn-

ing algorithm such that the virtual fault can approximate the
system fault 𝑓(𝑡) as closely as possible. Detailed description
about the FTA can be found in [12].

From (4)we can clearly see that the value of gainmatrix𝐻

will have a great influence on the convergence speed of FTA.
As a result, the fault tracking accuracy will be influenced as
well. In previous work [12], we have investigated the stability
and fault tracking accuracy of the FTAon the assumption that
the gainmatrix is a prespecified value. However, the design of
gain matrix 𝐻 still remains unresolved. In this work, we will
utilize multiobjective parameter optimization algorithm and
robust control theory to optimize the gain matrix 𝐻.

3. Design of Gain Matrix

First, we convert the parameter optimization problem into a
performance index optimization problem. Then, the design
of gain matrix is given in terms of linear matrix inequality
(LMI).
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Define the state estimation error 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡), and
then it follows from (1)–(7) that [13–17]

̇𝑒 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + (𝐵
𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝑡)

+ (𝐵
𝑑
− 𝐻𝐷

𝑑
) 𝑑 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡) ,

𝑟 (𝑡) = 𝐶𝑒 (𝑡) + 𝐷
𝑓
𝑓 (𝑡) + 𝐷

𝑑
𝑑 (𝑡) ,

(10)

where gain matrix 𝐻 is to be designed such that the system
(10) is asymptotically stable. To optimize the gain matrix 𝐻,
we propose the following performance index [18]:

𝐽 =

󵄩󵄩󵄩󵄩𝑇𝑟𝑑
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟𝑓

󵄩󵄩󵄩󵄩󵄩−

, (11)

where 𝑇
𝑟𝑑

denotes the transfer function from system uncer-
tainty to residual signal and 𝑇

𝑟𝑓
denotes the transfer function

from system faults to residual signal. The objective of this
parameter optimization problem is to maximize the effects of
system faults on residual signals while minimizing the effects
of system uncertainty on residual signals. Thus, it leads to
the following optimization problem: finding a gain matrix𝐻,
such that the system (10) remains asymptotically stable, and
the performance index 𝐽 = ‖𝑇

𝑟𝑑
‖
∞

/‖𝑇
𝑟𝑓
‖
−
is minimized.

Remark 4. The item ‖𝑇
𝑟𝑑
‖
∞
is used tomeasure the robustness

of residual signals to system uncertainty, while the sensi-
tivity of residual signals to system faults is measured by
‖𝑇
𝑟𝑓
‖
−

= inf
𝑓∈(0,∞)

𝜎[𝑇
𝑟𝑓
(𝑗𝑤)] and 𝜎[𝑇

𝑟𝑓
(𝑗𝑤)] denotes the

nonzero singular value of𝑇
𝑟𝑓
(𝑗𝑤).The optimization problem

described by (11) is actually a multiobjective optimization
problem, and it can be formulated as follows: for a given
constant 𝛾 > 0, 𝛽 > 0, finding a gain matrix 𝐻, such that
the system (10) remains asymptotically stable, and satisfying
the following inequality [18]:

‖𝑟(𝑡)‖
∞

≤ 𝛾 ‖𝑑 (𝑡)‖
∞

, ‖𝑟(𝑡)‖
−

> 𝛽
󵄩󵄩󵄩󵄩𝑓(𝑡)

󵄩󵄩󵄩󵄩− (12)

with (10); note that the dynamics of the residual signal
depends not only on 𝑓(𝑡) and 𝑑(𝑡), but also on the nonlinear
part: 𝑔(𝑥(𝑡), 𝑡) − 𝑔(𝑥(𝑡), 𝑡). So the traditional fault detection
observer design methods cannot be used here. A novel
method to design gain matrix 𝐻, meeting the performance
index (12), is required. In this paper, we propose a method to
resolve this problem in terms of LMIs.

Lemma 5 (see [18, 19]). Let 𝐴 and 𝐵 be real matrices with
appropriate dimensions. For any scalar 𝜀 > 0 and vectors
𝑥, 𝑦 ∈ 𝑅

𝑛, then

2𝑥
𝑇

𝐴𝐵𝑦 ≤ 𝜀
−1

𝑥
𝑇

𝐴𝐴
𝑇

𝑥 + 𝜀𝑦
𝑇

𝐵
𝑇

𝐵𝑦. (13)

Theorem 6. Given a constant 𝛾 > 0, in the condition of
𝑓(𝑡) = 0, the system (10) is asymptotically stable and satisfies
‖𝑟(𝑡)‖

∞
≤ 𝛾‖𝑑(𝑡)‖

∞
, if there exists a positive symmetrical

matrix 𝑃, scalar 𝜀
1
> 0, satisfying the following LMI:

[
[

[

𝑀
1

𝑀
3

𝑃

𝑀
𝑇

3
𝑀
2

0

𝑃
𝑇

0 −𝜀
1
𝐼

]
]

]

< 0, (14)

where

𝑀
1
= 𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)

𝑇

𝑃 + 𝐶
𝑇

𝐶 + 𝜀
1
𝜌
2

𝐼,

𝑀
2
= 𝐷
𝑇

𝑑
𝐷
𝑑
− 𝛾
2

𝐼,

𝑀
3
= 𝐶
𝑇

𝐷
𝑑
+ 𝑃 (𝐵

𝑑
− 𝐻𝐷

𝑑
) .

(15)

Proof. We choose a Lyapunov function of the form:

𝑉 (𝑡) = 𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) , (16)

where 𝑃 is a positive symmetrical matrix. In the fault-free
case, when the system uncertainty 𝑑(𝑡) = 0, we have

�̇� (𝑡) = 𝑒
𝑇

(𝑡) 𝑃 ̇𝑒 (𝑡) + ̇𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡)

= 𝑒
𝑇

(𝑡) 𝑃 [(𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]

+ [(𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]
𝑇

𝑃𝑒

= 𝑒
𝑇

(𝑡) [𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)
𝑇

𝑃] 𝑒 (𝑡)

+ 𝑒
𝑇

(𝑡) 𝑃 [𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]

+ [𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]
𝑇

𝑒𝑃.

(17)

According to Lemma 5 and Assumption 3, we have

2𝑒
𝑇

(𝑡) 𝑃 [𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]

≤ 𝜀
−1

1
𝑒
𝑇

(𝑡) 𝑃𝑃
𝑇

𝑒 (𝑡) + 𝜀
1
(𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡))

𝑇

× (𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡))

≤ 𝜀
−1

1
𝑒
𝑇

(𝑡) 𝑃𝑃
𝑇

𝑒 (𝑡) + 𝜀
1
𝜌
2

𝑒
𝑇

(𝑡) 𝑒 (𝑡) .

(18)

Thus:

�̇� (𝑡) ≤ 𝑒
𝑇

(𝑡) ⌊𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)
𝑇

𝑃

+ 𝜀
−1

1
𝑃𝑃
𝑇

+ 𝜀
1
𝜌
2

𝐼⌋ 𝑒 (𝑡) .

(19)

According to (14), we can obtain that �̇�(𝑡) ≤ 0. So the system
(10) is asymptotically stable in the condition of no fault.

When the system uncertainty 𝑑(𝑡) ̸= 0, define

𝐻(𝑒, 𝑑) = �̇� (𝑡) + ‖𝑟 (𝑡)‖
∞

− 𝛾
2

‖𝑑 (𝑡)‖
∞

. (20)

So we have

𝐻(𝑒, 𝑑) = 𝑒
𝑇

(𝑡) 𝑃 ̇𝑒 (𝑡) + ̇𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) + 𝑒
𝑇

(𝑡) 𝐶
𝑇

𝐶𝑒 (𝑡)

+ 𝑒
𝑇

(𝑡) 𝐶
𝑇

𝐷
𝑑
𝑑 (𝑡) + 𝑑

𝑇

(𝑡) 𝐷
𝑇

𝑑
𝐶𝑒 (𝑡)

+ 𝑑
𝑇

(𝑡) 𝐷
𝑇

𝑑
𝐷
𝑑
𝑑 (𝑡) − 𝛾

2

𝑑
𝑇

(𝑡) 𝑑 (𝑡)

= 𝑒
𝑇

(𝑡) 𝑃 [(𝐴 − 𝐻𝐶) 𝑒 (𝑡) + (𝐵
𝑑
− 𝐻𝐷

𝑑
) 𝑑 (𝑡)

+ 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]

+ [(𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)

+ (𝐵
𝑑
− 𝐻𝐷

𝑑
) 𝑑 (𝑡)]

𝑇

𝑃𝑒 (𝑡)
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+ 𝑒
𝑇

(𝑡) 𝐶
𝑇

𝐶𝑒 (𝑡) + 𝑒
𝑇

(𝑡) 𝐶
𝑇

𝐷
𝑑
𝑑 (𝑡)

+ 𝑑
𝑇

(𝑡) 𝐷
𝑇

𝑑
𝐶𝑒 (𝑡) + 𝑑

𝑇

(𝑡) 𝐷
𝑇

𝑑
𝐷
𝑑
𝑑 (𝑡)

− 𝛾
2

𝑑
𝑇

(𝑡) 𝑑 (𝑡)

≤ 𝑒
𝑇

(𝑡) [𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)
𝑇

𝑃 + 𝜀
−1

1
𝑃𝑃
𝑇

+𝐶
𝑇

𝐶 + 𝜀
1
𝜌
2

𝐼] 𝑒 (𝑡) + 𝑒
𝑇

(𝑡) [𝐶
𝑇

𝐷
𝑑
] 𝑑 (𝑡)

+ 𝑑
𝑇

(𝑡) [𝐷
𝑇

𝑑
𝐶] 𝑒 (𝑡) + 𝑑

𝑇

(𝑡) 𝐷
𝑇

𝑑
𝐷
𝑑
𝑑 (𝑡)

− 𝛾
2

𝑑
𝑇

(𝑡) 𝑑 (𝑡) + 𝑒
𝑇

(𝑡) [𝑃 (𝐵
𝑑
− 𝐻𝐷

𝑑
)] 𝑑 (𝑡)

+ 𝑑
𝑇

(𝑡) [(𝐵
𝑑
− 𝐻𝐷

𝑑
)
𝑇

𝑃] 𝑒 (𝑡)

= [
𝑒(𝑡)

𝑑(𝑡)
]

𝑇

[

[

𝑀
1

𝑀
3

𝑀
𝑇

3
𝑀
2

]

]

[
𝑒 (𝑡)

𝑑 (𝑡)
] ,

(21)

where

𝑀
1
= 𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)

𝑇

𝑃 + 𝐶
𝑇

𝐶 + 𝜀
−1

1
𝑃𝑃
𝑇

+ 𝜀
1
𝜌
2

𝐼,

𝑀
2
= 𝐷
𝑇

𝑑
𝐷
𝑑
− 𝛾
2

𝐼,

𝑀
3
= 𝐶
𝑇

𝐷
𝑑
+ 𝑃 (𝐵

𝑑
− 𝐻𝐷

𝑑
) .

(22)

According to (14) and Schur theory, we can obtain that

𝐻(𝑒, 𝑑) = �̇� (𝑡) + 𝑟
𝑇

(𝑡) 𝑟 (𝑡) − 𝛾
2

𝑑
𝑇

(𝑡) 𝑑 (𝑡) < 0. (23)

For any given time 𝑡 > 0, integration of (23) from 0 to 𝑡 yields

∫

+∞

0

𝑟
𝑇

(𝑡) 𝑟 (𝑡) < 𝛾
2

∫

+∞

0

𝑑
𝑇

(𝑡) 𝑑 (𝑡) . (24)

Thus, the inequality ‖𝑟(𝑡)‖
∞

≤ 𝛾‖𝑑(𝑡)‖
∞

holds. This com-
pletes the proof.

Theorem 7. Given a constant 𝛽 > 0, in the condition of 𝑑(𝑡) =

0, the system (10) is asymptotically stable and satisfies ‖𝑟(𝑡)‖
−

≥

𝛽‖𝑓(𝑡)‖
−
, if there exists a positive symmetrical matrix𝑄, scalar

𝜂
1
> 0, satisfying the following LMI:

[
[

[

𝑁
1

𝑁
3

𝑄

𝑁
𝑇

3
𝑁
2

0

𝑄
𝑇

0 −𝜂
1
𝐼

]
]

]

< 0, (25)

where

𝑁
1
= 𝑄 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)

𝑇

𝑄 − 𝐶
𝑇

𝐶 + 𝜂
1
𝜌
2

𝐼,

𝑁
2
= −𝐷
𝑇

𝑓
𝐷
𝑓
+ 𝛽
2

𝐼,

𝑁
3
= −𝐶
𝑇

𝐷
𝑓
+ 𝑄 (𝐵

𝑓
− 𝐻𝐷

𝑓
) .

(26)

Proof. We choose a Lyapunov function of the form:

𝑉 (𝑡) = 𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) , (27)

where𝑄 is a positive symmetrical matrix. In the condition of
𝑑(𝑡) = 0, when the system faults 𝑓(𝑡) = 0, we have

�̇� (𝑡) = 𝑒
𝑇

(𝑡) 𝑄 ̇𝑒 (𝑡) + ̇𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡)

= 𝑒
𝑇

(𝑡) 𝑄 [(𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]

+ [(𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]
𝑇

𝑄𝑒

= 𝑒
𝑇

(𝑡) [𝑄 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)
𝑇

𝑄] 𝑒 (𝑡)

+ 𝑒
𝑇

(𝑡) 𝑄 [𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]

+ [𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]
𝑇

𝑒𝑄.

(28)

According to Lemma 5 and Assumption 3, we have

2𝑒
𝑇

(𝑡) 𝑄 [𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]

≤ 𝜂
−1

1
𝑒
𝑇

(𝑡) 𝑄𝑄
𝑇

𝑒 (𝑡) + 𝜂
1
(𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡))

𝑇

× (𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡))

≤ 𝜂
−1

1
𝑒
𝑇

(𝑡) 𝑄𝑄
𝑇

𝑒 (𝑡) + 𝜂
1
𝜌
2

𝑒
𝑇

(𝑡) 𝑒 (𝑡) .

(29)

Thus

�̇� (𝑡) ≤ 𝑒
𝑇

(𝑡) [𝑄 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)
𝑇

𝑄

+𝜂
−1

1
𝑃𝑃
𝑇

+ 𝜂
1
𝜌
2

𝐼] 𝑒 (𝑡) .

(30)

According to (25), we can obtain that �̇�(𝑡) ≤ 0. So the system
(10) is asymptotically stable in the condition of 𝑓(𝑡) = 0.

When the system faults 𝑓(𝑡) ̸= 0, define

𝐻(𝑒, 𝑓) = �̇� (𝑡) + 𝛽
2 󵄩󵄩󵄩󵄩𝑓 (𝑡)

󵄩󵄩󵄩󵄩∞
− ‖𝑟 (𝑡)‖

∞
. (31)

So we have

𝐻(𝑒, 𝑓) = 𝑒
𝑇

(𝑡) 𝑄 ̇𝑒 (𝑡) + ̇𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡) − 𝑒
𝑇

(𝑡) 𝐶
𝑇

𝐶𝑒 (𝑡)

− 𝑒
𝑇

(𝑡) 𝐶
𝑇

𝐷
𝑓
𝑓 (𝑡) − 𝑓

𝑇

(𝑡) 𝐷
𝑇

𝑓
𝐶𝑒 (𝑡)

− 𝑓
𝑇

(𝑡) 𝐷
𝑇

𝑓
𝐷
𝑓
𝑓 (𝑡) + 𝛽

2

𝑓
𝑇

(𝑡) 𝑓 (𝑡)

= 𝑒
𝑇

(𝑡) 𝑄 [(𝐴 − 𝐻𝐶) 𝑒 (𝑡) + (𝐵
𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝑡)

+ 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)]

+ [(𝐴 − 𝐻𝐶) 𝑒 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡)

+ (𝐵
𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝑡)]

𝑇

𝑄𝑒 (𝑡) − 𝑒
𝑇

(𝑡) 𝐶
𝑇

𝐶𝑒 (𝑡)

− 𝑒
𝑇

(𝑡) 𝐶
𝑇

𝐷
𝑓
𝑑 (𝑡) − 𝑓

𝑇

(𝑡) 𝐷
𝑇

𝑓
𝐶𝑒 (𝑡)

− 𝑓
𝑇

(𝑡) 𝐷
𝑇

𝑓
𝐷
𝑓
𝑓 (𝑡) + 𝛽

2

𝑓
𝑇

(𝑡) 𝑓 (𝑡)

≤ 𝑒
𝑇

(𝑡) [𝑄 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)
𝑇

𝑄 + 𝜂
−1

1
𝑄𝑄
𝑇

−𝐶
𝑇

𝐶 + 𝜂
1
𝜌
2

𝐼] 𝑒 (𝑡) − 𝑒
𝑇

(𝑡) [𝐶
𝑇

𝐷
𝑓
] 𝑓 (𝑡)
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− 𝑓
𝑇

(𝑡) [𝐷
𝑇

𝑓
𝐶] 𝑒 (𝑡) − 𝑓

𝑇

(𝑡) 𝐷
𝑇

𝑓
𝐷
𝑓
𝑓 (𝑡)

+ 𝛽
2

𝑓
𝑇

(𝑡) 𝑓 (𝑡) − 𝑒
𝑇

(𝑡) [𝑄 (𝐵
𝑑
− 𝐻𝐷

𝑑
)] 𝑓 (𝑡)

− 𝑓
𝑇

(𝑡) [(𝐵
𝑓
− 𝐻𝐷

𝑓
)
𝑇

𝑄] 𝑒 (𝑡)

= [
𝑒(𝑡)

𝑓(𝑡)
]

𝑇

[

[

𝑁
1

𝑁
3

𝑁
𝑇

3
𝑁
2

]

]

[
𝑒 (𝑡)

𝑓 (𝑡)
] ,

(32)

where

𝑁
1
= 𝑄 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)

𝑇

𝑄 − 𝐶
𝑇

𝐶

+ 𝜂
−1

1
𝑄𝑄
𝑇

+ 𝜂
1
𝜌
2

𝐼,

𝑁
2
= −𝐷
𝑇

𝑓
𝐷
𝑓
+ 𝛽
2

𝐼,

𝑁
3
= −𝐶
𝑇

𝐷
𝑓
+ 𝑄 (𝐵

𝑓
− 𝐻𝐷

𝑓
) .

(33)

According to Schur theory, we can obtain that

𝐻(𝑒, 𝑓) = �̇� (𝑡) + 𝛽
2

𝑓
𝑇

(𝑡) 𝑓 (𝑡) − 𝑟
𝑇

(𝑡) 𝑟 (𝑡) < 0. (34)

For any given time 𝑡 > 0, integration of (34) from 0 to 𝑡 yields

∫

+∞

0

𝑟
𝑇

(𝑡) 𝑟 (𝑡) > 𝛽
2

∫

+∞

0

𝑓
𝑇

(𝑡) 𝑓 (𝑡) . (35)

Thus, the inequality ‖𝑟(𝑡)‖
−

> 𝛽‖𝑓(𝑡)‖
−
holds.This completes

the proof.

Theorem 8. Given constants 𝛾 > 0 and 𝛽 > 0, the system (10)
is asymptotically stable and satisfies ‖𝑟(𝑡)‖

∞
≤ 𝛾‖𝑑(𝑡)‖

∞
and

‖𝑟(𝑡)‖
−

≥ 𝛽‖𝑓(𝑡)‖
−
, if there exist matrices 𝑃, 𝑄, and 𝐻, scalar

𝜀
1
> 0, 𝜂

1
> 0 satisfying matrix inequality:

[
[

[

𝑀
1

𝑀
3

𝑃

𝑀
𝑇

3
𝑀
2

0

𝑃
𝑇

0 −𝜀
1
𝐼

]
]

]

< 0,
[
[

[

𝑁
1

𝑁
3

𝑄

𝑁
𝑇

3
𝑁
2

0

𝑄
𝑇

0 −𝜂
1
𝐼

]
]

]

< 0, (36)

where

𝑀
1
= 𝑃 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)

𝑇

𝑃 + 𝐶
𝑇

𝐶 + 𝜀
1
𝜌
2

𝐼,

𝑀
2
= 𝐷
𝑇

𝑑
𝐷
𝑑
− 𝛾
2

𝐼,

𝑀
3
= 𝐶
𝑇

𝐷
𝑑
+ 𝑃 (𝐵

𝑑
− 𝐻𝐷

𝑑
) ,

𝑁
1
= 𝑄 (𝐴 − 𝐻𝐶) + (𝐴 − 𝐻𝐶)

𝑇

𝑄 − 𝐶
𝑇

𝐶 + 𝜂
1
𝜌
2

𝐼,

𝑁
2
= −𝐷
𝑇

𝑓
𝐷
𝑓
+ 𝛽
2

𝐼,

𝑁
3
= −𝐶
𝑇

𝐷
𝑓
+ 𝑄 (𝐵

𝑓
− 𝐻𝐷

𝑓
) .

(37)

Proof. By combining Theorems 6 and 7, we have Theorem 8.
This completes the proof.

Remark 9. Theorem 6 considers the robustness of residual
signals to system uncertainty, and Theorem 7 considers the
sensitivity of residual signals to system faults. Theorem 8
investigates the optimization of gain matrix 𝐻 by taking
into account the robustness of residual signals to system
uncertainty and sensitivity of residual signals to system faults
simultaneously. If we iteratively useTheorem 8, we can get the
optimized solution of the performance indices 𝛾, 𝛽 and gain
matrix 𝐻 by using LMI toolbox in MatLab.

4. Fault Detection Threshold

In the above sections, we have investigated the optimization
of the value of gain matrix 𝐻 in terms of LMIs. In this
section, we will investigate the calculation of threshold for
fault detection.

Theorem 10. Suppose Assumptions 1–3 hold. Consider the
dynamic system described by (1), (2) and the FTA described by
(4)∼(9); let the initial state and output of the FTA be 𝑥

𝑘
(0) =

𝑥(0), 𝑦
𝑘
(0) = 𝑦(0) (𝑘 = 1, 2, . . .), respectively. If the following

inequality holds
󵄩󵄩󵄩󵄩𝑟𝑘 (𝑡)

󵄩󵄩󵄩󵄩 > 𝐿
𝑤
𝑃 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩

+ (( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖𝐶Φ (𝑡, 𝜏)‖ 𝐿
𝑤
𝑃

× sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩)

×( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ (𝑡, 𝜏)‖)

−1

)

× exp 𝜌 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ (𝑡, 𝜏)‖ 𝑃

(38)

then there is fault occurring in the system.

Proof. Without loss of generality, we assume 𝑡 ∈ [𝑡
𝑎
, 𝑡
𝑏
] and

𝑡
𝑏
− 𝑡
𝑎
= 𝑃.

Subtracting (4) from system equation (1) and subtracting
(5) from system equation (2) result in the estimation error
dynamics:

̇𝑒 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + (𝐵
𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝑡)

+ (𝐵
𝑑
− 𝐻𝐷

𝑑
) 𝑑 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡)

− 𝑔 (𝑥 (𝑡) , 𝑡) − 𝐵
𝑓
𝑓 (𝑡) ,

𝑟 (𝑡) = 𝐶𝑒 (𝑡) + 𝐷
𝑓
𝑓 (𝑡) + 𝐷

𝑑
𝑑 (𝑡) .

(39)

In the condition of 𝑓(𝑡) = 0, we have

̇𝑒 (𝑡) = (𝐴 − 𝐻𝐶) 𝑒 (𝑡) + (𝐵
𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝑡)

+ (𝐵
𝑑
− 𝐻𝐷

𝑑
) 𝑑 (𝑡) + 𝑔 (𝑥 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡) ,

𝑟 (𝑡) = 𝐶𝑒 (𝑡) + 𝐷
𝑓
𝑓 (𝑡) + 𝐷

𝑑
𝑑 (𝑡) .

(40)
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The solution of (40) is
𝑒
𝑘
(𝑡) = Φ (𝑡, 𝑡

𝑎
) 𝑒
𝑘
(𝑡
𝑎
)

+ ∫

𝑡

𝑡
𝑎

Φ (𝑡, 𝜏) [(𝐵
𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝜏) + 𝑔

𝑘
(𝑥 (𝜏) , 𝜏)

− 𝑔
𝑘
(𝑥 (𝜏) , 𝜏) + (𝐵

𝑑
− 𝐻𝐷

𝑑
) 𝑑 (𝜏)] 𝑑𝜏,

(41)

𝑟
𝑘
(𝑡) = 𝐶Φ (𝑡, 𝑡

𝑎
) 𝑒
𝑘
(𝑡
𝑎
)

+ ∫

𝑡

𝑡
𝑎

𝐶Φ (𝑡, 𝜏) [(𝐵
𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝜏) + 𝑔

𝑘
(𝑥 (𝜏) , 𝜏)

− 𝑔
𝑘
(𝑥 (𝜏) , 𝜏)+(𝐵

𝑑
−𝐻𝐷
𝑑
) 𝑑 (𝜏)] 𝑑𝜏,

(42)

where Φ(𝑡) = 𝐿
−1

[(𝑠𝐼 − (𝐴 − 𝐻𝐶))
−1

]; 𝐿−1 denotes inverse
Laplacian transform.

Due to 𝑥
𝑘
(0) = 𝑥(0), 𝑦

𝑘
(0) = 𝑦(0) (𝑘 = 1, 2, . . .), we have

𝑦
𝑘+1

(𝑡
𝑎
) = 𝐶𝑥

𝑘+1
(𝑡
𝑎
) = 𝐶𝑥

𝑘
(𝑡
𝑎
) = 𝑦
𝑘
(𝑡
𝑎
) , 𝑟

𝑘
(𝑡
𝑎
) = 0,

𝑒
𝑘
(𝑡
𝑎
) = 0.

(43)

Substituting (43) into (42) yields

𝑟
𝑘
(𝑡) = ∫

𝑡

𝑡
𝑎

𝐶Φ (𝑡, 𝜏) [(𝐵
𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝜏) + 𝑔

𝑘
(𝑥 (𝜏) , 𝜏)

− 𝑔
𝑘
(𝑥 (𝜏) , 𝜏) + (𝐵

𝑑
− 𝐻𝐷

𝑑
) 𝑑 (𝜏)] 𝑑𝜏.

(44)

According to Assumptions 1–3, the time weighted norm of
(44) is

󵄩󵄩󵄩󵄩𝑟𝑘 (𝑡)
󵄩󵄩󵄩󵄩 ≤ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩󵄩
𝐶Φ (𝑡, 𝜏) (𝐵

𝑓
− 𝐻𝐷

𝑓
) 𝑓 (𝜏)

󵄩󵄩󵄩󵄩󵄩
𝑑𝜏

+ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝑔
𝑘
(𝑥 (𝜏) , 𝜏) − 𝑔

𝑘
(𝑥 (𝜏) , 𝜏))

󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩 ‖𝑑 (𝜏)‖ 𝑑𝜏.

(45)

In the condition of 𝑓(𝑡) = 0, we have

󵄩󵄩󵄩󵄩𝑟𝑘 (𝑡)
󵄩󵄩󵄩󵄩 ≤ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝑔
𝑘
(𝑥 (𝜏) , 𝜏) − 𝑔

𝑘
(𝑥 (𝜏) , 𝜏))

󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩 ‖𝑑 (𝜏)‖ 𝑑𝜏.

(46)

According to (41), we have

󵄩󵄩󵄩󵄩𝑒𝑘 (𝑡)
󵄩󵄩󵄩󵄩 ≤ ∫

𝑡

𝑡
𝑎

𝜌 ‖Φ (𝑡, 𝜏)‖
󵄩󵄩󵄩󵄩𝑒𝑘 (𝜏)

󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩 ‖𝑑 (𝜏)‖ 𝑑𝜏

≤ ∫

𝑡

𝑡
𝑎

𝜌 ‖Φ (𝑡, 𝜏)‖
󵄩󵄩󵄩󵄩𝑒𝑘 (𝜏)

󵄩󵄩󵄩󵄩 𝑑𝜏

+ 𝐿
𝑤
𝑃 sup
𝑡,𝜏∈[𝑡𝑎 ,𝑡𝑏]

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩 .

(47)

Using Gronwall-Bellman inequality, (47) can be simplified as
󵄩󵄩󵄩󵄩𝑒𝑘 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑤
𝑃 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩

× exp 𝜌 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ (𝑡, 𝜏)‖ (𝑡 − 𝑡
𝑎
) ,

(48)

where exp denotes exponential function. Substituting (48)
into (46) yields

󵄩󵄩󵄩󵄩𝑟𝑘 (𝑡)
󵄩󵄩󵄩󵄩 ≤ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝑔
𝑘
(𝑥 (𝜏) , 𝜏) − 𝑔

𝑘
(𝑥 (𝜏) , 𝜏))

󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩 ‖𝑑 (𝜏)‖ 𝑑𝜏

≤ ∫

𝑡

𝑡
𝑎

𝜌 ‖𝐶Φ (𝑡, 𝜏)‖ ⋅
󵄩󵄩󵄩󵄩𝑒𝑘 (𝑡)

󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑡

𝑡
𝑎

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩 ‖𝑑 (𝜏)‖ 𝑑𝜏

≤ 𝐿
𝑤
𝑃 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩

+ (( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖𝐶Φ (𝑡, 𝜏)‖ 𝐿
𝑤
𝑃

× sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩)

×( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ (𝑡, 𝜏)‖)

−1

)

× exp 𝜌 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ (𝑡, 𝜏)‖ (𝑡 − 𝑡
𝑎
)

≤ 𝐿
𝑤
𝑃 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩

+ (( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖𝐶Φ (𝑡, 𝜏)‖ 𝐿
𝑤
𝑃

× sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩)

×( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ(𝑡, 𝜏)‖)

−1

)

× exp 𝜌 sup
𝑡,𝜏∈[𝑡𝑎 ,𝑡𝑏]

‖Φ (𝑡, 𝜏)‖ 𝑃.

(49)



Mathematical Problems in Engineering 7

If faults occur in the system, then
󵄩󵄩󵄩󵄩𝑟𝑘 (𝑡)

󵄩󵄩󵄩󵄩 > 𝐿
𝑤
𝑃 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩

+ (( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖𝐶Φ (𝑡, 𝜏)‖ 𝐿
𝑤
𝑃

× sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩)

×( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ(𝑡, 𝜏)‖)

−1

)

× exp 𝜌 sup
𝑡,𝜏∈[𝑡𝑎 ,𝑡𝑏]

‖Φ (𝑡, 𝜏)‖ 𝑃.

(50)
If the following inequality holds

󵄩󵄩󵄩󵄩𝑟𝑘 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑤
𝑃 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩𝐶Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩

+ (( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖𝐶Φ (𝑡, 𝜏)‖ 𝐿
𝑤
𝑃

× sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜏) (𝐵
𝑑
− 𝐻𝐷

𝑑
)
󵄩󵄩󵄩󵄩)

×( sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ(𝑡, 𝜏)‖)

−1

)

× exp 𝜌 sup
𝑡,𝜏∈[𝑡

𝑎
,𝑡
𝑏
]

‖Φ (𝑡, 𝜏)‖ 𝑃

(51)

then there are no faults occurring in the system.
This completes the proof.
In the presence of unstructuredmodeling uncertainty, we

have to determine the upper bounds of the residual signals
for fault detection, referred to as the threshold. Theorem 10
investigated the calculation of threshold for fault detection.
Once the residual signals exceed the threshold, it indicates
that system faults occur. If the residual signal is below the
threshold, there is no fault occurring. Moreover, we can use
the residual evaluation function ‖𝑟(𝑡)‖

2
to detect system

faults [20, 21].

5. Simulation Results

In this section, we use the proposed method to detect faults
for a class of uncertain nonlinear systems. Let us consider the
uncertain nonlinear system with parameters as follows:

�̇� (𝑡) = [
−0.38 0

0 −0.59
] 𝑥 (𝑡) + [

1

1
] 𝑢

+ [
0.1 sin (𝑡)

0.1 sin (𝑡)
] 𝑥 (𝑡)

+ [
0.2

0.2
] 𝑑 (𝑡) + [

0.1

0.1
] 𝑓 (𝑡) ,

𝑦 (𝑡) = [1 1] 𝑥 (𝑡) + 0.1𝑓 (𝑡) + 0.1𝑑 (𝑡) .

(52)
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Figure 1: White noise signal.
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Figure 2: Generated residual signal.

Let 𝛾 = 0.3, let 𝛽 = 0.7, and let 𝑑(𝑡) be white noise with
energy 0.5. According to Theorem 8, the gain matrix of FTA
can be determined: 𝐻 = [0.2071, 0.1832]

𝑇. According to
Theorem 10, the threshold for fault detection is 0.426. The
white noise signal, generated residual signal are shown in
Figures 1 and 2, respectively.

From Figure 2, we can clearly see that the residual signal
is below the threshold at time 𝑡 < 100 s.Therefore, there is no
fault occurring at time 𝑡 < 100 s. At time 100 s < 𝑡 < 200 s,
the residual signal exceeds the threshold; it indicates that
system fault occurs. Next, we use residual evaluation function
‖𝑟(𝑡)‖

2
to detect system faults. Figure 3 shows the evolution

of residual evaluation function ‖𝑟(𝑡)‖
2
. From Figure 3 we can

see that, at time 100 s < 𝑡 < 200 s, the residual evaluation
function ‖𝑟(𝑡)‖

2
jumps from 0.1 to 5.1; it indicates that system

fault occurs. It can be seen from the simulation results that
the proposed approach can improve not only the sensitivity
of the FTA to system faults, but also the robustness of the FTA
to systems uncertainty.
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Figure 3: Evolution of residual evaluation function.

6. Conclusions

This paper has proposed a fault detection scheme for a class
of uncertain nonlinear systems.Themain contribution of this
paper is to utilize robust control theory and multiobjective
optimization algorithm to design the gainmatrix of FTA.The
gain matrix of FTA is designed to minimize the effects of
system uncertainty on residual signals while maximizing the
effects of system faults on residual signals. The calculation
of the gain matrix is given in terms of LMIs formulations.
The selection of threshold for fault detection is rigorously
investigated as well. In the end, an illustrative example has
demonstrated the validity and applicability of the proposed
approach.
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