
Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2013, Article ID 479634, 8 pages
http://dx.doi.org/10.1155/2013/479634

Research Article
A Fractional Anomalous Diffusion Model and Numerical
Simulation for Sodium Ion Transport in the Intestinal Wall

Bo Yu and Xiaoyun Jiang

School of Mathematics, Shandong University, Jinan 250100, China

Correspondence should be addressed to Xiaoyun Jiang; wqjxyf@sdu.edu.cn

Received 17 May 2013; Accepted 1 July 2013

Academic Editor: Changpin Li

Copyright © 2013 B. Yu and X. Jiang. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The authors present a fractional anomalous diffusion model to describe the uptake of sodium ions across the epithelium
of gastrointestinal mucosa and their subsequent diffusion in the underlying blood capillaries using fractional Fick’s law. A
heterogeneous two-phase model of the gastrointestinal mucosa is considered, consisting of a continuous extracellular phase and
a dispersed cellular phase. The main mode of uptake is considered to be a fractional anomalous diffusion under concentration
gradient and potential gradient. Appropriate partial differential equations describing the variation with time of concentrations of
sodium ions in both the two phases across the intestinal wall are obtained using Riemann-Liouville space-fractional derivative and
are solved by finite differencemethods.The concentrations of sodium ions in the interstitial space and in the cells have been studied
as a function of time, and the mean concentration of sodium ions available for absorption by the blood capillaries has also been
studied. Finally, numerical results are presented graphically for various values of different parameters. This study demonstrates
that fractional anomalous diffusion model is appropriate for describing the uptake of sodium ions across the epithelium of
gastrointestinal mucosa.

1. Introduction

The intestinal wall represents a complex system which allows
the passage of substances either through the cells or in
between the cells. The luminal surface of the intestine is
covered with a typically leaky epithelium which enables the
passage of ions via the intercellular route.The substance to be
absorbed either penetrates into the intercellular space directly
through the tight junction or enters the cell cytoplasm
through the apical plasma membrane from the lumen of
the intestine and then penetrates through the lateral plasma
membrane to enter the intercellular space. The latter route
leads to the underlying lamina propria, which consists of
connective tissue, blood vessels, and lymph capillaries, and
thus the substance enters the circulation (Figure 1) [1]. The
process in which the ions enter the cell is passive diffusion
under concentration gradient and potential gradient. This is
mainly because transmural electrical potential differences of
5–12mV have been reported from a variety of species during

recent years [2, 3]. Although the potential differences across
the intestinal wall are relatively small, they cannot be ignored
in the studies of the intestinal transport of charged species [4].

Numerous techniques involving both in vivo and in vitro
preparations have been employed in the study of intestinal
transport. But because the cells are too small to provide
continuous sections large enough for steady-state determi-
nations of their transmission properties in actual physical
situations, the distribution of the ions in the cellular and
extracellular phases cannot be determined experimentally.
Therefore, the idea of analysing such physiological problems
using a theoretical approach has arisen. Fadali et al. [5]
proposed an analytical model for water absorption in the
intestine based on an integration of mass balance equation
for active contact area for absorption. The model gave a
solution for the amount of water absorbed in the intestine as
a function of time following water ingestion using data from
the physiological literature. Hills [6] proposed a two-phase
model to study linear bulk diffusion into a continuous fluid
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Figure 1: Schematic diagram of the intestinal wall.

in which a less permeable phase was distributed as particles
of irregular profile; the overall uptake of solute by a parallel-
faced section of tissue could be expressed as the sum of an
infinite number of exponential terms. The advantage of this
model was that it represented the histology of cellular tissue
in the most realistic manner. Karmakar and Jayaraman [1]
presented a linear diffusion model of the intestinal wall to
describe the uptake of lead ions across the epithelium of
gastrointestinal mucosa and their subsequent diffusion in the
underlying blood capillaries.Themodel studied the variation
of concentration with time in the extracellular phase and
the cellular phase and the mean concentration available for
absorption by the blood capillaries as a function of time, and
it also reported the determination of membrane permeabil-
ity for lead through theoretical analysis. Varadharajan and
Jayaraman [7] presented a theoretical approach to study the
uptake of sodium ions across the gastrointestinal mucosa
and the concentrations at which they were taken up into the
underlying blood capillaries. The model took into account
both the diffusion under concentration gradient and poten-
tial gradient and active transport which was ATPase enzyme
mediated, and appropriate partial differential equations for
the two mechanisms of transport had been derived and were
solved by iterative methods.

Recently, fractional calculus has been a subject of world-
wide attention due to its surprisingly broad range of applica-
tions in physics, chemistry, engineering, economics, biology,
and so forth [8–11]. In particular, fractional calculus is a
key tool to study anomalous diffusion in transport processes
which implies a fractional Fick’s law for the flux that accounts
for spatial and temporal nonlocality. Many literatures have
shown that the power-law behavior is a hallmark of many
biological phenomena observed at different scales and at
various levels of organization and that a rheological behavior
that conforms to the power law can be described by using
methods of fractional calculus [12–16]. For example, Magin
et al. [12] describe the formulation of the bioheat transfer in
one dimension in terms of the fractional order differentiation
with respect to time. His study demonstrates that fractional
calculus can provide a unified approach to examine the
periodic heat transfer in peripheral tissue regions. In this
paper, according to Magin’s idea, based on the previous
analysis and fractional calculus theory, we consider a frac-
tional anomalous diffusion model to describe the uptake
of sodium ions across the epithelium of gastrointestinal
mucosa using fractional Fick’s law. In Section 2, we present
the fractional anomalous diffusion model, and appropriate

partial differential equations describing the variation with
time of concentrations of sodium ions in both the interstitial
phase and the intracellular phase across the intestinal wall are
obtained using Riemann-Liouville space-fractional deriva-
tive and are solved by numerical computation. In Section 3,
numerical results are presented graphically for various values
of different parameters. In Section 4, we have presented our
conclusions.

2. Materials and Methods

The fractional anomalous diffusion model considers a two-
phase structure of the intestinal wall in which the epithelium
is treated as a thin layer. The apical plasma membrane is
adjacent to the lumen of the intestine and at the origin of a
one-dimensional coordinate system. The rest of the cellular
elements form a uniformly distributed array of identical cells.
In between are the intercellular spaces which correspond to
interstitial phase (Figure 1).

2.1. Fractional Fick’s Law. Fick’s law is extensively adopted as
a model for standard diffusion processes. For example, the
simplest reaction diffusion model in spherical coordinates
can be expressed as

𝜕𝐶 (𝑟, 𝑡)

𝜕𝑡
= −

1

𝑟2

𝜕 (𝑟
2
𝐽 (𝑟, 𝑡))

𝜕𝑟
+ 𝑓 (𝑟, 𝑡) , (1)

where 𝐶(𝑟, 𝑡) is the concentration of solute (with radial
symmetry), 𝑓(𝑟, 𝑡) represents reaction kinetics, and 𝐽(𝑟, 𝑡)

is dispersive flux. Generally, Fick’s law is used in normal
diffusion for dispersive flux based on empirical observations:

𝐽 (𝑟, 𝑡) = −𝐷
𝜕𝐶 (𝑟, 𝑡)

𝜕𝑟
, (2)

where𝐷 is the diffusion coefficient.
However, requiring separation of scales, it is not suitable

for describing nonlocal transport process. In order to study
the anomalous diffusion, the fractional Fick’s law has been
proposed [17], where the gradient of the solute concentration
in the empirical flux equation is replaced by a fractional-order
derivative:

𝐽 (𝑟, 𝑡) = −𝐷
𝜕
1−𝜆

𝜕𝑡1−𝜆
(
𝜕
𝛼−1

𝐶 (𝑟, 𝑡)

𝜕𝑟𝛼−1
) , (3)

where 0 < 𝜆 ≤ 1, 1 < 𝛼 ≤ 2, and 𝐷 is the anomalous
diffusion coefficient. 𝜕1−𝜆/𝜕𝑡1−𝜆 and 𝜕

𝛼
/𝜕𝑟
𝛼 are Riemann-

Liouville operators which are defined as follows:
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(4)

where 0 < 𝜆 ≤ 1, 1 < 𝛼 ≤ 2. We name it as the time-space
fractional Fick’s law [17]. Some special cases of this equation
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are as follows when 𝜆 = 1, 𝛼 = 2, it gives the classical Fick’s
law; when 𝛼 = 2, it gives time fractional Fick’s law; when 𝜆 =
1, it gives space fractional Fick’s law. Here, we only consider
the case of 𝜆 = 1, that is, the space fractional Fick’s law.

2.2. Fractional Anomalous Diffusion Model. The diffusion of
sodium ions is complicated because its flux is determined by
both the concentration gradient and the electrical gradient.
Considering the motion of sodium ions under all forces,
Macey [18] proposes that the flux equation is written as
follows:

𝐽 = −𝐷(
𝜕𝐶

𝜕𝑥
+
𝑍𝐹

𝑅𝑇

𝐶𝜕𝜓

𝜕𝑥
) , (5)

where 𝐷 is the diffusion coefficient, 𝜓 is the electrical
potential, 𝐶 is the concentration of the sodium ions, 𝑥 is the
distance across the wall measured from the lumen, 𝑍 is the
charge on the ion (+1 for the sodium ion), 𝐹 is Faraday’s
constant (96500Cmol−1),𝑅 is the universal gas constant, and
𝑇 is the absolute temperature.

Here, according to Magin’s idea [12], based on the space
fractional Fick’s law, the flux equation is expressed in the
following form:

𝐽 = −𝐷
𝛼
(
𝜕
𝛼−1

𝐶

𝜕𝑥𝛼−1
+
𝑍𝐹

𝑅𝑇

𝐶𝜕𝜓

𝜕𝑥
) , (6)

where 1 < 𝛼 ≤ 2, 𝐷
𝛼
is the anomalous diffusion coefficient.

The first term on the right stands for the concentration
gradient, and the second term on the right stands for the
electrical gradient.

We consider a two-phase model consisting of the inter-
stitial phase and the intracellular phase. The mass balance
equation in the interstitial phase, which accounts for the
molecular diffusion flux and a uniformly distributed contin-
uumof point sinks whose strength is proportional to the local
concentration differences between the two phases [1], is

𝜕𝐶


1

𝜕𝑡
= −∇ ⋅ 𝐽 + 𝑃 (𝐶



2
− 𝐶


1
) , (7)

where𝐶
1
and𝐶

2
are the concentrations of sodium ions in the

interstitial phase and in the intracellular phase, respectively,
and 𝑃 is the membrane permeability coefficient for the
molecular diffusion of sodium ions into the cellular phase.
Substituting (6) into (7), we can get the following equation:
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(8)

And based on the assumption that diffusion does not con-
tribute significantly to the totalmolecular transport inside the
cell [1], the mass balance equation in the cellular phase is

𝜕𝐶


2

𝜕𝑡
= 𝑃 (𝐶



1
− 𝐶


2
) , (9)

which is justified by the fact that the dimensions of the cells
are small compared to the thickness of the intestinal wall;
therefore, the flux through them is independent of distance.

Meanwhile, we assume that 𝜓 = 𝐴

𝑥, where 𝐴

 is a
constant to be determined. A justification for the constant
field assumption can be found in the observation that if a
membrane contains a large number of dipolar ions close to
their isoelectric point, these dipoles will tend to alter their
orientation in such a way that they tend to smooth out any
irregularities and maintain a constant field [7]. The validity
of this assumption has also been discussed by Goldman [19]
and Cole [20]. Hence, (8) can be reduced to
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that is,
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2
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1
) , (11)

where 𝐴 = 𝐴

(𝑍𝐹/𝑅𝑇).

The value 𝑥 = 0 corresponds to the lumen of the intestine
and 𝑥 = 𝐿 corresponds to serosa. We are interested in finding
the ion concentration at 𝑥 = 𝐿

1
, which corresponds to the

blood capillary at which it is absorbed (Figure 1). In rats,
the mucosal epithelium is approximately 0.14 of the total
intestinal wall thickness. Equations (9) and (11) are solved
to obtain 𝐶



1
and 𝐶



2
as functions of 𝑥 and 𝑡, and the mean

concentration of sodium ions at 𝑥 = 𝐿
1
is calculated from
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𝛾
1
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1
) + 𝛾
2
𝐶
2
(𝐿
1
)
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where 𝛾
1
and 𝛾
2
are the interstitial and intracellular volume

fractions, respectively.
Then, we introduce dimensionless parameters
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(13)

to reduce (11) and (9) to the nondimensional form (with the
∗ notation dropped for convenience):

𝜕𝐶
1

𝜕𝑡
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1

𝐿𝛼−2

𝜕
𝛼
𝐶
1
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1
) ,

𝜕𝐶
2
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= 𝛽 (𝐶

1
− 𝐶
2
) ,

(14)

where 𝐶
𝐿
is the concentration of sodium ions in the lumen.

The parameter 𝛽 = 𝑃𝐿
2
/𝐷 could be considered as the ratio

of the membrane diffusion flux into the cellular phase to the
molecular diffusion flux in the interstitial phase.

Based on the assumption that the concentration of
sodium ions in the intestinal lumina surface is equal to the
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concentration at its abluminal surface for the epithelial is
specially thin, the boundary conditions are given by

𝐶
1
(0, 𝑡) = 1, 𝐶

1
(1, 𝑡) = 0, (15)

which mean that the concentration of sodium ions in the
lumen is set to 1, whereas at the serosa it is set to 0 at all times.
Further, the initial concentration is taken to be 0, a condition
justified in the case of in vitro experiments. Both 𝐶

1
and 𝐶

2

are set to 0 at any point within the tissue when time equals 0.
Therefore, the initial conditions are given by

𝐶
1
(𝑥, 0) = 0, 𝐶

2
(𝑥, 0) = 0. (16)

2.3. Numerical Computation. For the numerical solution of
the problem above, we introduce a uniform grid of mesh
points (𝑥

𝑗
, 𝑡
𝑘
), with 𝑥

𝑗
= 𝑗ℎ, 𝑗 = 0, 1, . . . , 𝑁, and 𝑡

𝑘
=

𝑘𝜏, 𝑘 = 0, 1, . . . ,𝑀, where𝑀 and𝑁 are two positive integers,
ℎ = 1/𝑁 and 𝜏 = 𝑇/𝑀 are the uniform spatial and
temporal mesh size, respectively. The theoretical solution 𝐶

1

at the point (𝑥
𝑗
, 𝑡
𝑘
) is denoted by 𝐶

1
(𝑥
𝑗
, 𝑡
𝑘
); the solution of

an approximating difference scheme at the point (𝑥
𝑗
, 𝑡
𝑘
) will

be denoted by 𝐶𝑘
1,𝑗
. Similarly, the theoretical solution 𝐶

2
at

the point (𝑥
𝑗
, 𝑡
𝑘
) is denoted by 𝐶

2
(𝑥
𝑗
, 𝑡
𝑘
); the solution of an

approximating difference scheme at the point (𝑥
𝑗
, 𝑡
𝑘
) will be

denoted by 𝐶𝑘
2,𝑗
.

Then, we start to introduce the discretization of the
differential operators.The first-order derivatives with respect
to the temporal variable 𝜕𝐶

1
/𝜕𝑡 and 𝜕𝐶

2
/𝜕𝑡 are approximated

by the following Euler backward difference, respectively:

𝜕𝐶
1
(𝑥
𝑗
, 𝑡
𝑘
)

𝜕𝑡
≈
𝐶
1
(𝑥
𝑗
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𝑘
) − 𝐶
1
(𝑥
𝑗
, 𝑡
𝑘−1

)

𝜏
,

𝜕𝐶
2
(𝑥
𝑗
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𝑘
)

𝜕𝑡
≈
𝐶
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𝑗
, 𝑡
𝑘
) − 𝐶
2
(𝑥
𝑗
, 𝑡
𝑘−1

)

𝜏
,

(17)

and the first-order derivative with respect to the spatial
variable 𝜕𝐶

1
/𝜕𝑥 is approximated by Euler forward difference:

𝜕𝐶
1
(𝑥
𝑗
, 𝑡
𝑘−1

)

𝜕𝑥
≈
𝐶
1
(𝑥
𝑗+1
, 𝑡
𝑘−1

) − 𝐶
1
(𝑥
𝑗
, 𝑡
𝑘−1

)

ℎ
. (18)

As for the Riemann-Liouville fractional derivative, using
the relationship between the Grünwald-Letnikov formula
and Riemann-Liouville fractional derivative, we can approx-
imate the fractional derivative by [21, 22]

𝜕
𝛼
𝐶
1
(𝑥
𝑗
, 𝑡
𝑘−1

)

𝜕𝑥𝛼
≈ ℎ
−𝛼

𝑗+1

∑

𝑙=0

𝜔
(𝛼)

𝑙
𝐶
1
(𝑥
𝑗
− (𝑙 − 1) ℎ, 𝑡

𝑘−1
) , (19)

where 𝜔(𝛼)
0

= 1, 𝜔(𝛼)
𝑘

= (−1)
𝑘
(𝛼(𝛼 − 1) ⋅ ⋅ ⋅ (𝛼 − 𝑘 + 1)/𝑘!) for

𝑘 ≥ 1.There, we have adopted the shiftedGrünwald-Letnikov
formula for 1 < 𝛼 ≤ 2.

Finally, the finite difference method for the above prob-
lem is given as follows:

𝐶
𝑘

1,𝑗
− 𝐶
𝑘−1

1,𝑗

𝜏
=

ℎ
−𝛼

𝐿𝛼−2

𝑗+1

∑

𝑙=0

𝜔
(𝛼)

𝑙
𝐶
𝑘−1

1,𝑗−𝑙+1

+ 𝐴
𝐶
𝑘−1

1,𝑗+1
− 𝐶
𝑘−1

1,𝑗

ℎ
+ 𝛽 (𝐶

𝑘−1

2,𝑗
− 𝐶
𝑘−1

1,𝑗
) ,

𝑘 = 1, 2, . . . ,𝑀, 𝑗 = 1, 2, . . . , 𝑁 − 1,

𝐶
𝑘

2,𝑗
− 𝐶
𝑘−1

2,𝑗

𝜏
= 𝛽 (𝐶

𝑘−1

1,𝑗
− 𝐶
𝑘−1

2,𝑗
) ,

𝑘 = 1, 2, . . . ,𝑀, 𝑗 = 0, 1, 2, . . . , 𝑁 − 1,𝑁.

(20)

The boundary and initial conditions can be discretized by

𝐶
𝑘

1,0
= 1, 𝐶

𝑘

1,𝑁
= 0, 𝑘 = 0, 1, . . . ,𝑀,

𝐶
0

1,𝑗
= 0, 𝑗 = 1, 2, . . . , 𝑁,

𝐶
0

2,𝑗
= 0, 𝑗 = 0, 1, 2, . . . , 𝑁.

(21)

The concentrations of the sodium ions in the intercellular
phase and intracellular phase are determined at different steps
of time and space, and their weighted mean concentration at
the blood capillaries can also be obtained.

3. Results and Discussion

The thickness of the intestinal wall 𝐿 is taken to be 2.14 ×
10
−4m [1], which is measured from a cross-section of the rat

intestinal wall using an ocular micrometer fitted to a simple
microscope.Muller [23] reported inmorphometric studies of
rat gastricmucosa that the epithelial cells occupied 74%while
the remaining 26%was occupied by lamina propria. Hence, a
choice of 0.26 ismade for 𝛾

1
and 0.74 for 𝛾

2
, arbitrarily as their

values are not available in the literatures. According to Xu and
Zhao [24], the permeability coefficient 𝑃 of sodium ions is
taken to be 1.61 × 10−5 s−1. Varadharajan and Jayaraman [7]
had studied that the numerical value of 𝐴 depended on the
potential difference between the serosa and the mucosa, and,
comparing with the experimental results of Lauterbach [25],
Varadharajan obtained the value of𝐴 to be 0 ≤ 𝐴 ≤ 1 and the
optimum value of 𝐴 to be around 0.4, so 𝐴 is taken to be 0.4
in our studies.

3.1. The Anomalous Diffusion Coefficient 𝐷
𝛼
of Sodium Ions.

According to the Stokes-Einstein formula 𝐷 = 𝑘𝑇/6𝜋𝜇𝑟,
where 𝑘 is Boltzmann’s constant (1.4 × 10

−23 JK−1), 𝑇 is
the temperature (∼310K), 𝜇 is the viscosity of intercellular
fluid (∼0.001 Pas), and 𝑟 is the radius of the water molecule
(∼0.45 nm), we can obtain the diffusivity in water𝐷 = 5.12 ×

10
−10m2 s−1 [1]. Nevertheless, it can also be considered as a

reasonable approximation for the diffusion coefficient 𝐷
𝛼
of

sodium ions. Here, we change this parameter to 0.3, 0.7, 1,
1.3, and 1.7 times of the value of diffusivity𝐷.
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Figure 2: (a) is 𝐶
1
, plotted against 𝑥 for different values of 𝐷

𝛼
when 𝛼 = 1.6; (b) is 𝑀𝐶, plotted against 𝑥 for different values of 𝐷

𝛼
when

𝛼 = 1.6.

Figure 2, individual graph, demonstrates the variation of
concentration with respect to 𝑥 for different values of 𝐷

𝛼

when 𝛼 = 1.6. During the course of diffusion, we find
that the concentrations decrease in an exponential way, and
the curves tend to change very little when the values of 𝐷

𝛼

vary not too much, which indicates that the distribution of
sodium ions is more uniform; therefore, we can consider any
of these values as a reasonable approximation for the diffusion
coefficient 𝐷

𝛼
of sodium ions. By amplifying the figures,

we also observe that smaller 𝐷
𝛼
increases the amplitude of

𝑀𝐶, which indicates that larger 𝐷
𝛼
increases the speed of

the absorption especially at the blood capillaries, a possible
explanation is that faster movement of sodium ions makes it
easier for diffusion.

3.2. The Order 𝛼 of Fractional Derivative. Here, based on the
above analysis, we take 𝐷

𝛼
to be 0.38 × 10

−5 cm2 s−1, which
is about 0.7 times of the diffusivity 𝐷, just as used in the
literature [18]. Substituting the respective values of 𝐷

𝛼
and

𝐿, we can obtain that the actual time is about 2min× 𝑡.
Figure 3 demonstrates that the variation of concentration

with respect to 𝑥 at 𝑡 = 20min for different values of 𝛼.
Obviously, we can observe that the concentrations decrease in
an exponential way and the curves become smoother as the
value of 𝛼 becomes larger, which indicate that the diffusion
in the intercellular phase and the absorption especially at the
blood capillaries become quicker as the value of 𝛼 becomes
smaller. This fact demonstrates that the diffusion of sodium
ions is anomalous superdiffusion.

Figure 4 demonstrates that the variation of concentra-
tion with respect to 𝑥 at different times when 𝛼 = 1.6,
𝐴 = 0.4. During the course of diffusion, we find that the
concentrations decrease in an exponential way. By amplifying
the figures, we obviously observe that the decay tends to be
smoother and smootherwhen time increases, which indicates
the distribution of sodium ions is more uniform. Figure 4(a)
shows that at earlier times most of the sodium ions are
absorbed by the cells, and for later times they tend to pass
towards the serosa. Meanwhile, we observe that most of
the obsorption takes place at 𝑥 < 0.2 from Figure 4(b),
which can be explained as the distance at which the blood
capillaries lie. This is quite reasonable, since in rats the
mucosal epithelium is about 0.14 of the total wall thickness
[1]. All these phenomena are connective with the results
of Varadharajan and Jayaraman [7], which indicate that the
anomalous diffusion is appropriate for describing the uptake
of sodium ions.

Figure 5(a) is 𝑀𝐶 plotted against 𝑡 at different 𝑥 when
𝛼 = 1.9, 𝐴 = 0.4. We find that, at a particular distance,
𝑀𝐶 increases with time, but at a farther distance, the flux
is lower because the major absorption is made available at
the distance where the blood capillaries lie. Figure 5(b) is𝑀C
plotted against 𝑡 at 𝑥 = 0.15 for different values of 𝛼. We find
that, at a particular distance 𝑥 = 0.15, 𝑀𝐶 is lower when 𝛼
is smaller, which indicates that the diffusion is quicker when
the value of 𝛼 is smaller, and this leads to the lower value of
𝑀𝐶.

Figure 6(a) is𝐶
1
, plotted against 𝑡 at 𝑥 = 0.15 for different

values of 𝛼. We find that, at a particular distance 𝑥 = 0.15,
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Figure 3: (a) is 𝐶
1
, plotted against 𝑥 at 𝑡 = 20min for different values of 𝛼; (b) is𝑀𝐶, plotted against 𝑥 at 𝑡 = 20min for different values of 𝛼.
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Figure 4: (a) is 𝐶
1
, plotted against 𝑥 at different times when 𝛼 = 1.6, 𝐴 = 0.4; (b) is𝑀𝐶, plotted against 𝑥 at different times when 𝛼 = 1.6,

𝐴 = 0.4.

𝐶
1
is lower when 𝛼 is smaller, which indicates that the

diffusion is quicker when the value of 𝛼 is smaller, and this
leads to the lower value of𝐶

1
. Figure 6(b) is𝐶

1
plotted against

𝑡 at different 𝑥 when 𝛼 = 1.96, 𝐴 = 0.4. We find that
about 23% sodium ion absorption is achieved at a distance

of 0.1–0.15 when we choose 𝛼 = 1.96, and it is in good
agreement with the experimental results of Lauterbach [25],
which indicate that the concentration of Na in the cell water
approaches 23% of the initial concentration of the incubation
medium after the addition to the luminal side.
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Figure 6: (a) is 𝐶
1
, plotted against 𝑡 at 𝑥 = 0.15 for different values of 𝛼; (b) is 𝐶

1
, plotted against 𝑡 at different 𝑥 when 𝛼 = 1.96, 𝐴 = 0.4.

4. Conclusions

In summary, in this paper we have derived a fractional
anomalous diffusion model for sodium ion transport in the
intestinal wall using space fractional Fick’s law. Appropriate
partial differential equations describing the variation with
time of concentrations of sodium ions in both the intersti-
tial phase and the intracellular phase across the intestinal
wall are obtained using Riemann-Liouville space-fractional
derivatives and are solved by finite difference methods. The
numerical simulations have been discussed, and numeri-
cal results are presented graphically for various values of

different parameters. It demonstrates that fractional anoma-
lous diffusion model is appropriate for describing the uptake
of sodium ions across the epithelium of gastrointestinal
mucosa. This research also provides some new points for
studying ions transferring processes in biological systems.

Acknowledgment

The project was supported by the National Natural Science
Foundation of China (Grants nos. 11072134, 11102102, and
91130017).



8 Advances in Mathematical Physics

References

[1] N. Karmakar and G. Jayaraman, “Linear diffusion of lead
in the intestinal wall: A Theoretical Study,” IMA Journal of
Mathematics Applied in Medicine and Biology, vol. 5, no. 1, pp.
33–43, 1988.

[2] W.M. Armstrong, “Cellular mechanisms of ion transport in the
small intestine,” Physiology of the Gastrointestinal Tract 2, pp.
1251–1266, 1987.

[3] S. G. Schultz, “Principles of electrophysiology and their appli-
cation to epithelial tissues, gastrointestinal physiology,” in Gas-
trointestinal Physiology, pp. 87–91, Butterworth, London, UK,
1974.

[4] S. G. Schultz and P. F. Curran, Handbook of Physiology, vol. 3,
Section 6, 1968.

[5] M. S. Fadali, J. W. Steadman, and R. G. Jacquot, “A model
of water absorption in human intestine,” Biomedical Sciences
Instrumentation, vol. 16, pp. 49–53, 1980.

[6] B. A. Hills, “Linear bulk diffusion into heterogeneous tissue,”
TheBulletin of Mathematical Biophysics, vol. 30, no. 1, pp. 47–59,
1968.

[7] M. Varadharajan and G. Jayaraman, “Sodium ion transport
in the intestinal wall: a mathematical model,” IMA Journal of
Mathematical Medicine and Biology, vol. 11, no. 3, pp. 193–205,
1994.

[8] D. Baleanu, A. K. Golmankhaneh, R. Nigmatullin, and A.
K. Golmankhaneh, “Fractional Newtonian mechanics,” Central
European Journal of Physics, vol. 8, no. 1, pp. 120–125, 2010.

[9] J. Singh, P. K. Gupta, and K. N. Rai, “Solution of fractional
bioheat equations by finite difference method and HPM,”
Mathematical and Computer Modelling, vol. 54, no. 9-10, pp.
2316–2325, 2011.

[10] R. Metzler and J. Klafter, “The random walk’s guide to anoma-
lous diffusion: a fractional dynamics approach,” Physics Reports,
vol. 339, no. 1, pp. 1–77, 2000.

[11] R. Metzler and J. Klafter, “The restaurant at the end of the ran-
domwalk: recent developments in the description of anomalous
transport by fractional dynamics,” Journal of Physics A, vol. 37,
no. 31, pp. R161–R208, 2004.

[12] R. L. Magin, S. C. Boregowda, and C. Deodhar, “Modeling of
pulsating peripheral bio-Heat transferusing fractional calculus
and constructal theory,” International Journal of Design, Nature,
and Ecodynamics, vol. 1, no. 18, pp. 18–33, 2007.

[13] X. Y. Jiang and H. T. Qi, “Thermal wave model of bioheat
transfer with modified Riemann-Liouville fractional deriva-
tive,” Journal of Physics, vol. 45, no. 48, 10 pages, 2012.

[14] W. C. Tan, C. Fu, C. Fu, W. Xie, and H. Cheng, “An anomalous
subdiffusion model for calcium spark in cardiac myocytes,”
Applied Physics Letters, vol. 91, no. 18, 3 pages, 2007.

[15] R. G. Larson,The Structure and Rheology of Complex Fluids, vol.
2, Oxford University Press, New York, NY, USA, 1999.

[16] R. L. Magin, “Fractional calculus models of complex dynamics
in biological tissues,” Computers & Mathematics with Applica-
tions, vol. 59, no. 5, pp. 1586–1593, 2010.

[17] X. Y. Jiang, M. Y. Xu, and H. T. Qi, “The fractional diffusion
model with an absorption term and modified Fick’s law for
non-local transport processes,” Nonlinear Analysis: Real World
Applications, vol. 11, no. 1, pp. 262–269, 2010.

[18] R. I. Macey, Membrane Physiology, Plenum, New York, NY,
USA, 2nd edition, 1980.

[19] D. E. Goldman, “Potential, impedence, and rectification in
membranes,” The Journal of General Physiology, vol. 27, no. 1,
pp. 37–60, 1943.

[20] K. S. Cole, “Electrodiffusion models for the membrane of squid
giant axon,” Physiological Reviews, vol. 45, pp. 340–379, 1965.

[21] M. M. Meerschaert and C. Tadjeran, “Finite difference approx-
imations for fractional advection-dispersion flow equations,”
Journal of Computational and AppliedMathematics, vol. 172, no.
1, pp. 65–77, 2004.

[22] C. Li and F. Zeng, “Finite difference methods for fractional
differential equations,” International Journal of Bifurcation and
Chaos in Applied Sciences and Engineering, vol. 22, no. 4, 2012.

[23] O. Muller, “The quantitation of the rat gastric mucosa by mor-
phometric methods,” Scandinavian Journal of Gastroenterology,
Supplement, vol. 101, no. 1, pp. 1–6, 1984.

[24] M. Y. Xu and G. L. Zhao, “Nonisotonic reabsorption of water
and steady state distribution of sodiumion in renal descending
limb of Henle,” Acta Mechanica Sinica, vol. 1, no. 3, 1986.

[25] F. O. Lauterbach, Intestinal Transport, University Park Press,
1976.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


